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Abstract  Today, the the development of a mathematical models for population growth of great importance in 

many fields. The growth and decline of real populations can in many cases be well approximated by the solutions of 

a stochastic differential equations. However, there are many solutions in which the essentially random nature of 

population growth should be taken into account. In this paper, we approximating the moments of the first – passage 

time for the birth and death diffusion process with immigration to a moving linear barriers. This was done by 

approximating the differential equations by an equivalent difference equations. A simulation study is considered and 

applied to some values of parameters which showed the capability of the technique. 
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1. Introduction 

First – passage time play an important rule in the area 

of applied probability theory especially in stochastic 

modeling. Several examples of such problems are the 

extinction time of a branching process, or the cycle 

lengths of a certain vehicle actuated traffic signals. 

Actually the the first – passage times to a moving barriers 

for diffusion and other markov processes arises im 

biological modeling (Cf. Ewens [8]), in statistics (Cf. 

Darling and Siegert [6] and Durbin [7]) and in engineering 

(Cf. Blake and Lindsey [4]). 

Many important results related to the first – passage 

time have been studied from different points of view of 

different authors. For example, McNeil [13] has derived 

the distribution of the integral functional 

 

0

{ ( )} ,

Tx

Wx g X t dt   

where xT  is the first – passage time to the origin in a 

general birth – death process with X(0) = x and g(.) is an 

arbitrary function. Also, Iglehart [10], McNeil and Schach 

[14] have been shown a number of classical birth and 

death processes upon taking diffusion limits to 

asympotically approach the Ornstein – Uhlenbeck (O.U.). 

Many properties such as a first – passage time to a 

barrier, absorbing or reflecting, located some distance 

from an initial starting point of the O.U. process and the 

related diffusion process and the related diffusion process 

such as the case of the first passage time of a Wiener 

process to a linear barrier is a closed form expression for 

the density available is discussed in Cox and Miller [5]. 

Also, others such as, Karlin and Taylor [11], Thomas [15], 

Ferebee [9], Tuckwell and Wan [16], Alawneh and Al-

Eideh [1], Al-Eideh [2,3] etc. have been discussed the first 

passage time from different points of view. 

In particular, Thomas (1975) describes some mean first 

– passage time approximation for the Ornstein – 

Uhlendeck process. Tuckwell and Wan [16] have studied 

the first-passage time of a Markov process to a moving 

barriers as a first-exit time for a vector whose components 

include the process and the barrier.  

Alawneh and Al-Eideh [1] have discussed the problem 

of finding the moments of the first passage time 

distribution for the Ornstien-Uhlenbeck process with a 

single absorbing barrier using the method of 

approximating the differential equations by difference 

equations.  

Also, Al-Eideh [2,3] has discussed the problem of 

finding the moments of the first passage time distribution 

for the birth-death diffusion and the Wright-Fisher 

diffusion processes to a moving linear barriers and to a 

single absorbing barrier, respectively using the method of 

approximating the differential equations by difference 

equations. 

In this paper, we consider the birth and death diffusion 

process with immigration and study the first – passage 

time for such a process to a moving linear barrier. More 

specifically, the moment approximations are derived using 

the method of difference equations used in Al-Eideh [3] 

considering the immigration rate  . 
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2. First – Passage Time Moment 

Approximations 

Consider the birth and death diffusion Process with 

immigration  ( ) : 0X t t   with infinitesimal mean 

bx   and variance 2ax  starting at some 0x > 0, 

where b  and a  are the drift and the diffusion coefficients 

respectively and   is the constant immigration rate. Also, 

 ( ) : 0X t t   is a Markov process with state space 

 0,S    and satisfies the Ito stochastic differential 

equation 

  ( ) ( ) 2 ( ) ( )dX t bX t dt aX t dW t    (1) 

Where  ( ) : 0W t t   is a standard Wiener process with 

zero mean and variance t. Assume that the existence and 

uniqueness conditions are satisfied (Cf. Gihman and 

Skorohod). Let  ( ) : 0Y t t  be a moving linear barrier 

equation such that ( )Y t ct k  , with (0)Y k . Or 

equivalently 
( )dY t

c
dt

 . 

Now, denote the first – passage time of a process 

( )X t to a moving linear barrier ( )Y t ct k   by the 

random variables 

 inf{ 0 : ( ) }YT t X t ct k     (2) 

with probability density function 

    0 0; , ;

ct k
d

g t x p x x t dx
dt





    

Here p ( 0x , x ; t) is the probability density function of 

X (t) conditional on X (0) = 0x  

Let  0 , ;nM x Y t ; n = 1,2,3,……, be the n-th 

moment of the first – passage time YT , i.e. 

  0 , ; ( ), 1,2,3,...,n
n YM x Y t E T n   (3) 

It follows from the forward Kolmogorov equation that 

the n-th moment of YT  must satisfy the ordinary 

differential equation  

 
     

   

0 0

0 1 0

, ; , ;

, ; , ;

n n

n n

axM x Y t bx M x Y t

cM x Y t nM x Y t





  

  
 (4) 

Or equivalently 

 

   

   

0 0

0 1 0

, ; , ;

, ; , ;

n n

n n

bx
M x Y t M x Y t

ax

c n
M x Y t M x Y t

ax ax






 

  

 (5) 

Where  0 , ;nM x Y t  and  0 , ;nM x Y t  are the first 

derivatives of  0 , ;nM x Y t  with respect to x  

 0x x Y  , with appropriate boundary conditions for 

n=1,2,3,……. Note that  0 0, ; 1.M x Y t   

Now, rewrite the equation in (5), we obtain 

 

 

   

0

1 0 0

, ;

, ; , ;

n

n n

M x Y t

n b c
M x Y t M x Y t

ax a ax






 
    

 

 (6) 

Let   be the difference operator. Then we defined the 

first order difference of  0 , ;nM x Y t  as follows: 

      0 1 0 0, ; , ; , ;n n nM x Y t M x Y t M x Y t    (7) 

(Cf. Kelly and Peterson [12]). 

Note that equation (6) can be approximated by 

 

   

 

0 1 0

0

, ; , ;

, ;

n n

n

n
M x Y t M x Y t

ax

b c
M x Y t

a ax



  

 
   
 

 (8) 

By applying equation (7) to equation (8) we get : 

 

   

 

 

0 1 0

0

1 0

; , ;

, ;

, ;

n n

n

n

n
M x Y t M x Y t

ax

b c
M x Y t

a ax

b c
M x Y t

a ax









  

 
  
 

 
  
 

 (9) 

Now, we will use the matrix theory to solve the 

differential equation defined in equation (9). If we let 

      0 1 0 2 0, ; , ; , , ; ,M x Y t M x Y t M x Y t


     

Then we get  

 
 

 
2

0
02

, ;
, ;

d M x Y t
AM x Y t

dx
  (10) 

Where 

 

0 0

2
0

3
0

4
0 0

b c b c

a ax a ax

b c b c

ax a ax a ax

A b c b c

ax a ax a ax

b c

ax a ax

 

 

 



 
  

 
   

  
   


 

    
       
 

    
   

    
    
    

    
  

  
  

 

 

Now let 

 
 

 0
0

, ;
, ;

dM x Y t
R x Y t

dx
  (11) 

This imply 

 
   2

0 0

2

, ; , ;d M x Y t dR x Y t

dxdx
  (12) 

Apply to equation (10), we get 

 
 

 

 

 

0 0

0 0

, ; R x , ;0    A
   . 

I     0, ; , ;

R x Y t Y td

dx M x Y t M x Y t

    
    

       

 (13) 

Where I is the identity matrix and 0 is the zero matrix. 
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Thus, the solution of the system of equation in (13) is 

then given by 

 
 

 

 

 

*0    A
0 0    0

0 0

, ; R x , ;
 e   . 

, ; , ;

DR x Y t Y t

M x Y t M x Y t

 
 
 

   
   

      

 (14) 

Where D  = [ ijd ] ; , 1i j   is the diagonal matrix with 

entries 

 
 0      ; j i

 
    0            ; Otherwise

ij

ct k x
d

   



 (15) 

And ; , 1ijA a i j   
 

 is the matrix with entries  

 
 

 

0

0

0

ln ; 1

;

; 1

0 ;

ij

i ct k
j i

ax x

b c
ct k x j i

a a ax

b c
ct k x j i

a ax

Otherwise







  
    

 
          


          



(16)  

Note that the matrix Be  where 
0

0

A
B

D

 
  
  

 is defined 

by 

 
2 3

..............
2! 3!

B B B
e I B      

This series is convergent since it is a cauchy operator of 

equation (2.6) (Cf. Zeifman [17]). 

3. Simmulation Study 

In this section we will consider the simmulating the 

birth and death diffusion process with immigration 

 ( ) : 0X t t   as considered in equation (1) as well as 

approximating the moments of the first-passage time for 

such a process using the first and the second order 

difference operators to the differential equation in (9).  

For simulation of the process  ( ) : 0X t t   we used the 

following discrete approximation. 

For integer values 1,2,3,...k  , and 1,2,3,...n  , define 

 

* * *

*

1 1
( ) ( ) ( )

1
2 ( ) ( 1)

n n n

n

k k k
X X bX

n n n n

k
aX Z k

n n



 

   

 (17) 

where  ( )Z k  is an independent sequence of standard 

normal random variables. 

For each set of positive integers 1, ,..., ,kk t t  the 

sequence of random vecrors * *
1( ( ),..., ( ))n n kX t X t   

converges in distribution to 1( ( ),..., ( ))n n kX t X t  . As an 

example n  is chosen to be 50, i.e. each unit of time is 

broken into 50 steps for the purpose of simulating 

1 2( ), ( ),...n kX t X t , with 1 21, 1,...t t  . Therefore, the 

following graph, Figure 1, represents the simulated 

process when 0(1) 50X  and the parameters are set to 

0.5a  , 0.02b  and 0.02  . 

 

Figure 1. The Simulated Process X(t) when a=0.5, b=0.02 and ε=0.02 

Now for approximating the moments of the first-

passage time for such a process using the first and the 

second order difference operators to the differential 

equation in (9), we define the operators as follows: 

Let 2  be the second order difference operators. Then 

we defined the second order differences of  0 , ;nM x Y t  

and as follows: 

 
   

   

2
0 2 0

1 0 0

, ; , ;

2 , ; , ;

n n

n n

M x Y t M x Y t

M x Y t M x Y t





 

 
 (18) 

(Cf. Kelley and Peterson [12]). 

Note that equation (9) can be approximated by 

 

   

 

 

2
0 1 0

0

1 0

, ; , ;

, ;

, ;

n n

n

n

n
M x Y t M x Y t

ax

b c
M x Y t

a ax

b c
M x Y t

a ax









  

 
  
 

 
  
 

 (19) 

By applying equation (18) to equation (19) we get: 

 

   

   

 

 

2 0 1 0

0 1 0

0

1 0

, ; 2 , ;

, ; , ;

, ;

, ;

n n

n n

n

n

M x Y t M x Y t

n
M x Y t M x Y t

ax

b c
M x Y t

a ax

b c
M x Y t

a ax





 







  

 
  
 

 
  
 

 (20) 

Now rewriting equation (20) we get: 

 

 

 

 

 

2 0

1 0

0

1 0

, ;

2 , ;

1 , ;

, ;

                  

n

n

n

n

M x Y t

b c
M x Y t

a ax

b c
M x Y t

a ax

n
M x Y t

ax













   
   
  

   
    

  



 (21) 
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Through equation (21), the first moment  1 0 , ;M x Y t  

and the second moment  2 0 , ;M x Y t  of the first –passage 

time can be approximated by 

 
 1 0 , ; 2

                  

b c
M x Y t

a ax

   
    

    (22) 

and 

 

 

 

2 0

1 0

, ;

2 , ; 1

M x Y t

b c b c
M x Y t

a ax a ax

         
           

      

 (23) 

Following the above example of such a process shown 

in Figure 1 assuming different values for the parameter 

c where 0,  0.02,  0.1,  0.5,  1 and 5c  , we set the 

following Figures for the first moment  1 0 , ;M x Y t  and 

the second moment  2 0 , ;M x Y t  of the first –passage 

time. 

 

Figure 2. The First Moment of the First-Passage Time M1(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0 

 

Figure 3. The Second Moment of the First-Passage Time M2(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0 

 

Figure 4. The First Moment of the First-Passage Time M1(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0.02 

 

Figure 5. The Second Moment of the First-Passage Time M2(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0.02 

 

Figure 6. The First Moment of the First-Passage Time M1(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0.1 

 

Figure 7. The Second Moment of the First-Passage Time M2(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0.1 

 

Figure 8. The First Moment of the First-Passage Time M1(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0.5 
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Figure 9. The Second Moment of the First-Passage Time M2(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=0.5 

 

Figure 10. The First Moment of the First-Passage Time M1(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=1 

 

Figure 11. The Second Moment of the First-Passage Time M2(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=1 

 

Figure 12. The First Moment of the First-Passage Time M1(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=5 

 

Figure 13. The Second Moment of the First-Passage Time M2(t) of the 

Process X(t) when a=0.5, b=0.02, ε=0.02 and c=5 

The above figures of the first monent  1 0 , ;M x Y t  of 

the first-passage time of the process show the growth 

exponentially for the suggested values of the parameter c  

even when 0c   and converges as the time increased. But 

on the contrary the second moment  2 0 , ;M x Y t  of the 

first-passage time of the process show decline for the 

same suggested values of c  even when 0c   and 

converges as time increased too. 

4. Conclusion 

In conclusion the advantage of this technique is to use 

the difference equation to approximate the ordinary 

differential equation since it is the discretization of the 

ODE. Also, the system of the solutions in equation (14) 

gives an explicit solution to the first – passage time 

moments for the birth and death diffusion process with 

immigration to a moving linear barriers. This increases the 

applicability of the diffusion process in stochastic 

modeling or in all area of applied probability theory. For 

further study I think it is possible to set up an exact or an 

approximated technique to predict the parameters of the 

suggested process and the open a possibility to be applied 

to a real life problem. 
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