American Journal of Applied Mathematics and Statistics, 2015, Vol. 3, No. 5, 184-189

Available online at http://pubs.sciepub.com/ajams/3/5/2
© Science and Education Publishing
DOI:10.12691/ajams-3-5-2

SXBULSL-

Science & Education
Publishing

;‘-i-'_-

The Moment Approximation of the First—Passage Time
for the Birth—Death Diffusion Process with Immigraton
to a Moving Linear Barrier

Basel M. Al-Eideh”

Department of Quantitative Methods and Information System, Kuwait University, College of Business Administration, Safat, Kuwait
*Corresponding author:basel@cha.edu.kw

Received April 06, 2015; Revised September 01, 2015; Accepted September 20, 2015

Abstract Today, the the development of a mathematical models for population growth of great importance in
many fields. The growth and decline of real populations can in many cases be well approximated by the solutions of
a stochastic differential equations. However, there are many solutions in which the essentially random nature of
population growth should be taken into account. In this paper, we approximating the moments of the first — passage
time for the birth and death diffusion process with immigration to a moving linear barriers. This was done by
approximating the differential equations by an equivalent difference equations. A simulation study is considered and
applied to some values of parameters which showed the capability of the technique.
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1. Introduction

First — passage time play an important rule in the area
of applied probability theory especially in stochastic
modeling. Several examples of such problems are the
extinction time of a branching process, or the cycle
lengths of a certain vehicle actuated traffic signals.
Actually the the first — passage times to a moving barriers
for diffusion and other markov processes arises im
biological modeling (Cf. Ewens [8]), in statistics (Cf.
Darling and Siegert [6] and Durbin [7]) and in engineering
(Cf. Blake and Lindsey [4]).

Many important results related to the first — passage
time have been studied from different points of view of
different authors. For example, McNeil [13] has derived
the distribution of the integral functional

Tx
Wx = [ g{X ()},

0

where T, is the first — passage time to the origin in a

general birth — death process with X(0) = x and g(.) is an
arbitrary function. Also, Iglehart [10], McNeil and Schach
[14] have been shown a number of classical birth and
death processes upon taking diffusion limits to
asympotically approach the Ornstein — Uhlenbeck (O.U.).
Many properties such as a first — passage time to a
barrier, absorbing or reflecting, located some distance
from an initial starting point of the O.U. process and the
related diffusion process and the related diffusion process

such as the case of the first passage time of a Wiener
process to a linear barrier is a closed form expression for
the density available is discussed in Cox and Miller [5].
Also, others such as, Karlin and Taylor [11], Thomas [15],
Ferebee [9], Tuckwell and Wan [16], Alawneh and Al-
Eideh [1], Al-Eideh [2,3] etc. have been discussed the first
passage time from different points of view.

In particular, Thomas (1975) describes some mean first
— passage time approximation for the Ornstein —
Uhlendeck process. Tuckwell and Wan [16] have studied
the first-passage time of a Markov process to a moving
barriers as a first-exit time for a vector whose components
include the process and the barrier.

Alawneh and Al-Eideh [1] have discussed the problem
of finding the moments of the first passage time
distribution for the Ornstien-Uhlenbeck process with a
single absorbing barrier using the method of
approximating the differential equations by difference
equations.

Also, Al-Eideh [2,3] has discussed the problem of
finding the moments of the first passage time distribution
for the birth-death diffusion and the Wright-Fisher
diffusion processes to a moving linear barriers and to a
single absorbing barrier, respectively using the method of
approximating the differential equations by difference
equations.

In this paper, we consider the birth and death diffusion
process with immigration and study the first — passage
time for such a process to a moving linear barrier. More
specifically, the moment approximations are derived using
the method of difference equations used in Al-Eideh [3]
considering the immigration rate ¢ .
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2. First — Passage Time Moment
Approximations

Consider the birth and death diffusion Process with
immigration  {X(t):t>0} with infinitesimal mean
bx+¢ and variance 2ax starting at some x, > 0,

where b and a are the drift and the diffusion coefficients
respectively and ¢ is the constant immigration rate. Also,

{X(t):t>0} is a Markov process with state space
S =[0,0) and satisfies the Ito stochastic differential
equation

dX (t) = (bX (t) + &) dt +2aX (t)dW (t) (1

Where {W(t):t>0} is a standard Wiener process with

zero mean and variance t. Assume that the existence and
uniqueness conditions are satisfied (Cf. Gihman and

Skorohod). Let {Y(t):t>0} be a moving linear barrier
equation such that Y(t)=ct+k , with Y(0)=k . Or

equivalently ? =C.

Now, denote the first — passage time of a process
X(t) to a moving linear barrier Y(t)=ct+k by the

random variables
Ty =inf{t>0: X (t) > ct +k} (2
with probability density function

ct+k

g(t:xO)=—% [ p(x.xt)x

Here p (X, X ; t) is the probability density function of
X (t) conditional on X (0) = X

Let M;(%.Y;t); n = 123,...... , be the n-th
moment of the first — passage time Ty , i.e.

Mp(%.Y;t )=EM),n=123,.., (3)

It follows from the forward Kolmogorov equation that
the n-th moment of T, must satisfy the ordinary

differential equation

axMp (%o, Yt )+ (bx+&)Mp (%, Y5t )

(4)
+cMp (X0, Y5t ) =—-nM_1(Xg.Y;t )
Or equivalently
Mp (%o.Y;t )+bx+gM,'1(x0,Y;t )
(5)

c n
— MY Yit )=——M__ Yt
+ax n(XO ) ax nl(XO )

Where M/ (X,Y;t ) and M} (xo,Y;t) are the first
derivatives of M, (xp,Y;t ) with respect to x
(X <x<Y), with appropriate boundary conditions for
n=1,23,....... Note that Mg (X Y;t)=1.

Now, rewrite the equation in (5), we obtain

M3 (%, Y5t)
©)

n b ¢+c
LYY Yit)—| =+ 2= M/ (xo,Y;t
ax n (%0, Y5t) (a+ axj n (%0, Y;t)

Let A be the difference operator. Then we defined the
first order difference of M, (Xo,Y;t) as follows:

AM, (%0,Y5t) =My (X0, Y3t) =My (x0,Y5t) (D)

(Cf. Kelly and Peterson [12]).
Note that equation (6) can be approximated by

”n . n .
M (X.Y;t) = _aMn—l(XO!Y't)

b &+c ®
—| —+— |AM Yt
(a - j 0 (¥0.Yit)
By applying equation (7) to equation (8) we get :
”n . n .
Mn(XoYat)=—5Mn—1(XolYat)
b e+c
=+ = M (%0, Yt 9)
(a ax ) n(%0.Y:t)

b e¢+c
- = M Yot
(a+ ax j n+1 (%0, Y:t)

Now, we will use the matrix theory to solve the
differential equation defined in equation (9). If we let

’

M (%o, Y:t) =[ My (%0, Y;t),Mp (X, Y;t), ]

Then we get

d?M (%, Yit) -
d—Z:AM(xo,Y;t) (10)
X
Where
(E-Fg_-'_cj _(9+€_ﬂj O 0
a axX a ax
2 (E S_ﬂ) _(9 s_ﬂj 0
ax a ax a aX
A= 0 3 (9 g_+cj _(b g+cj
ax a ax a aX
ax a ax
Now let
dM (xo,Y;t)
———=R(Xp,Y:t (11
» (%0.Y;t)
This imply

d®M (xo.Y;t) dR(xp,Y;t)

(12)
d)(2 dx

Apply to equation (10), we get

ir(xo,Y;t)]: {0 A} F(XO,Y;t)} (13
dx| M (xo,Y;t) L 0] | M(xY;tp)

Where | is the identity matrix and 0 is the zero matrix.
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Thus, the solution of the system of equation in (13) is
then given by

F(XM } 4] F(x@v:n] "
M (x,Y;t) N (%,Yt)

Where D = [d;]; i,j=1 is the diagonal matrix with
entries

" :{(ct+k—x0) j=i (15)

0 ; Otherwise

And A" = [aﬂ ;i, j >1 is the matrix with entries

_Lln(ct+kj Cjoio1
ax X0

[E 8+Cj(ct+k—X0) ) J:| (16)

+
a ax

_(E £+¢C

t+k— =i+l
a+ 0 j(c+ Xo) =i+

0 :Otherwise

Note that the matrix e where B:{g 'g } is defined

by
2 3
B

ee=1+B+—+—+
21 3!

This series is convergent since it is a cauchy operator of
equation (2.6) (Cf. Zeifman [17]).

3. Simmulation Study

In this section we will consider the simmulating the
birth and death diffusion process with immigration

{X(t):t=0} as considered in equation (1) as well as

approximating the moments of the first-passage time for
such a process using the first and the second order
difference operators to the differential equation in (9).

For simulation of the process { X (t):t>0} we used the
following discrete approximation.
For integer values k =1,2,3,...,and n=1,2,3,..., define

* k+1 * k 1 * k
Xn(—=) =X (5) +—bX, (5)
n n n n

re+t /2ax;(5).2(k+1)
n n

where {Z(k)} is an independent sequence of standard
normal random variables.

For each set of positive integers Kk,t,...,t, the
(X (@), X (8 )’
converges in distribution to (X, (t;),.... X,;(t))" . As an

example n is chosen to be 50, i.e. each unit of time is
broken into 50 steps for the purpose of simulating

@)

sequence of random vecrors

X, (), Xo (), ... , with ty =1t, =1... . Therefore, the
following graph, Figure 1, represents the simulated
process when X,(1) =50 and the parameters are set to

a=0.5, b=0.02and £=0.02.

S 7 9 1113 0517 19 21 23 25 27 X 31 33 35 37 39 41 43 45 47 49 51

Figure 1. The Simulated Process X(t) when a=0.5, b=0.02 and £=0.02

Now for approximating the moments of the first-
passage time for such a process using the first and the
second order difference operators to the differential
equation in (9), we define the operators as follows:

Let A be the second order difference operators. Then
we defined the second order differences of M, (x,,Y;t)

and as follows:
A*My (x,Y:t) = My, (%0, Y;1)
—2Mp1 (%0, Yit)+ My (%0,Y5t)

(Cf. Kelley and Peterson [12]).
Note that equation (9) can be approximated by

(18

n
A2M,, (XoaYit)=—5Mn—1(X01Y?t)

b e+c .
+(E+KJMn(XO,Y,t) (19)

b e¢+c
- = M Yot
(a+ ax j ne1 (%0, Y5t)

By applying equation (18) to equation (19) we get:
Mni2 (%0,Y5t)=2Mps (%, Y5t)
My (X9, Yit) = =M1 (%9, Yit)
ax

(b g+C (20)

—+— M Yot
+H -t axj n(XO )

a
b e+c
- = M Yot
(a+ axj n+1 (%0, Y5t)

Now rewriting equation (20) we get:

M2 (X0, Yit) =

(2—(9+‘9—+CDMn+1(XolYit)

a ax

+((E+€+Cj_1jMn(xo,Y;t) (21)

a ax

n
-——M Yt
ax n—1(XO )
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Through equation (21), the first moment My (xo,Y;t) 03

and the second moment M (xg,Y;t) of the first —passage os
time can be approximated by

) b e+c
Ml(Xo,Y,t)z[z—(g+ ax j] (22) 0.1%

/

and

M3 (%o,Y;t)

(23) 13§ 7 9 111315 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51
;(2_(9+g+CDM1(x0,Y;t)+((E+€—+Cj—1J
ax a

a ax Figure 5. The Second Moment of the First-Passage Time M,(t) of the
Process X(t) when a=0.5, b=0.02, £=0.02 and ¢=0.02

005

Following the above example of such a process shown

in Figure 1 assuming different values for the parameter 150
c where c¢=0, 0.02, 0.1, 0.5, 1and5 , we set the
following Figures for the first moment My (Xo,Y;t) and 200
the second moment M, (Xo,Y;t) of the first —passage -
time.
100
50
200
150 0
1 3 5 7 9% 111315171921 23 2527 29 31 3335 37 39 41 43 45 47 49 51

100

Figure 6. The First Moment of the First-Passage Time My(t) of the

o Process X(t) when a=0.5, b=0.02, £€=0.02 and ¢=0.1
1]
1 35 7 910131517 1912123 2527 29 31 33 35 37 39 4] 43 45 47 49 51 03
Figure 2. The First Moment of the First-Passage Time M(t) of the 0.25
Process X(t) when a=0.5, b=0.02, £=0.02 and ¢=0
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) 135 7 9111315171921 23 25 27 29 31 33 35 37 30 41 43 45 47 49 51 Figure 7. The Second Moment of the First-Passage Time Mjy(t) of the

Process X(t) when a=0.5, b=0.02, £€=0.02 and ¢=0.1

Figure 3. The Second Moment of the First-Passage Time My(t) of the
Process X(t) when a=0.5, b=0.02, £=0.02 and ¢=0
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Figure 8. The First Moment of the First-Passage Time M;(t) of the

Figure 4. The First Moment of the First-Passage Time M(t) of the Process X(t) when a=0.5, b=0.02, £=0.02 and c=0.5

Process X(t) when a=0.5, b=0.02, £=0.02 and ¢=0.02
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Figure 9. The Second Moment of the First-Passage Time My(t) of the
Process X(t) when a=0.5, b=0.02, £=0.02 and c=0.5
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Figure 10. The First Moment of the First-Passage Time M;(t) of the
Process X(t) when a=0.5, b=0.02, £=0.02 and c=1
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Figure 11. The Second Moment of the First-Passage Time My(t) of the
Process X(t) when a=0.5, b=0.02, £€=0.02 and c=1
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Figure 12. The First Moment of the First-Passage Time M;(t) of the
Process X(t) when a=0.5, b=0.02, £=0.02 and c=5

305 7 5 10113151719 21 23 25 27 19 31 33 35 37 39 41 43 45 47 45 51

Figure 13. The Second Moment of the First-Passage Time M(t) of the
Process X(t) when a=0.5, b=0.02, £=0.02 and ¢=5

The above figures of the first monent My (xg,Y;t) of

the first-passage time of the process show the growth
exponentially for the suggested values of the parameter ¢
even when ¢ =0 and converges as the time increased. But

on the contrary the second moment M;(xg,Y;t) of the

first-passage time of the process show decline for the
same suggested values of ¢ even when c=0 and
converges as time increased too.

4. Conclusion

In conclusion the advantage of this technique is to use
the difference equation to approximate the ordinary
differential equation since it is the discretization of the
ODE. Also, the system of the solutions in equation (14)
gives an explicit solution to the first — passage time
moments for the birth and death diffusion process with
immigration to a moving linear barriers. This increases the
applicability of the diffusion process in stochastic
modeling or in all area of applied probability theory. For
further study | think it is possible to set up an exact or an
approximated technique to predict the parameters of the
suggested process and the open a possibility to be applied
to a real life problem.

Support

This work was supported by Kuwait University,
Research Grant No. [IQ 03/12].

References

[1] A.J. Alawneh and B. M. Al-Eideh, Moment approximation of the
first-passage time for the Ornstein-Uhlenbeck process. Intern.
Math. J. Vol.1 (2002), No.3, 255-258.

[2] B. M. Al-Eideh, First-passage time moment approximation for the
Right-Fisher diffusion process with absorbing barriers. Intern. J.
Contemp Math. Sciences, Vol.5 (2010), No.27, 1303-1308.

[3] B. M. Al-Eideh, First-passage time moment approximation for the
birth-death diffusion process to a moving linear barriers. J. Stat. &
Manag. Systems, Vol.7 (2004), No.1, 173-181.

[4] 1. F. Blake and W. C. Lindsey, Level crossing problems for
random processes. IEEE Trans. Information Theory 19 (1973),
295-315.

[5] D.R. Cox and H. D. Miller, The theory of stochastic processes.
Methuen, London (1965).

[6] D. Darling and A. J. F. Siegert, The first - passage problem for a
continuos Markov process. Ann. Math. Statist. 24 (1953), 624-639.



[7]

(8]
[9]
[10]

[11]

[12]

American Journal of Applied Mathematics and Statistics

J.Durbin, Boundary - crossing probabilities for the Brownian
motion and Poisson processes and techniques for computing the
power of the Kolmogorov-Smirnov test. J. Appl. Prob. 8 (1971),
431-453.

W. J. Ewens, Mathematical Population Genetics. Springer-Verlag,
Berlin (1979).

B. Ferebee, The tangent approximation to one-sided Brownian exit
densities. Z. Wahrscheinlichkeitsth 61 (1982), 309-326.

D. L. Iglehart, Limiting diffusion approximation for the many
server queueand the repairman problem. J. Appl. Prob. 2 (1965),
429-441.

S. Karlin and H. M. Taylor, A Second Course in Stochastic
Processes. Academic press. New York (1981).

W.G. Kelly and A.C. Peterson, Difference Equations : An

Introduction with Applications. Academic Press, New York (1991).

[13]

[14]

[15]

[16]

[17]

189

D. R. McNeil, Integral functionals of birth and death processes
and related limiting distributions. Ann. Math. Statist. 41 (1970),
480-485.

D. R. McNeil and S. Schach, Central limit analogues for Markov
population processes. J. R. Statist. Soc. B, 35 (1973), 1-23.

M. U. Thomas, Some mean first passage time approximations for
the Ornstein — Uhlenbeck process.J. Appl. Prob. 12 (1975), 600-
604.

H. C. Tuchwell and F. Y. M. Wan, First-passage time of Markov
processes to moving barriers. J. Appl. Prob. Vol. 21 (1984), 695-
709.

A. |. Zeifman, Some estimates of the rate of convergence for birth
and death processes. J. Appl. Prob. 28 (1991), 268-277.



