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of any interactions with any motion equations inside a sphere of radius a, enclosed by the centrifugal and rapidly 
decreasing (exponentially or by the Yukawian law or by the more rapidly decreasing) potentials. Some kinds of the 
symmetry conditions are imposed. The Schroedinger equation for r > a for the particle motion and the condition of 
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sum rules for mean compound-nucleus time delays and the density of compound-nucleus levels. Sometimes (as 
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1. General Introduction (pre-face) 
The known Russian mathematician and physicist-

theoretician N.N. Bogolyubov claimed1 that mathematics 
now become partly the range of the theoretical physics 
(namely the quantum collision theory, analytical theory of 
the S-matrix, dispersion ratio and quite recently - maximal 
hermitian time operator for quantum systems with 
continuous energy spectra 2 ). Also the known Russian 
physicist-theoretician Landau has said 3  a new good 
method in physics is better than any effect because it can 
bring us to some or even many new effects which can in a 
new way explain the experimental data. And namely there 

                                                           
1 Bogolyubov N.N., private communication: mathematics now become 
partly the range of the theoretical physics (for instance, the quantum 
collision theory) 
2V.S.Olkhovsky, Time as a quantum observable, canonically conjugate 
to energy. Time analysis of quantum processes of tunneling and 
collisions (nuclear reactions) [LAP LAMBERT Academic publishing, 
177 pages, 2012]. 
3 Landau L.D., private communication: a new good method in physics is 
better than any effect because the good method can bring us to some or 
even many new effects which can in a new way explain the experimental 
data. 

is a reincarnation of these ideas in my paper. The both 
remarks are clearly manifested in both parts of this paper. 
There are new physical effects which had followed almost 
directly from my methods (they are developed from 
mathematical methods, reviewed in the part I, and from 
my new theoretical method, generalized in the part II). 

In part I there are the new effect of the time resonances 
(or explosions), which had followed from the Simonius 
multichannel S-matrix, and the parity-violation-
enhancement effect, which had get out the analytical 
structure of the S-matrix for the interactions with the 
violated parity. In the part II there are new transformations 
between the C- and L-system for cross sections with two 
and more interaction mechanisms, which generalize the 
well-known standard cinematic transformations between 
the C- and L-systems for cross sections with one direct (or 
prompt) mechanism, and also the virtual delay-advance 
effect in the C-system and absence of it in L-system (both 
revealed firstly by me). Both results or effects had 
followed from the space-time analysis (or method) of 
neutron-nucleus scattering, which has also firstly been 
elaborated by me. 

So, the presented paper is evident manifestation of such 
remarks of two known physicists, which appeared to be 
unexpected for me. 
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2. Analytic Properties of the S-matrix for 
Any Interactions, Enclosed by 
Centrifugal Rapidly Decreasing 
Potentials (as an Introduction) 

Many papers and books on non-relativistic quantum 
collision theory are dedicated to the analysis of the 
solutions of the Schroedinger equation and of the 
analytical properties of the correspondent S-matrix for 
various potentials of different forms, extended in all the 
three-dimensional space with radial coordinate along the 
axis (0, ∞). And only a rather small number of papers are 
concentrated on the study of the analytical properties of 
the S-matrix with the minimal number of assumptions on 
the interactions on small distances (practically nothing, 
with the exception of very general physical and 
mathematical principles, such as certain symmetry 
properties, causality or the condition of the completeness 
of the wave functions at the external interaction range, and 
also the possibility of the S-matrix analytic continuation at 
the complex plane of the kinetic energies or of the wave 
numbers). This approach ascends to the old idea of 
Heisenberg [1] (see also [2,3,4,5] and precedent references 
therein) on the unique fundamental quantity (the S-matrix) 
which is sufficient for the predictions of many observable 
quantities basing only on the general physical and 
mathematical principles.  

Now we shall outline the main results of [4, part II] for 
the unitary S-matrix, since they will be an initial base of 
the further reviewed results of papers [6-12]. Namely in [4, 
part II] it had been obtained the analytical expression of 
the function Sl (k), which defines the relation between the 
amplitudes of ingoing and outgoing l-waves for the elastic 
scattering of non-relativistic particles without spin (with 
l=0) for arbitrary interaction, localized inside the sphere of 
radius a, starting from the unitary condition 

 Sl (k) Sl
∗(k∗) =1, (1) 

the symmetry condition 

 Sl (k) Sl(–k) =1 (2) 
or 

 Sl
∗(k) Sl(–k∗)=1 (3) 

and the particular “causality” condition (if the ingoing 
wave packet is normalized so, that at t=–∞ it represents 
one particle, then the total probability to find the particle 
in any successive time moment (for instance, t=0) outside 
the interaction sphere cannot be more than 1). Strictly 
speaking, this condition is not the causality but the 
conservation of the total probability (more correctly, its 
analytical continuation in the complex plane of k). In [13] 
it was shown that it does directly follow from the 
orthogonality of the eigen functions of a self-adjoint 
operator, describing the motion and interaction of the 
colliding particles. 

Then, it had been also assumed the existence of the 
analytic continuation of Sl (k) into the complex plane of k 
and the condition of the quadratic integrability of the 
weight functions of the wave packets which in turn 
ensured the uniform convergence (at the range r>a) of the 
integrals over momentum in the Fourier-expansions of the 

wave packets. Finally it was obtained the following 
expression for S0 (k) : 

 S0 (k) = exp(–2ikα) ( )( )
,

( )( )
s s

s s s

k k k k k k
k k k k k k
λ

λλ

∗

∗
− − +
+ − +

∏ ∏ , (4) 

where α ≤ a, kλ are zeros on the imaginary axis (which are 
simple on the lower semi-axis), ks are the zeros in the 
upper half-plane D+, the products 

λ
∏ and 

s
∏ converge 

on the real axis k . In [14] it was shown that zeros kλ on the 
lower and upper imaginary semi-axes and zeros ks 
correspond to bound, virtual (anti-bound) and resonance 
states, respectively.  

If the interaction is described by a local central 
potential V(r), independent from k, and the conditions 

 
0

( )ndrr V r
∞

<∫  ∞, n=1,2, (5) 

and 

 V (r) ≡  0 for r > a, (6) 
are fulfilled, the expression (4) is valid also for arbitrary 
values of l , with α = a and the product over λ contains a 
finite number of poles on the upper imaginary semi-axis. 
But if only the condition (5) is fulfilled, then the 
expression (4) is, generally speaking, invalid and one does 
often use the following expression  

 Sl (k) = ( )
,

( )
l

l

f k
f k
−

+
 (7) 

where f0± (k) = f0± (k, 0) for l=0 and  

 fl± (k) = exp( / 2)
(2 1)!!

lk il
l

π±
−

 
0

lim
r→

 rl fl± (k,r) 

for l >0, fl± (k,r) is the solution of the radial Schroedinger 
equation or of the equivalent to it integral equation  

 
( ) ( )(1,2)

2
0

, exp( / 2)

2– ( ; , ) ( ) ( , ),

l l

l l

f k r i ilp krh kr

dr g k r r V r f k r
k
µ

±
∞

±

= ± ±

′ ′ ′ ′∫


 (8) 

with the boundary condition 

 lim
r→∞

 fl± (k,r)exp(ikr) =1 (9) 

where  

( ) ( ) ( ) ( )1 (2) (1) (2); , (k) (k) ,
2l l l l l

ikrrg k r r h h kr h kr h
′  ′ = −  

 

and hl
(1,2) (kr) = jl (kr) ± inl (kr) are the Hankel spherical 

functions of the first and the second kind, respectively (jl 
(kr), nl (kr) are the Bessel and the Neiman spherical 
function, respectively). At such conditions the function Sl 
(k) can have, besides the singularities described by (4), 
additional singularities, corresponding to the singularities 
of fl± (k,r). 

The author’s (partly with his collaborators) papers [6-12] 
are presented the review of the results of that approach, 
published gradually during 1961- 2006 (mainly in the 
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Russia and Ukraine), and can be evidently continued in 
the future. The second part of this paper contains another 
review, dedicated to the space-time description of cross 
sections and durations of neutron-nucleus scattering near 
1-2 resonances in the C- and L-systems. In the final 
sections of both parts of the present review, the scientific 
program is presented which is connected with the 
remained tasks, problems and also the gradually revealed 
perspective, unexpected previously, – how the rigorous 
mathematical method or approach can help to reveal quite 
concrete and sometimes paradox physical phenomena. 

3. The Properties of the Non-unitary 
One-channel S-matrix for the Arbitrary 
Interactions Enclosed by the Centrifugal 
Barrier and a Potential, which is 
Decreasing More Rapidly then Any 
Exponential Function 

Now, following [7], we consider a generalized case 
when the interaction and motion equation inside the 
sphere of radius a are unknown as before, but at r>a 
contains the centrifugal barrier ħ2 l(l+1) / r2 and a potential 
V(r), and there is not only a scattering but also a partial 
particle absorption or generation. For the convenience let 
us introduce new interaction characteristics – a complex 
“interaction constant”γ. We agree conventionally that its 
real part Reγ will characterize that interaction part which 
cause by itself the scattering only without the particle 
absorption or generating. And we agree to set up the 
negative (positive) value of Imγ in correspondence with 
that interaction part, the absence of which causes the 
absence of the particle absorption (or generating). If we 
further connect the particle absorption and generating with 
the simple decreasing or increasing of the flux of the 
scattered particles in comparison with the flux of 
bombarding particles, assuming the conservation of their 
impulse and other characteristics, then it will be natural to 
impose the following conditions: 

 0 < Sl (γ, k) 2 ≤ 1, (10a) 
 1 ≤ Sl (γ ∗, k) 2 < ∞,  (10b)  
with Imγ < 0, for real positive k . Since the conditions (10a) 
and (10b) are evidently insufficient for the study of the 
analytic properties of Sl (γ, k), let introduce, generalizing 
(1)-(3), the new symmetry properties (typical for central 
interactions) 

 Sl (γ, k) Sl (γ, – k) =1, (2a) 

 Sl (γ ∗, k) Sl (γ ∗, –k) =1, (3a) 
and the generalized “unitarity” condition 

 Sl (γ , k) Sl 
∗ (γ ∗, k ∗) =1, (1a) 

thus selecting for any interaction with the constant γ (Im γ , 
0) the “conjugate “ interaction with the complex conjugate 
constant γ ∗ . 

One can easily check that the conditions (1a),(2a),(3a) 
and (10a), (10b) are automatically fulfilled in the case 
when the interaction can be described by the complex 
potential which satisfies the condition (5) [14,15]. In that 

case the values γ and γ ∗ are not only conventional but 
also factual parameters of the potential V (γ, r) = Re γ V1 
(r) + i Im γ V2 (r). 

Instead of the “causality” condition from [4, part II], we 
shall use the condition of the completeness for the wave 
functions outside the sphere of unknown interaction, 
factually assuming in this region (i.e. for r ≥ a) the 
possibility of describing the colliding particles by the 
Schroedinger equation with a self-adjoint Hamiltonian: 

 

( ) ( )*2

0

2

2 ( , , ) ( , , )

( , , ) ( , , )

( )

l l

nl nl nl nl
n

k dkR k r R k r

R k r R k r

r r
r

γ γ
π

γ γ

δ

∞
+ + ′

′+

′−
=

∫

∑  (11) 

where 

 ( ) ( , ) exp( / 2)
( , , ) ,

( , ) ( , ) exp( / 2)2
l

l
l l

f k r iliR k r
S k f k r ilkr

π
γ

γ π
−+

+

 
=  − − 

 

 1 ( , ) ( , ) / ,
2nl nl nl l nlR B k f k k rγ
π +=  

functions fl± (k, r) are defined by equation (8); Im knl > 0 
and consequently the functions Rnl are integrable together 
with their squares (at least, at the range a ≤ r < ∞) ; all the 
information on the interaction inside the sphere with the 
radius r < a contains in the functions Sl (γ, k) and the 
constants ( , )nl nlB kγ . Let note that we (tacitly) assume 

that ( , , )nl nlR k rγ = ( , , )nl nlR k rγ• • •  in (11). 
Eq.(11) represents a generalization of the completeness 

relation for the eigen functions of the most simple classes 
of the non-Hermitian Hamiltonians [14] for the cases 
when all the eigen values knl are simple (non-multiple) and 
are situated outside the real axis k. When γ = Re γ , the 
functions Rnl describe simply bounds states of the system. 
For the complex values of γ they have the same boundary 
conditions as the bound states and their properties for the 
non-singular potentials with the negative imaginary part 
are partially described in [16].  

In order to be sure that Sl (γ, k) can have the analytic 
continuation into the complex plane of k, one has to 
impose some limitations on the potential tails of at the 
range of r > a . In the correspondence with the study of 
the potential scattering in [14-17], we can try, at least, to 
limit ourselves by the cases when at the range r > a, 
besides the centrifugal barrier, there is present a potential 
which satisfies the following condition 

 
0

( ) exp( )drr V r br
∞

< ∞∫  (12) 

at least, with any arbitrarily small b . 
Using the properties  

 * ( , ) ( , ) ( , )l l lf k r f k r f k r•
+ + −= − =  (13) 

for real k and relations (1a),(2a) and (3a) for Sl (γ, k), one 
can transform (11) into the form 
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( 1) ( , ) ( , ) ( , )

1 ( ) ( , ) ( , )

2 ( )

l l
C

l

l l l
C

nl l nl l nl
n

dkf k r f k r
rr

dkS k f k r f k r
rr

B f k r f k r
rr

r r
r

γ

πδ

+ −

+ +

+ +

′
′
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′

′+
′

′−
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∫

∫

∑
(14) 

where the integration trajectory C goes along the real axis 
k from – ∞ to ∞ , bypassing the point  

k =0 where fl± have the pole of the l-th order by a semi-
circle of the infinitesimal small radius, located in the 
upper semi-space.  

We shall limit ourselves by the case when fl± (k, r) 
behavior as exp(±ikr) in all the complex plane at k→∞. 
Then, shifting the integration contour into D+, enclosing 
all the singularities and utilizing equalities  

 
( ) ( )

( , ) ( , )

2 ( ),

l l

ik r r ik r r

dkf k r f k r

dke dke r rπδ

+ −
Γ+

∞
′ ′− −

Γ+ −∞

′= = = −

∫
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ik r r
l
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γ
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we obtain 
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∑
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



(17) 

where 
+Γ
∫ is the integral over the infinitely large semi-

circle above the real axis, 
kn
∫ is the integral over an 

infinitesimal circle around an isolate singular point, 

pγ
∫ is the integral over a contour which envelops a non-

isolate singularity (for instance, over the edges of the cut 
conducted for a branch point). Since all these contours are 
independent, equality (17) is equivalent to the following 
system of equalities: 
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( )–1 ( , ) ( , ) ( , )
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l
l l l

p

l l
p

dkS k f k r f k r

dkf k r f k r

γ

γ
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 ( )( , ) 0.ik r r
ldkS k eγ ′+

Γ

=∫  (21) 

A simple analysis of equation (18) shows that Sl (γ, k) 
has the poles of the first order on the positive imaginary 
semi-axis (which at γ =Reγ correspond to bound states) 

with residues (–1)l+1 i
2( )

2
nlB
π

. Re-writing eq.(19) in the 

form 

( , )
( , ) ( , )[ ( 1) ( , )] 0,

( , )
ll

l l l
lkn

f k r
dkf k r f k r S k

f k r
γ−

+ +
+

′
′ − − =

′∫ (19a) 

after simple reasoning one can easily to conclude that Sl (γ, 
k) has to have additional isolate singularities D+, 
coincident with those isolate singularities of fl– (k,r) in the 
upper semi-space near which  

 lim ( , ) lim ( ) ( , ),l m l
k k k kmn mn

f k r D k f k r− +
→ →

=  (22) 

where the function Dm (k) does not depend on r and has an 
isolate singular point km .Similarly one can study non-
isolate singularities of Sl (γ, k) coming from analysis of 
eq.(20). 

In the simplest case when outside the sphere of radius a 
there is only a centrifugal potential, functions fl± (k,r) have 
the form 

 fl± (k,r) = (±i)exp(±ilπ /2)kr hl(1,2) (kr). (8a) 
Since functions hl

(1,2) (kr) are analytical in the whole 
complex plane k, with the exception of points k = 0 and ∞, 
then we can choose at k→ ∞  

 (±i)exp(±ilπ /2)krhl(1,2) (kr) 
k →∞
→  exp (±ikr) (9a) 

in the whole complex plane k , and so, in correspondence 
with eq.(18)-(21), the function exp(2ikα) Sl(γ,k), α ≤ a, is 
regular everywhere in the whole D+, except isolate 
singularities knl which for γ =Re γ are localized on the 
positive imaginary semi-axis. In this last case, we can find 
the product expansion of the type (4), where points kλ are 
the zeros knl on the lower imaginary semi-axis, 
corresponding to bound states, and also the zeros on the 
upper imaginary semi-axis, which define virtual (anti-
bound) states and correspond to the poles situated, at least, 
by one between the poles knl and kn+1, following an 
approach that was outlined in [9,13]. 

For the complex values of γ the final result for Sl (γ,k) 
can be also represented in the analytical form. Considering 
that the zeros (poles) of Sl (γ,k) in the first and the second 
quadrants do in the consequence of the symmetry 
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conditions (2a) correspond to the poles (zeros) in the third 
and the forth quadrants, mirror-like symmetrical to them 
relative to the direct lines Im k = Re k and Im k = – Re k, 
respectively, we can find the product expansion of Sl (γ,k), 
following an approach that was outlined in [10,12]. Its 
derivation is performed in Appendix I, and the obtained 
there final forms are:  

( , )

exp(2 ) ,

l

nl s s

nl s sn s s

S g k

k k k k k k k k
iak

k k k k k k k k
λ

λλ

′

′′

+ − − −
=

− + + +
∏ ∏ ∏ ∏

(23a) 

*( , )

exp ( 2 ) ,nl s s

n s snl s s

l

k k k k k k k k

k k k k k k k k

S g k

iak λ

λ λ

• • • •
′

• • • •
′ ′

+ − − −

− + + +
= − ∏ ∏ ∏ ∏

(23b) 

which generalizes (4), taking conditions (1a)-(3a) into 
account. Here knl are the poles in the lower half-space D –, 
kλ are the zeros in D+, ks and sk ′ are the zeros in the first 
and the second quadrants, respectively. The results (23a, b) 
had been explicitly obtained in [7] firstly and had not been 
analyzed before even for the simple interactions described 
by the complex potentials.  

The written above simplified assumptions on the eigen 
values knl in the completeness condition (11) factually 
brings to an insignificant limitation of the interaction class. 
The absence of values knl on the real axis k, i.e. the 
absence of poles and zeros (spectral points) of Sl(γ,k) and 
Sl(γ ∗,k) corresponding to them (as well as the absence of 
values of ks and sk ′ ), does simply signify the rejection the 
cases of the total absorption of bombarding particles and 
also the rejection of the infinite increasing of the new-
particle birth for the physical values of k ≥ 0. The 
condition of the absence of the eigen values knl with the 
multiplicity of more than 1 apparently does not also bring 
to the essential limitation of the interaction class. Really, 
if one naturally assumes that a smooth change of the 
interaction parameter γ brings to the smooth shift of the 
values knl , then the arbitrarily small change of the 
parameter γ will bring to a certain small divergence of the 
various trajectories knl (γ) from the point of their (knl) 
coincidence. In [9] it was shown (with the help of another 
method) that expressions (23a,b) are valid for local 
potentials inside r ≤ a with a hard (infinite) core of radius 
r0 < a, for non-local separable potentials of the type v(r) 
v( r′ ) with 0 < r, r′ < a, for non-local separable potentials 
with a hard(infinite) core of radius r0 < a . And 
expressions (23a,b) were generalized for local complex 
potentials with multiple zeros – knl, kλ and ks . In the last 
case in (23a,b) there will be present the factors of the type 

( nl

nl

k k
k k

+
−

)αnl ( 
k k
k k
λ

λ

−
+

)αλ ( s

s

k k
k k

−
+

)αs , where αnl , αλ and αs 

are the multiplicities of reros – knl, kλ and ks , respectively. 
If at the external region, when r ≥ a , there are the 

centrifugal barrier and a potential, which is decreasing 
more rapidly then any exponential function, then the 
results (23a, b) remain valid since in this case the 
functions fl± ( k, r) are analytical everywhere (see 
Appendix III), besides points k=0 and ∞ , and at the limit 
k→ ∞ they tend to exp (±ikr). 

4. The Analytical Properties of the  
Non-unitary S-matrix for Any Non-central 
and Parity-violating Interactions, Enclosed 
by the Centrifugal Barrier and a Potential, 
which is Decreasing More Rapidly than 
Any Exponential Function 

We shall study this problem, following [10]. Let us 
suppose that the interaction between two colliding 
particles is such that the S-matrix is diagonal, as regards 
the total momentum j, does not depend on the total-
momentum projection onto an arbitrary axis, and contains 
both diagonal and non-diagonal elements regarding the 
orbital momentum l with the mixed neighboring values 

l, l′= j λ± of equal ( 1λ = ) or opposite ( 1
2

λ = ) parities. 

Particularly, there is a mixture of values , 1l l l′ = ±  (in the 
case of a tensor interaction admixture) or there is no 
mixture at all ( , 0l l j λ′= = = ), and there is a mixture 

1,
2

l l j′ = +  in the case of a parity-violating interaction 

like υ ˆ ˆ( )r pσ  + ˆ p̂σ  ( )rυ , where r is the relative distance 

between two particles, σ̂  is the Pauli pseudo-vector 
matrix, p̂  is the momentum operator for the relative 
motion of a nucleon and a nucleus with spin 0. Of course, 
in the case of central interactions always l l j′= =  and 

0λ = . 
Thus, we consider the unknown non-central or parity-

violating interaction inside the sphere r < a surrounded by 
the centrifugal barrier and a central potential, which is 
decreasing more rapidly than any exponential function 
V(r). Supposing that there is not only the scattering but 
also the absorption or the creation of particles, ii is natural 
as usually to put, generalizing (10a,b), the following 
conditions for the elements j

llS ′  of the S-matrix 

 0 < 
2

( , ) 1j
ll

l
S kγ′

′
≤∑ , (24a) 

 1 ≥
2

( , )j
ll

l
S kγ′

′
< ∞∑ , (24b) 

and, generalizing (1a)-(3a), the extended “unitarity” 
condition 

 1 21 2
( , ) ( , )j j

l ll l ll
l

S k S kγ γ δ• • • =∑  (25) 

and symmetry condition 

 ( , ) ( 1) ( , )j jl l
ll llS k S kγ γ′• • • +
′ ′= − −  (26)  

(as regards the axis Im k), and also the condition of j
llS ′  

symmetry regarding the lower indices: 

 ( , ) ( , ).j j
ll l lS k S kγ γ′ ′′=  (27) 
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One easily check that the conditions (45)-(48) are 
automatically fulfilled in the case of central complex 
potential (5). 

A system state for r ≥ a can be described by the wave 
functions 

( , ) exp( / 2)
( , , )

2 ( , ) ( , ) exp( / 2)
ll lj

jll
lll

f k r iliR k r
kr S k f k r il

δ π
γ

γ π

′ ′−•
′

′+′

′ 
=  

′− −  
(28) 

in the continuous part of the spectrum and 

 ( ) 1/2 1( , , ) (2 ) ( , ) ( , )j n
nl l nl l nllR k r B k f k r rγ π γ− −

+=  (29) 

in the discrete part of the spectrum. 
Generalizing the completeness relation (11) for the 

unknown non-central or parity-violating interaction inside 
the sphere r < a, surrounded by the centrifugal barrier and 
a central potential, which is decreasing more rapidly then 
any exponential function V(r), we can write 

 

( ) ( )2

0

( ) ( )
, 2

2 ( , , ) ( , , )

( )( , ) ( , , )

j j
l l l l

l

j n j n
nj nj l ll l

n

k dkR k r R k r

r rR k r R k r
r

γ γ
π

δγ γ δ

∞
+ + •

′ ′′

•
′ ′′′ ′′

′

′−′+ =

∑ ∫

∑
(30) 

Relation (51) is a generalization of the completeness 
condition for eigen functions of a class of non-hermitian 
Hamiltonians [17,18] for which all eigen values are simple 
(not multiple) and are situated outside the axis Re k. 

As usually, in order that one be sure of the possibility of 
analytic continuation of ( , )j

llS kγ′ in the complex plane k, 

one needs to put the limitation (12) in the external region (r ≥ 
a). 

Using the properties (49) for real k and conditions (46)-
(48), one can rewrite (51) in the form 

2

1 ( , ) ( , )

exp[ ( ) / 2] ( , ) ( , ) ( , )

1 ( , ) ( , ) ( , ) ( , )

2 ( )

l l l l
C

j
l ll l

C

l nj l nj l nj l nj
n

l l

dkf k r f k r
rr

i l l dkS k f k r f k r
rr

B k B k f k r f k r
rr

r r
r

δ

π γ

γ γ

πδ δ

′ ′′ ′ ′′− +

′ ′′+ +′ ′′

′ ′′ ′ ′′+ +

′ ′′

′
′

′ ′′− + ′−
′

′+
′

′−
=

∫

∫

∑
(31) 

where the integration path C goes along the axis Re k from 
–∞ to ∞, passing near the point k=0 (here ( , )lf k r±  have 
poles of l-th order) along semi-circle of the infinitely 
small radius in D+. 

We shall limit ourselves by the case when fl± (k, r) 
behavior as exp(±ikr) in all the complex plane at k→ ∞. 
Then, shifting the integration contour into D+, enclosing 
all the singularities by closed singularities (as near to them 
as we like) and using equalities  

 

( )

( )

( , ) ( , )

2 ( ),

ik r r
l l

ik r r

dkf k r f k r dke

dke r rπδ

′−
− +

Γ+ Γ+
∞

′−

−∞

′ =

′= = −

∫ ∫

∫
  (32) 

 
( )

( , ) ( , ) ( , )

( , ) ,

j
l ll l

j ik r r
l l

dkS k f k r f k r

dkS k e

γ

γ

′ ′′+ +′ ′′
Γ+

′+
′ ′′

Γ+

′

=

∫

∫
 (33) 

we obtain 

 

\

exp[ ( ) / 2][ ( , ) ( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , ) ( , )

( , ) ( , ) ( , )]

( , )

j
l lll

k

ll l l
m km

ll l l
p k p

j
l lll

q q
j

l lll

l nj l

i l l dkS k f k r f k r

dkf k r f k r

dkf k r f k r

dkS k f k r f k r

dkS k f k r f k r

B k B

ν ν

γ

π γ

δ

δ

γ

γ

γ

′+ +′

′ ′− +

′ ′− +

′+ +′

′+ +′
+Γ

′

′ ′− + +

′

+ −

′ +

′ +

∑ ∫

∑ ∫

∑ ∫

∑ ∫

∫









( , ) ( , ) ( , ) 0nj l nj l nj
n

k f k r f k rγ ′′+ + ′ =∑

(34) 

where 
+Γ
∫ is the integral over the infinitely large semi-

circle above the real axis, 
kn
∫ is the integral over an 

infinitesimal circle around an isolate singular point, 

pγ
∫ is the integral over a contour which envelops a non-

isolate singularity (for instance, over the edges of the cut 
conducted for a branch point). Since all these contours are 
independent, equality (34) is equivalent to the following 
system of equalities: 

 
exp[ ( ) / 2] ( , ) ( , ) ( , )

( , ) ( , ),

j
l lll

knj

l l l nj l nj

i l l dkS k f k r f k r

B B f k r f k r

π γ ′+ +′′

′ ′+ +

′ ′− +

′=

∫
(35) 

 

exp[ ( ) / 2] ( , ) ( , ) ( , )

( , ) ( , ) ,

j
l lll

k

l l ll
k

i l l dkS k f k r f k r

dkf k r f k r
ν

ν

π γ

δ

′+ +′′

′′ ′− +

′ ′− +

′=

∫

∫





 (36) 

 

exp[ ( ) / 2] ( , ) ( , ) ( , )

( , ) ( , ) ,

j
l lll

p

l l l l
p

i l l dkS k f k r f k r

dkf k r f k r

γ

γ

π γ

δ

′+ +′

′ ′+ −

′ ′− +

′=

∫

∫





(37) 

 ( )( , ) 0.j ik r r
lldkS k eγ ′+
′

Γ

=∫  (38) 

Quite similar to the previous cases of the central 
unknown interactions inside the sphere r ≤ a, it follows 
from equation (56) that all the elements ( , )j

llS kγ′  have in 

D+ poles of the first order (for γ=Reγ they are situated on 
the half-axis Im k > 0 and correspond to the bound states) 
with the residues  
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 exp[–i(l+ ) / 2]l π′ (2πi)–1BlBl′. 

Directly from equation (57) it follows that the diagonal 
elements ( , )j

llS kγ must have in D+ additional isolated 
singularities which coincide with those isolated 
singularities ( , )lf k r−  in D+, near which equation (22) is 
valid also here, with the function Dm (k) which also does 
not depend on r and has an isolate singular point 
km .Similarly, it follows from eq.(58) that the diagonal 
elements ( , )j

llS kγ must have in D+ branch points and non-
isolated singularities which coincide with the appropriate 
singularities of ( , )lf k r−  in D+. 

As it was previously made for the unknown central 
interactions inside the small sphere of radius a, we 
consider several cases of potential tails in the external 
region with r ≥ a.  

When there is only a centrifugal barrier there, then 
equations (8a) and (9a) are valid and according to 
equations (47)-(50) all the functions 

( , ) ( , ) exp(2 )j j
ll llS k S k ikaγ γ′ ′′=  are regular and limited 

everywhere in D+ except the isolated points. No poles can 
appear on the half-axis Re r because of the conditions 
(36a,b) and also because of the finite values 
of ( ) ( , , )j

l lR k rγ+
′ at the point k = 0. 

It is easy to conclude from the finite value of 
( ) ( , , )j

l lR k rγ+
′ for k → 0 by recalling the known behavior 

of ( , )lf k r±  and of (1,2) ( )lh kr = jl (kr) ± inl (kr) at the point 
k → 0 that 

 1 1
0

( , ) [1 ( )] [1 ] ( ),j l l
ll llll k

S k k kγ δ δ+ +> >′ ′′ →
→ +Ο + − Ο  (39) 

where l> is the larger of the two numbers l and l′ .  
One can determine the analytic continuation of the 

functions ( , )j
llS kγ′  in D– as usual on the basis of the 

symmetry condition (47) and the general theorem on the 
analytic continuation. 

Solving system (46) with the use of (47) and (48) 
relatively to ( , )j

llS kγ′ − , we obtain  

 
( , ) ( , ) / ( , ),

( , ) ( , ) / ( , )

j j
jll l l

j j
jll ll

S k S k d g k

S k S k d g k

γ γ

γ γ

′ ′

′ ′

− =

− = −
 (40) 

(with l≠l′ and dj (γ,k) = ( , )j
llS kγ ( , )j

l lS kγ′ ′ – [ ( , )j
llS kγ′ ]2 ), 

from which we can see that in D– all the elements 
( , )j

llS kγ′  have the same poles knj (on the half-axis Im k < 

0), ks (in the 4-th quadrant), sk ′ (in the 3-rd quadrant), 
which correspond to the zeros of the function dj in D+ , and 
also the zeros –knj , which correspond to the poles knj in 
D+ . Besides that, every diagonal element ( , )j

llS kγ′  can 

have additional poles on the half-axis Re k < 0 (kµ ), in the 
4-th quadrant (kσ) and in the 3-rd quadrant (kσ′ ), which 
correspond to the zeros – kµ , – kσ and – kσ′ of two 

functions ( , )j
llS kγ  and ( , )j

llS kγ′  in D+. Moreover, one 
can conclude from the formulae (48) that the zeros kp (on 
the axis Im k), kr (on the axis Re k), kt (in the 1-st and 4-th 
quadrants) and kt′ (in the 2-nd and 3-rd quadrant) of the 
diagonal element ( , )j

llS kγ correspond to the zeros – kp , – 

kr , – kt and – kt′ of the second diagonal element ( , )j
l lS kγ′ ′ , 

l′ ≠ l, and also that the zeros of the non-diagonal element 
( , )j

llS kγ′ , l′ ≠ l, can appear only in pairs ±kπ (on the half-

axis Im k), ±kρ (on the half-axis Re k), ±kt (in the rest of 
the complex plane). Evidently, the last assertion is true for 
those zeros which are not general zeros of all the 
elements ( , )j

llS kγ′ . 

In the considered case, ( , )j
llS kγ′  cannot have any 

singular points in D – besides poles, since there will be a 
singular point – kx of ( , )j

l lS kγ′ in D+ for every singular 

point kx of ( , )j
l lS kγ′ ′  in D – because of (61), but this is in 

contradiction with our previous result on the analyticity of 
( , )j

l lS kγ′ ′ in D+. Thus all the elements ( , )j
l lS kγ′ ′  are 

meromorphic functions and consequently they can be 
represented in the form of a ratio of two integer analytic 
functions:  

 

, , , , , ,

1 /
( , ) ( , ) exp[ ( )]

1 /

(1 / )(1 / )

(1 / )(1 / )
,

(1 / )(1 / )(1 / )

j nl
ll llll

nln

p r

t t

m s sm s s p r t t

k k
S k A k g k

k k

k k k k

k k k k
k k k k k k

γ γ′ ′′

′

′′ ′

+
= ⋅

−

− − 
 

− − 
− − −

∏

∏



 (41) 

where 1(1 ) l
ll ll llA Ckδ δ +>′ ′ ′= + −  , C = i Im C is a 

constant, the topology of the poles knj , km , ks , ks′ and of 
the zeros – knj , kp , kr , kt , kt′ was specified before, 

( ) ( ) ( )ll ll llg k u k i kθ′ ′ ′= + . 
The real function ( )llu k′ must be non-positive in D+ 

because of the analyticity of ( , )j
llS kγ′  (and, consequently, 

the convergence of the infinite products of (62) in D+) and 
must be non-negative in D– owing to (61). Then the 
Cauchy-Riemann conditions  

 0 ≥ / Im /ll llu k kθ′ ′∂ ∂ = −∂ ∂  (Im k = 0 ) 

must be satisfied on the real axis. From these conditions 
one can conclude that the function ( )ll kθ ′  is 
monotonically increasing and reaches a real value not 
more than once. Then ( )llg k′ = = ( ) ( )ll llu k i kθ′ ′+  reaches 
any imaginary value not more than once, and hence must 
be a linear function: ( )llg k′ = 2 ( ) ( )ll lli k kβ γ′ ′+ . 

Evidently ( ) 0ll kβ ′ ≥  and, since ( ,0)j
lll lS γ δ ′′ ′ = , 0llγ ′ = . 

Thus, considering that llβ ′ =( ll l lβ β ′ ′+ )/2 owing to (52)61, 
we obtain the following final expression  
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, , , , , ,

1 /
( , ) ( , ) exp[ ( ]

1 /

(1 / )(1 / )

(1 / )(1 / )
,

(1 / )(1 / )(1 / )

j nl
ll l lll

nln

p r

t t

m s sm s s p r t t

k k
S k A k i

k k

k k k k

k k k k
k k k k k k

γ γ α α′ ′′

′

′′ ′

+
= − + ⋅

−

− − 
 

− − 
− − −

∏

∏

 (42) 

where l la aα β= − ≤ .Considering (63) and on the basis 
of (46),(47), we can write 

 

, , , , , ,

1 /
( , ) ( , ) exp[ ( ]

1 /

(1 / )(1 / )

(1 / )(1 / )
.

(1 / )(1 / )(1 / )

j nl
ll l lll

n nl

p r

t t

m s s p r t t m s s

k k
S k A k i

k k

k k k k

k k k k

k k k k k k

γ γ α α
•

• •
′ ′′ •

• •

• •
′

• • •
′ ′ ′

+
= − + ⋅

−

 − −
 
 − − 

− − −

∏

∏

(42a) 

In the case of γ = Reγ, the zeros appear in the pairs ± kr 
and ks′ = – ks

∗ , kt′ = – kt
∗ because of the symmetry 

condition (47) and then 

 2

, , , , , ,

1 /
(Re , ) exp[ ( ]

1 /

(1 / )(1 / )

(1 / )(1 / )
.

(1 / )(1 / )(1 / )

j nl
ll l lll

nln

p r

t t

m s s p r t t m s s

k k
S k A i

k k

k k k k

k k k k

k k k k k k

γ α α′ ′′

•

•
′ ′

+
= − + ⋅

−

 − −
 
 − − 

− − −

∏

∏

 (43) 

It may appear a possible physical phenomenon of sharp 
enhancement of ( , )j

llS kγ′  (l′ ≠ l) in comparison with 

( , )j
llS kγ  near an isolated resonance, noted in [10,11] and 

described in Appendix V. 
When l = l′ , λ = 0 (particularly, γ = γc), 

 kp = – km , kt = – ks , kt′ = – ks′ , 
the zeros kr are absent and then 

 

, ,

1 /
( , ) ( , ) exp[ 2 ]

1 /

(1 / )(1 / )(1 / )(1 / )
,

(1 / )(1 / )(1 / )

l nl
l c ll c l

nln

p r t t

m s sm s s

k k
S k S k i k

k k

k k k k k k k k
k k k k k k

γ γ α

′

′′

+
≡ = − ⋅

−

− − − −

− − −

∏

∏
 (44) 

that corresponds to results [7]. In the particular case in 
which l = l′ = j and γ = γc we have also ks′ = = – ks

∗ and 
hence 

 

,

1 /
(Re , ) exp[ 2 ]

1 /

(1 / )(1 / )(1 / )
,

(1 / )(1 / )(1 / )

nl
l c l

nln

m s s

m s m s s

k k
S k i k

k k

k k k k k k
k k k k k k

γ α

•

•

+
= − ⋅

−

+ + −

− − +

∏

∏
 (45) 

that corresponds to the results [14]. 
If for r > a there is a centrifugal barrier and a potential 

decreasing more rapidly than any exponential function, 
results (63) and (63a) are valid because in that case fl± (k, r) 
are also analytic in all the plane k except the points k = 0 
and k = ∞ and for k→ ∞ have the limit exp[± ikr] in all 
directions. 

A possibility of sharp enhancement of j
l lS ′  (l′ ≠ l) in 

comparison with ( , )j
llS kγ  near an isolated resonance. Let 

assume that a factor like  

 
( ) ( )( ) / 2

( , ) , , 0,1,
/ 2

ll l l
j ll t t

ll
s s

E E i
S k l l

E E i
δ

γ
′

′
′

− + Γ
′≈ =

− + Γ
(46) 

where 

2( )2
( ) ,

2

ll
tll

t

k
E

µ
=


 
22

,
2

s
s

k
E

µ
=


 

( ) ( )2 Im ,ll ll
t tik kΓ = −  (00) (11) , 2 Im ,t t s sik kΓ = −Γ Γ =  plays 

an essential role in (64) in some energy region. If 
( ) ,ll
t sE E≈  2 2 2

1 2s s sΓ +Γ = Γ , where ( )2 2
1 ( ) ,ll
s tΓ = Γ  

( )2 2
2 ( )l l

s t
′Γ = Γ  for ,l l′ ≠  (46) is fulfilled and the 

scattering cross section is  

 
2 2

1 2
2 2 2

( ) / 4 / 4
( ) / 4
s s s

el
s sk E E

πσ
Γ −Γ + Γ

≈
− + Γ

, small k. (47) 

When 1 2s s sΓ << Γ ≈ Γ  it may happen a sharp 

enhancement of j
l lS ′  (l′ ≠ l) in comparison with ( , )j

llS kγ  

at the resonance. In the extreme case in which 1 0sΓ = , a 

resonance of j
l lS ′  (l′ ≠ l) corresponds to an anti-resonance 

of ( , )j
llS kγ . Therefore, the influence of non-central or 

parity-violating interactions in these resonance regions 
may be essential even if their strength is very small (but, 
of course, non-zero). 

5. The Simonius Representation of the 
Multi-channel S-matrix Any Interactions 
Inside the Sphere r > a 

Sometimes there is rather often used the Simonius 
parametrization of the S-matrix in the energy 
representation are used [23]:  

 

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( ) ( )2

( )

ˆ
ˆ ˆ ˆ(1 ) ,

/ 2
ˆ ˆ ˆ ˆ ˆ1,

ˆTrace 1.

Ti P
S U U

E E i

U U P P P

P

α α
α α αν ν

α ε
ν ν ν

α α α α α
ν ν ν

α
ν

∗ ∗

Γ
= −

− + Γ

= = =

=

∏

 (48) 

Index α in (48) signifies the set of quantum numbers of 
conserved quantities (usually α={J,Π}, where J and Π are 
the quantum numbers of the total momentum (spin) and 
parity of the system). In this parametrization, resonances 
are described by the general poles of the all elements of 
the S-matrix. According to the causality these poles must 
be located in the lower half-plane of the complex plane E 
(in order to describe the decays of the resonance states). 

The Simonius parametrization (48) was obtained in [23], 
coming from the general principles of unitarity, 
meromorphy and T-invariance of the S-matrix. With this, 
in [23] it was noted that there is a practical difficulty of 
the explicit considering of T-invariance in the general case 
of non-symmetric and non-commuting with each other 
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projectors ( )P̂ α
ν . This parametrization is the mostly 

convenient for overlapping and strongly overlapping 
resonances and was below utilized for revealing the time 
resonances (explosions) of compounds clots and nuclei in 
high-energy nuclear reactions at the range of strongly 
overlapping energy resonances.  

It was shown in [24] that when the projectors ( )P̂ α
ν  do 

not depend on the values of any other resonance 
parameters ( ( )E α

λ  and ( )ε
νΓ ), then ( )Ŝ α = ( )ˆ TS α . Really, 

in that case one can rewrite the resonance part 
( )

( ) ( )
( )

( ) ( )
1

ˆ (1 )
/ 2

res
i P

S
E E i

α
α α

α ν ν
α α

ν ν ν

Λ

=

Γ
≡ −

− + Γ
∏  in the form of a 

sum 

 

( ) ( )
( )

( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

ˆ 1
/ 2

ˆ ˆ
...

( / 2)( / 2)

res
P

S i
E E i

P P

E E i E E i

α α
α ν ν

α α
ν ν ν

α αα α
ν νν ν

α αα α
ν ν ν ν ν ν

′ ′

′> ′ ′

Γ
= −

− + Γ

Γ Γ
− +

− + Γ − + Γ

∑

∑
(49) 

which can be transformed to the expansion: 

 
( )

( )
( ) ( )

ˆ 1 ,
/ 2

res
iG

S i
E E i

α
α ν

α α
ν ν ν

= −
− + Γ

∑  (49a) 

 

( ) ( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

( ) ( )( ) ( )

ˆ ˆ

( ) / 2

ˆ ˆ
...

( ) / 2

G P

P P
i

E E i

P P
i

E E i

α α α
ν ν ν

α αα α
ν νν ν
α αα α

ν ν ν νν ν
α αα α

ν νν ν
α αα α

ν ν ν νν ν

′ ′

′> ′ ′

′′ ′′

′′< ′′ ′′

= Γ

Γ Γ
−

− + Γ −Γ

Γ Γ
− +

− + Γ −Γ

∑

∑

 

Taking into account (49a) and the T-invariance of the 
expression (49) for ( )Ŝ α , one can write  

 ( )ˆ
resS α = ( )ˆ T

resS α  (50) 

and then one can further rewrite (49) in the following form: 

 ( )G α
ν = ( )TG α

ν  ν = 1, 2,…, Λ(α). (51) 

Relations (50) are in general too bulky as correlations 
between the matrices ( )P̂ α

ν  with different ν. But if 

the ( )P̂ α
ν do not depend on the values of ( )E α

λ  and ( )ε
νΓ , 

then the relations 

 ( )P̂ α
ν = ( )ˆ TP α

ν  (52) 

( )P̂ α
ν

( )P̂ α
ν ′  = ( )P̂ α

ν ′
( )P̂ α
ν  , ν , ν′ = 1, 2, …, Λ(α). (53) 

(i.e. the matrices ( )P̂ α
ν  will be symmetric and commute 

with each other) are the direct consequences of (51). By 
the way, such simplification (the independence of 

( )P̂ α
ν from any other resonance parameters) is justified at 

least when Λ(α) and the number N of open channels are 
very large. And then it follows from the properties (51) 

and ( ) ( ) ( )2ˆ ˆ ˆP P Pα α α
ν ν ν

∗= = , Trace ( )P̂ α
ν =1 (from (49) ) that 

the ( )P̂ α
ν  are real, i.e. 

 ( )P̂ α
ν = ( )P̂ α

ν
• . (54) 

6. Duration of Resonance Processes of 
Many-channel Scattering 

If to exclude the small threshold regions with their 
characteristic, then it is possible to utilize the Simonius 
representation [23] for the many-channel S-matrix: 

 
( )

( ) ( ) ( )
( ) ( )

1

ˆ ˆ ˆ( ) (1 ) ,
/ 2

JN
J J J T

J J
i

S E U U
E E i

ν

ν ν ν=

Γ
= −

− + Γ
∏  (48) 

where the unitary matrix ( )ˆ JU and the projection matrixes 
( )ˆ JPν  ( ( )ˆ JPν = ( )ˆ JPν

• = ( )2JPν , Tr ( )ˆ JPν  =1) are practically 

do not depend on energy, ( )ˆ( )J T
ijU = ( )J

ijU  (i,j=1,2,…,n), 

n is the number of the open channels, ( ) ( ) ( )ˆ ˆJ J J TS U U=  
is a symmetric background (non-resonance) S-matrix, 

( ) ( )J J T
ij jiS S=  , ( ) ( )

1

n
J J

ijik jk
k

S S δ•

=
=∑   . Representation (48) is 

suitable, precisely speaking, only for the two-channel 
(binary) reactions. It has such preference that in it, in 
difference from the representations with the additive sets 
of the resonance terms, is evidently considered the 
propriety of the unitarity 

 ( ) ( )

1
.

n
J J

ijik jk
k

S S δ•

=
=∑  (55) 

Utilizing hermitian matrix  

 
( )

( ) ( ) ˆ ( )ˆ ˆ( ) ( ) ,
J

J J dS EQ E i S E
dE

•
=   

introduced in [25], it is not difficult to show, considering 
(48), the validity of the following relation: 

 Tr 
( )

( )
( ) 2 ( ) 2

1
) )

( ) ( ) / 4

JN
J

J JQ E
E E

ν

ν ν ν=

Γ
=

− + Γ
∑  (56) 

which does not depend on matrixes ( )ˆ JU  and ( )ˆ JPν , i.e. 
from the smooth (practically constant) background, 
connected with the potential scattering and the direct 
reactions. We can average (75) inside the region, in which 
the resonances are situated, by the procedure < >. Then, 
supposing that the interval ∆E contains the set of 
resonances with ∆E >> ΓJ >> DJ , where ΓJ and DJ are the 
mean width and the mean distance between the J-
resonances, then we obtain 

 Tr ( )ˆ ( )JQ E< >=  T 
J 
, (57) 

where T 
J 

=2 / JDπ  is the time of the Poincare cycle 
(more strictly, the time of the Poincare cycle for such 
system with equidistant distribution of purely discrete 

levels, for which ( ) ( )
1

J J
JE E Dνν + − =  and ΓJ =0). Utilized 

the transformations  
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( ) ( )

2( ) ( )

2( )

/

/ /2,

,

J J
ij ij

J J
ij ij

J
ij

i S dS dE

S

i d S dE

i j

τ

•< >

= < >< ∆ >

+ < >

≠







 

 

( ) ( )

2( ) ( )

( )

2( )

( / )

1

Im /

/ /2,

J J
ii ii

J J
ii ii

J
ii

J
ii

i S dS dE

S

dS dE

i d S dE

τ

•< >

= < − >< ∆ >

+ < >

+ < >









 

where it is possible to neglect by the quantity 
Im ( ) /J

iidS dE< >  for sufficiently large ∆E in the 
approximation of the random phases, and the equality 

2( ) / 0J
ijd S dE< >=  is directly follows from the unitarity 

(55), we obtain from (57) the following two sum rules 
for ( )J

ijτ< ∆ > and <∆ J
iτ >: 

 
2( ) ( )

,

J J
ijij ij

i j
Sτ δ< ∆ >< − >=∑  T 

J 
, (58a) 

 ( ) ( )[1 Re ]J J
i ii

i
Sτ< ∆ > − < >∑  = T 

J 
/2. (58b) 

If we assume the equal durations in all the channels, i.е. 
( ) ( ) ( )J J J
i jiτ τ τ< ∆ >=< ∆ >=< ∆ >  (i,j=1,2,…,n), then in 

the approximation ( ) 0J
iiS< >≈  (that, as will be seen later, 

can be take place for / 2J JnD πΓ >>  in so called 
approximation of the equivalent entrance channels [26], 
we obtain: 

  ( )Jτ< ∆ >≅  T 
J
 / 2n. (59)  

If ( )Re 1J
ii

i
S n< > = −∑ , that is possible in so called 

Newton case of the total correlation between the decay 
amplitudes of all resonances in the approximation of equal 
projection matrixes ( )ˆ ˆJ

JP Pν =  (ν=1,2,…,N) and 
( )ˆ 1JU =  , when the unitary S-matrix has the form 
( )ˆ ˆ ˆ1 [exp(2 1]J

J JS i Pδ= + − , then 

 ( )Jτ< ∆ >=  T J / 2. (60) 
The result (79) was obtained in [27]. 
If ( )Re 1 /J

J JiiS nDπ< >= − Γ , which, as will be seen 
later, can take place for / 2J JnD πΓ << , then 

( ) /J
Jτ< ∆ >= Γ , as in the case of one isolated 

resonance with the total width J EΓ << ∆ .  

If we start from the direct definition for ( )J
ijτ< ∆ >  for 

usual simplifications of central and spin-less particles, one 
can use partial time delays <∆τ (J)

fi (E)> , defined as [28]. 

 
(formula (4) in [37]). 

Then in the approximation ( )ˆ ˆJ
JP Pν =  (ν = 1,2,…,N), it 

is not difficult to show that under condition ∆E >> ΓJ >> 
DJ (see also [28]) 

 
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

ˆ ˆ ˆ
J J

J J J J
J J

E E i
S S

E E i
ν ν

ν ν ν
α α

− − Γ
= − +

− + Γ
∏  

and 

 
2( ) ( )J J

ij ijτ α< ∆ >= T J
2( ) ( )/[ ]J J

ij ijS α− , ;i j≠  (61а) 

 ( )J
iiτ< ∆ >=

2( )J
iiα T J 

2( ) ( )/[1 ]J J
ii iiS α− + ,  (61b) 

where ( ) ( ) ( )ˆ ˆ ˆ( )J J J T
J ijij U P Uα =  with 

2( )

,
1J

ij
i j

α =∑ . It is 

directly follows from the unitarity ( )ˆ JU . 
In [24] (see also [28]) it had been derived the third sum 

rule, connecting mean time delay for the compound 
nucleus, dispersion of time-delays distributions for 
compound nuclei with the mean resonance density ρJ and 
ΓJ . It extends the possibilities of the study main properties 
of the compound nuclei (the level density ρ (JSΠ) and the 
mean total resonance width Γ(JSΠ)) and the decay laws of 
the compound nucleus in the range of un-resolved 
resonances. 

7. The Manifestation of the Time 
Resonances (explosions) of Compounds 
Clots and Nuclei in High-energy Nuclear 
Reactions at the Range of Strongly 
Overlapping Energy Resonances 

Introduction. In the wide energy region of the 
bombarding particles more 1-10 GeV/nucleon (see, for 
instance, [29-35]) and for the great their number (from p 
till 20Ne), number of targets and of the registered final 
fragments there are observed the exponentially decreasing 
inclusive (and some times non inclusive) energy spectra 
without structure. For more heavy bombarding particles 
such phenomena are observed also smaller energies (see, 
for instance, [36]). For the analysis of such reactions with 
heavy ions with energies till 1GeV/nucleon one can use in 
a certain degree the fireball model and also the model of 
intra-nuclear cascade [37] and the model of nuclear fluid 
[38] works for more high energies in the supposition of 
the high-dense collision-complexes formation. Between 
the difficulties of the fireball models there is a problem, 
why even for high excitations (more than 100 
MeV/nucleon) there is formed the statistical equilibrium. 
In [39] there was proposed other model of “time 
compound nucleus” for the alternative explanation of 
high-energy nuclear reactions. This model utilized the 
preliminary results of eigen states of time operator in the 
Hamiltonian approach [40]. It was based on the 
introduction of the formal similarity between the meta-
stable states with the eigen complex energies as the eigen 
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states of the Schroedinger equation and the correspondent 
Fourier transformations with complex eigen values for the 
equation with time operator, canonically conjugate to the 
Hamiltonian. This model was only the initial step to the 
time-dependent approach and was not sufficiently justified. 

We proposed a new version of the time-evolution 
approach, starting not only from the principal ideas [41,42] 
but also from the known correspondence between the 
exponential decreasing of behavior of any quantity in any 
(time or energy) representation and the Lorentzian 
behavior of its Fourier transformation in the canonically 
conjugate (i.e. energy or time) representation and then 
utilizing the results, obtained in [24,28] for the properties 
of compound nuclei in the range of the non-resolved 
strongly overlapped energy resonances. Here we introduce 
concretely the phenomenon of time resonance and it is 
explained the similarity between energy and time 
resonances. Аnd also there are analyzed the energy and 
time properties of compound nuclei which are connected 
with the explosions of time resonances in the evolution 
decay of final particles.  

The theoretical origin of time resonances (explosions). 
Our theoretical approach is based on [28,42,43]. So far let 
us choose the reaction amplitude fαβ(E) and T-matrix (E) 
in such forms 

 fαβ(E) = Cαβ n exp(-Eτn /2ћ + iEtn / ћ) (62) 
and 

 =  exp(-Eτn /2  + iEtn/  ) ,  (62a) 

Here in the certain energy region Emin< E < ∞ , where τn 
and tn are constants (with the dimension of time), τn and tn 
define the exponential dependence on energy for the 
corresponding cross section and the linear dependence 
from energy for the amplitude phase, respectively. nTαβ

  is 

the constant or the very smooth function (inside ∆E) on 
energy E of the final particle. A resonant structure of nTαβ

  
we so far do not taken evidently into account, supposing it 
the totally averaged in the limits of the energy spread (or 
resolution) ∆E, supposing that ∆E<< 2  /τn.  

In this case it is possible to write the following equation 
(see also [28]) 

 

min

( , )

exp[ / 2 ( ) / ],n n
E

R t

dE A E iE t t

β β

τ
∞

Ψ

′ ′ ′ ′≅ − + −∫  

 (63) 

where A′  = ( )T g Eαβ ′ . Utilizing the simplest rectangular 
form of g(E’),  

 

( ) 1/2

min

exp( arg ),
for / 2 / 2( ) ,

0,
for / 2 and / 2

E i g
E E E E E Eg E

E E E E E E

−
∆

 ′≤ − ∆ < < + ∆′ = 

 ′ ′< − ∆ > + ∆

(64) 

where arg g is the smooth function of E inside ∆E, we 
obtain 

 

[

( , )

const exp[ ( / 2 ( )) / ]
/ 2

( / 2 ( ) / 2 )
. exp .

exp ( / 2 ( ) / 2 )

n n
n n

n n

n n

R t

E i t t
t t i

E i t t
E i t t

β β

τ
τ

τ

τ

Ψ

= − + −
− +

 ∆ − + −  
  − −∆ − + −   







 (65) 

If all energies in the large interval, beginning from Emin, 
are totally filled, i.е. 

 
min

( / 2) / 2 and
/ 2 ,

nE E
E E E

τ
 + ∆ →∞
 − ∆ →

 (66) 

then we arrive to  

 
min

( , )

const exp[ ( / 2 ( )) / ].
/ 2 n n

n n

R t

E i t t
t t i

β β

τ
τ

Ψ

= − + −
− +



 (67) 

It is natural to call such behavior ( , )R tβ βΨ  be time 
resonance due to the Lorentzian form of factor 

1
/ 2n nt t iτ− +

 in (67), or explosion (for small values of 

τn). And inversely, if ( , )R tβ βΨ has the form (67), the 

Fourier transformation ( , )R tβ βΨ will be equal  

 

min

( , ) exp( / )

exp[ / 2 / / 2 ].n n n

dt R t iEt

const E iEt E

β β

τ τ

∞

−∞

Ψ

= ⋅ − + +

∫ 

  

 (68) 

It is proportional to the amplitude (62). 
For zβ > Rβ it is possible to re-write (63) in a following 

way: 

 

min

/ 2
exp( ) ( ) exp .

( ) /

( , )

nn

nE

E
dE f N ikz g E

iE t t

z t

αβ β β

β β

τ∞ ′−
′ ′=

′+ −

Ψ

 
 
 

∫




 (69) 

For the small energy spread (∆E << E), utilizing the 
function (64) for g(E’) and introducing a new variable 

 ( / 2)
’ ,

2 ( / 2)
n n

n n

m zi t t i
y k

m t t i
β β

β

τ
τ

 − −
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



 (70) 

we finally obtain: 

 0

0

0

( / 2)
const exp

( )

0,

for ( );

( , )
,

for ( )

n n n

n in

n in

iE t t t i
ikr

EA t

z v t t t

R t

z v t t t

β

β β

β

τ− − −
−⋅

−∆



 > − −

  Ψ =        
 ≤ − −



(71) 

where 

 A(t) = [t – tn – t 0n – zβ/v – iτn/2] / 2  . 
The cross section, defined for the macroscopic 

distances, has the following exponential form: 
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 2
nconst exp( / ).f Eαβ αβσ τ= = ⋅ −   (72) 

When Tαβ , or fαβ , has the general form like 

 [ ]
1

exp / 2 /n
n n

n
f f E iEt

ν

αβ αβ τ
=

= − +∑    (73) 

with several terms (ν=2,3,…), the cross section σαβ = 
fαβ2 contains not only exponentially decreasing terms, 
but also oscillating terms with factors cos [E(tn–tn’)/ /  ] or 
sin [E(tn–-tn’)/  ]. In the case of 2 terms (ν =2) in (73), 
formula (73) transforms in the following expression 

(74) 

(where the terms with с ∆E can be neglected, if we 
suppose that ∆Etn<<Eτn и ∆Eτn << Etn). 

The evolution of the survival of the compound nucleus 
(in the time moment t after its formation) is described by 
the following function: 

  
0

( ) 1 ( )
t

c

t
L t dtI t= − ∫  (75) 

where I(t) is defined, relative to [28], by the probability of 
the emission (for time unit) in the proximity of the 
compound nucleus (near zβ = Rβ ) 

 I (t) = 
( , )

d ( , )

j R t

tj R t

β β

β β

∞

−∞
∫

 

The initial moment t0 current time it is natural to choose 
in the moment tin

0 and to suppose that tin
0 = 0. However it 

is necessary to consider indeterminacy δt =  /∆E of the 
duration of the initial wave packet before the collision. 
Therefore 

 t0≅ tn0 – δ t = –δ t = –  /∆E. 

In the region of the time resonance (67) the function 
Lc(t) is essentially non-exponential even in the 
approximation t0 = 0. The qualitative form of Lc(t) can be 
illustrated, as in [28], with the help of the strongly 
simplified examples for the very narrow interval near t = 
tn, and also for all the values of t, when 

 2*

 ( , ) Re[ ( , ) ( / )

lim / ( , ) / ( ) ( , ) ]
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j R t R t i m

z t z v R t

β β β β β

β β β β β
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∂ ∂ ∂
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= Ψ ⋅ ⋅

Ψ ≅ Ψ



 (76) 

with v  is defined by the integral theorem on the mean 
value, namely by the expression 

 min
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∫
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(v appears here after the using (75)). Then 
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and  

 
[ ] 2( )/0

2 /0

( ) = 1 -  dt I (t)

1 (1/ ) arctan( ) .

c

y t t tn n
y t n

L t

y τ
τπ = − −

== −
 (79) 

Since the curve arctan (y) has the form, depicted in 
Figure 1 in the case 2t0/τn → –∝ (the quantity τn is small) 
the function Lc(t) has the form, depicted in Figure 2(the 
curve 1). 

 
Figure 1. The function arctan(y) for 2t0/τn → – ∞ 

 

Figure 2. Lc(t) (the curve 1) and I(t) (the curve 2) 
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In this case  

 [ ]1
0( ) 1 arctan(2( ) / ) / 2c

n nL t t t tπ τ π−= − − − +  (80а) 

and 

01,  when 0 0 (с 2 / )
( ) and 0,  when

n nc
t t t

L t t
τ≤ < = − →∞=  →∞


 (80b)  

From the simple form of Figure 2 it is easy to see that tn 
can be interpreted as the Poincare period of internal 
motion of the compound nucleus (after its formation and 
before its decay), when tn>>τn. Such behavior of Lc(t) was 
studied in [28,41].  

If precisely consider the compound-resonance structure 
of Tαβ, then the strongly non exponential form of Lc(t) and 
I(t) will take place, as it is depicted in Figure 2, for the 
strong overlapping of the energy resonances, when  

 ГJSΠ << N JSΠ / 2π ρJSП  (81) 
(ГJSП and ρJSП are the mean resonance width and level 
density, NJSП is the number of open channels, JSП are the 
values of the total momentum, spin and parity, 
respectively). The small probability of the compound-
nucleus decay for t < tn (inside the Poincare cycle) can be 
explained by the consequence of the multiply meta-stable 
states in the region of the overlapped energy resonances. 
In the case of several time resonances it can signify the 

superposition of several strongly overlapped groups of 
energy resonances with different values of JSП in the 
same compound nucleus or the formation of several 
compound nuclei with the different numbers of 
participating nucleons. 

In particular, for the inclusive energy spectra of the k-th 
final fragment it is possible to use the following expression  
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  (82) 

The comparison with the experimental data. For the 
analysis of the observed experimental spectra of a single 
final fragment it is necessary to sum (or average) the 
expressions like (74) or (82) over the subfamilies of the 
final states (with various quantum numbers JSΠ, where 
J,L,S and Π are quantum numbers of the total momentum, 
orbital momentum, spin and parity, respectively) and 
channels, sometimes coherently and sometimes 
incoherently. And for inclusive energy spectrum of k-th 
final fragment we shall use the expression (101). 

 

Figure 3. The inclusive process p + C → 7Be +X (protons of 2.1 GeV), experimental data are taken from [38]: a) C1= 0.04, C2= 0.36 (θ = 90°); b) C1= 
0.35, C2= 0.05 (θ = 160°) 

 

Figure 4. The inclusive process 4He + Ta → t+ X (720 MeV/nucleon), experimental data are taken from [39]: a) C1=0.18, C2=1.02 (θ=60o); b) C1=1.13, 
C2=0.07 (θ=90o) 

In Figure 3-Figure 6 are represented some calculated 
inclusive energy spectra σinc,k (Ek) in the semi-logarithmic 

scale in compare with the experimental data from 
[36,38,39]. 
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Figure 5. The inclusive process 20Ne +U → p+ X (1045 MeV/nucleon), experimental data are taken from [39]: a) C1=0.35, C2=5.65 (θ=90o); b) C1=5.65, 
C2=0.35 (θ=150o) 

 

Figure 6. The inclusive process 40Ar + 51V → p+ X (41 MeV/nucleon); experimental data are taken from [36]: а) C1=0.002, C2=0.03 (θ=97o); b) 
C1=0.03, C2=0.022 (θ=129o) 

In Figure 3-Figure 6, θ is the detected angle of k-th 
fragment in emission. The values of τ1, τ2 and t2 – t1, 

which were found in [39] from the fitting of theoretical 
curves to the experimental data, are written in Table 1. 

Table 1. Parameters of time resonances for some inclusive spвctra 

Reaction Energy of bomb. particle 
GeV/nucleon τ 1, 10-23 sec τ 2, 10-23 sec t2 - t1, 10-22 sec 

P + C → 7Be + X 2.1 10.45 17.0 5.95 
20Ne + Al → p + X 0.393 0.1 0.99 1.7 
4He + Ta → t + X 0.72 1.72 3.15 1.22 
20Ne + U → p + X 1.045 0.92 1.7 1.72 
20Ar + V → p + X 0.041 7.5 9.0 0.20 

132Xe + Au → p + X 0.044 6.0 7.0 1.0 
20Ne + U → p + X 0.4 1.7 2.2 0.10 
20Ne + U → d + X 0.25 4.2 7.2 0.10 

 

Figure 7. Inclusive energy spectrum of 4He + U → p+ X, of 400 MeV/nucleon, experimental data are taken from [43] 
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Since the inclination of energy spectra is essentially 
increases with the angle increasing, it signifies that the 
increasing contribution of the compound-nucleus states 
with larger values of tn and τn is connected with the 
formation of more heavy compound nuclei at the lesser 
velocity in L-system. It agrees with the observed in 
[33,35,39] phenomena of more clear oscillations for the 
intermediate emission angles. 

It is possible that for the most easy compound system 
(p+C), represented here, there is a superposition of the 
direct process (i.e. n = 0 instead of n = 1) and the time 
resonance (n = 2), since the difference t2 – t1(0) is 
noticeably larger than usually. 

Later there were performed new calculations in [42] 
and their comparison with the experimental data from 
[43,44]. They are represented in Figure 7-Figure 8. 

 

Figure 8. Inclusive energy spectrum of 20Ne+ U → p+ X, of 400 MeV/nucleon, experimental data are taken from [44] 

The values of τ1, τ 2 and t2 – t1 in sec, which were found 
in [42] from the agreement of theoretical curves with the 
experimental data, are represented in Table 2 and Table 3 
for Figure 7 and Figure 8, respectively. 

Table 2. 

θ τ1 

(10-23s) 
τ2 

(10-23s) 
t2-t1 

(10-23s) 
C

1 C
2 

300 0.38 0.38 0.25 2.8 2.8 
600 0.64 0.64 0.25 2.6 2.6 
900 1.5 1.5 0.25 2.5 2.5 
1200 2.1 2.1 0.25 2.3 2.3 

Table 3. 

θ τ1 
(10-23s) 

τ2 

(10-23s) 
t2-t1 

(10-23s) 
C

1 C
2 

300 0.25 0.25 0.25 5 5 
600 0.6 0.6 0.25 4.5 4.5 
900 1.2 1.2 0.25 4.2 4.2 
1200 1.7 1.7 0.25 3.6 3.6 
The explanation of the time-resonances structure in the 

cross sections of high-energy nuclear reactions in the 
region of the densely situated strongly overlapped energy 
resonances. How is it possible to explain the 
manipulations with relatively smooth energy behavior of 
the expressions (91) and (93) for the cross sections or the 
expressions (81) and (92) for Tαβ or fαβ , which 
correspond to time resonances and simultaneously to the 
experimental data on cross sections, although really the 
amplitudes have to fluctuate strongly with energy in the 
region of strongly overlapped energy resonances for 
extremely high energies? At first sight, in the region of 
high energies the structure of energy resonances has to 
vanish not only due to the “smoothing” by energy spreads 
(since ∆E>>ΓJSΠ,ρJSΠ

-1), but also de facto due to the strong 
decreasing of the probability of the formation of the 
intermediate long-living many-nucleon states. The density 
of the compound-resonances is quickly increases, 

beginning from the low-energy well resolved energy 
resonances where the various versions of the Fermi-gas 
model with the shell-model and collective-model 
corrections work rather successfully work. Only near 30-
40 MeV/nucleon in the compound system it is possible to 
expect the saturation effects and the further strong 
decreasing of the densities. However namely for these 
energies the resonances of another structure can appear. 
These resonances are connected with the local excitations 
of long-living intermediate many-quark-gluon states of the 
baryon subsystems (see [45]). 

Let us consider the possibility of the abovementioned 
explanation of the structure of time resonances more 
attentively, limited ourselves only by the partial JSП-
аmplitudes TJSП

αβ = δαβ – SJSП
αβ , where SJSП

αβ is the 
element of the S-matrix. 

As it was said above, for the sufficiently high energies 
if we neglect bound and virtual states and the threshold 
particularities we can describe the S-matrix by the analytic 
expression (67) when the indexes JSП (and now even J) 
were omitted for the simplicity, the unitary background 
(non-resonance) matrix Û  and the projection resonance 
matrix n̂P  ( n̂P = n̂P += n̂P 2, Trace n̂P =1), slowly changing 

with the total energy ε or almost did not depend on ε , ˆ TU  
is the matrix, transposed to Û . For the simplest Baz’-
Newton conditions (see [27] and also [28]), when the 
fluctuations of n̂P  can be neglected ( n̂P =< P̂ >), the 
Simonius S-matrix acquires such a form:  

  



/
/

S S a
i
ib

n n

n nn
= − −

− −
− +







∏1

2
2

ε ε
ε ε

Γ
Γ

 (83a)  

where ˆ ˆ ˆ T
bS UU= and ˆ ˆ ˆˆ Ta U P U= < > . The averaged on 

energy the S-matrix < Ŝ >∆ε in this case in accordance with 
[28]: 
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 < Ŝ >∆ε = ˆ ˆbS a− [1 – exp(-πΓ/ρ)] 

for unresolved resonances in (∆E>>ρ,Γ) and the 
fluctuating S-матрица ˆcS  (or S-matrix of the compound 
nucleus) is equal  

 / 2ˆ ˆ[ exp( )].
/ 2

c n n

n nn

i
S S S a

iε
ε ε

π ρ
ε ε∆
− − Γ

= − = − − Γ
− + Γ∏ (84) 

We repeat that ˆ
bS  and â  almost do not depend on 

energy (slowly change with energy). For the strongly 
overlapped resonances when π Гρ >>1 

 / 2ˆ ˆ ( )
/ 2

c n n

n nn

i
S a

i
ε ε
ε ε
− − Γ

→
− + Γ∏   (84a) 

and the averaged over energy cross section of the 
processes, going through the step of formation of 
compound nucleus <σ c

αβ>∆ε , is evidently proportional to 
aαβ2: 

  <σ cαβ> ∼ < S cαβ2>∆ε = aαβ2 (85) 
(here and below we continue to omit the indexes JSΠ). If 
the initial energy of bombarding particles is fixed and 
therefore the total energy ε is also fixed (within ∆ε), the 
cross section (85) can be re-written in the form 

 <σ cαβ>∆E ∼ < S cαβ2>∆ε =< aαβ2>∆ε ≅ aαβ2 ,(85a) 
where ∆E is defined by ∆ε and the energy resolution of 
the detector of final fragments. 

From [28,46] we can see that the averaged over energy 
time delay of compound nucleus and the variance of the 
time-delay-of-compound-nucleus distributions are defined 
by such general relations  

 <τ cαβ>=<|S cαβ|2
∂arg S c

αβ /∂E >/<| S c
αβ|2> (86) 

and 
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αβ αβ
αβ

αβ

∂ ∂
τ

∂ ∂
τ

∆

∆

∆
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
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(87) 

respectively (energy E is the kinetic energy of final 
fragment). For the quantities, averaged over energy, in the 
approximation of continuum (

n
dρ ε→∑ ∫ ) we easily 

derive, utilizing [28,41,46], that the mean time delay, 
averaged over all channels, is equal  

 <τc> =< 2 2( ) / 4
n

n n nε ε

Γ
Σ

− + Γ

 >∆E= 2 .π ρ  (88) 

And Dτ cαβ in the same continuum approximation 
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 (89) 

if 

 2 ,exp( )cτ πρ< > − Γ <<
2 2

2

( / ) E

E

a E

a

αβ

αβ

∂ ∂ ∆

∆

< >

< >



. (90) 

Now it is possible to see the mathematical similarity 
(even coincidence) between the cross section of 
compound nucleus (85) under above-mentioned 
conditions (the Baz’-Newton condition for n̂P =< P̂ > and 
for the strong resonance overlapping when π Гρ >>1) and 
the time-resonance cross section (91) for a short time 
resonance. Therefore, returning to the expression Tαβ = 
δαβ – Sαβ with Sαβ → S c

αβ , defined by (84а) for strongly 
overlapped resonances (with πГρ >>1), we can re-write 
(91) approximately in such form 

 σ c(n)
αβ ~ a(n)

αβ2 ~ exp(–Eτn/  )  (91) 
(if   /τn >>∆E for small ∆E). And under the same 
conditions that in (83)-(84)  

 Dτ c ≅ τn2/4 (92) 
(here and further we write Dτ c without indexes αβ). 

If τn <<2π  ρ (pt is possible when ∆E >>ρ -1), then Dτ 
c ≅ τn

2/4 << (<τ c >)2 and we have a narrow time 
resonance (explosion) of the compound nucleus. 

When there are some independent non-fluctuating 
projectors ( )ˆ ˆ ,P P ν

ν =< >  ν = 1, 2… η (η is much lesser 
of the resonance number), it is possible to obtain at the 
same reasoning the result like (101) for σαβ with 
оsсillative terms. 

Under more realistic Lyuboshitz conditions of the 
statistically equivalent channels of the compound-nucleus 
decay [26] (see also [28,46]), when the fluctuations of n̂P  
are the same in all open channels, it is possible to show 
that 

 2 /c NTτ π ρ< >=    (93) 

where T =1–exp(–2 / )NπρΓ and the sum of last two terms 
in the right part of relation (87) for Dτ c can be neglected 
in the continuum approximation. From (93) it is clear that 
for strongly overlapped resonances when / NπρΓ >> 1 
and T→1, we have: 

 2 /c Nτ π ρ< >=   (93а) 

In [39,46] it was shown that under the same conditions 
and when Sb can be considered as independent from 
energy ε (and E), Dτ c << <τ c>2. If then one extend the 
Hauser-Feshbach formula for the compound-nuclear-
reactions cross sections <σ c

αβ > into the region of high 
energies, then under the same conditions it is possible to 
be easily convinced in such behavior of <σ c

αβ > ≅ N -1≅ 
exp(-Eτn/  ). Under the Lyuboshitz conditions for the 
strongly overlapped resonances, Dτ c ≅ τ 2

n/4 << <τ c>2 – 
and the exponential decreasing of energy spectra of final 
fragments corresponds to the narrow time resonance 
(explosion) of the compound nucleus. There are possible 
also the cases when we can observe one or several time 
resonances (explosions) in cross sections. 

Real time resonances (explosions) of compound nuclei 
can be only for the resonance high densities (∆E >>ρ -1) 
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and strongly overlapped resonances (π Гρ >>1 or even π 
Гρ/N >>1). 

8. Connection of Analytic Properties of 
the S-matrix with Duration of the Partial-
Wave Scattering and Orthodox Causality 

Let us clarify how obtained results on analytic 
properties of the S-matrix agree with orthodox causality. 
Following [28], we define the mean duration of the l-
partial-wave scattering as the difference between mean 
time moments averaged over outgoing and ingoing wave-
packer durations through the sphere surface with radius r 
≥ a according to 

  < τl (γ , r) > = 
, ,

, ,

,
l out l in

l out l in

dttj dttj

dtj dtj

∞ ∞

−∞ −∞
∞ ∞

−∞ −∞

−
∫ ∫

∫ ∫
 (94) 

where jl,in and jl,out are the probability flux densities, 
corresponding to wave packets  

,

0
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l
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(95a) 

and 

0

,

( ) ( , ) ( , ) exp( / ),

( , , )

( / 2)
exp( / 2) l l
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r r t

i
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φ γ
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 
 

∫ 

 (95b) 

respectively.  
Integrating over dt in (94) with help of the simple 

technique of Fourier-Laplace transformations similarly to 
that it was made in [28], we obtain the following final 
expression: 
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(94a)  

We note that, unlike the physical radial wave packet 

 ( )
, ,( , , ) ( , ) ( , , ),l in l outl r t r t r tφ γ φ φ γ+ = −  (96) 

which is finite at the limit k → ∞, functions ( , )lf k r± have 
the pole of the l-the order, and so for the finiteness of 
wave packets (94a) and (96) it is necessary that wave-
packet amplitudes A(k) would have zero in point k = 0, at 

least of the l-the order, or would be zero in the finite 
interval (0, κ), κ >0. With such limitations for A(k), it is 
natural to try clear up, at what conditions the orthodox 
causality is fulfilled, if one formulate it thus: for any 
square integrable function A(k), with the only above-
mentioned limitation, the mean duration < τ (γ , r) > of 
the l-partial-wave scattering for sufficiently large r ≥ a 
cannot be negative, i.e. 

 < τ l (γ , r) > ≥ 0. (97) 
Following [28], it is not difficult to check that in the 

case of unitary ( , )lS kγ  for the fulfillment of the condition 
(97) it is necessary and sufficient that eq. 

 arg ( , )[ ( , ) / ( , )]
( , ) 0l l l

l
S k f k r f k r

r
E

γ
τ γ + −∂

= ≥
∂

   (98) 

were fulfilled. Really, in this case according to (94a) 

 2 2

0 0

( , )

[ ( ) ( , ) ( , )] / [ ( ) ( , )

l

l l l

t g r

dk A k f k r r dk A k f k rτ γ
∞ ∞

+ +

< >

= ∫ ∫
  

and also in view of non-negative values of k and 
2( ) ( , )lA k f k r+  the validity of (98) follows directly and 

necessarily from (97). And inversely, if one assumes the 
validity of (96), but in the vicinity of a certain point k0 the 
relation ( , )l rτ γ < 0 is valid for r ≥ a , then, choosing A (k) 
identically equal 0 out of this vicinity, one will violate the 
condition (96) which contradicts the initial assumption 
and therefore proves the sufficiency of our theorem. 

Let study firstly the validity of the condition (97) in the 
case when out of the interaction sphere there is only the 
centrifugal tail. Then  
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since 2[ ( ) / ] ( ) [ ( ) / ] ( )l l l ldn x dk j x dj x dx n x x−− = . Here 

/v k µ=   . Utilizing (66) for calculation of
arg lS

E
∂
∂

, we 

obtain 
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where χλ =–ikλ . Since α ≤ a, the sum
s
∑ is always 

positive, the quantity 2 2[ ( )] [ ( )]l lkrj kr krn kr+  is finite 
when k > 0 and r > a and tends to 1 when r → ∞ , and  

 2 2
1

2 2

s k
λ

λ

χ
χχ

≥
+

∑  

when χ1 corresponds to the first bound state (we remind 
that there is at least one pole, corresponding to zero on the 
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positive imaginary semi-axis between every two adjacent 
zeros kλ , located in the order of increasing |kλ | on the 
negative imaginary semi-axis), then the condition (106) is 
fulfilled for sufficiently large values of r when 

 2 2
1

1 .
[ ( )] [ ( )]l l

r a
krj kr krn kr χ

≥ +
+

 

Inequality 

 τ 0 (γ, k,r) ≥ 0 (100a) 
(in the case when out of the interaction sphere there is 
only the centrifugal tail) for l = 0 and r 11/a χ≥ +  is 
concordant with the Goebel-Carplus-Ruderman inequality 
(see, for instance [39]). For l ≠ 0, k ≠ 0 and r a≥  the 
quantity Q l = { 2 2[ ( )] [ ( )]l lkrj kr krn kr+ }–1 is positive, 
finite, tends to 0 as (kr)l when kr → 0, and monotonically 
grows, approaching to 1, with increasing kr. And in this 
last case  

 τ l (γ, k,r) ≥ 0 for r ≥ R l (k), (100b)  
where R l (k) is the largest real solution of equation rQ l (kr) 
= a + 1 / χ1l . 

Let consider what contribution for the time delay (99) 
would give every separate factor of representation of the 
type (66) for ( , )lS kγ . The factor exp[ 2 ]li kα− , which is 
typical for the hard repulsive barrier of radius α l , causes 

the negative time delay – α l /v . The factor 
1 /
1 /

nl

nl

k k
k k

+
−

 

with χnl = nlk / i > 0 , correspondent to a bound state, 
causes the negative time delay –2χnl /v[k2+χnl

2]. The 
similar negative time delay will be caused by the factor 

with “redundant” pole. The factor 
1 /
1 /

ml

ml

k k
k k

+
−

 with χml = 

kml / i < 0, correspondent to a virtual (anti-bound) state, 
causes the positive time delay. For small k (k → 0) the 
both formulas (for bound and anti-bound states) are the 
particular cases of the following expression for time delay 
– A/v[1+k2 A2] , where A is the scattering length. The 

factor
(1 / )(1 / )
(1 / )(1 / )

s s

s s

k k k k
k k k k

•

•
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 with Im ks > 0, correspondent 

to a resonance state, causes the positive timer delay 

1
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k k k

k k k k

+
⋅

− +
. For the same every factor 

the signs of the correspondent scattering l-th partial time 
delays will be the same, differing from the studied here 
time delays of the l-partial-wave scattering twice less in 
absolute value. 

In the more general case when at the external region r > 
a, besides the centrifugal barrier, there is a potential, 
decreasing more rapidly than any exponential function,  
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where ( , ) exp( ) ( , )l lk r ikr f k rφ + += − .  

Taking into account that the expression 2Re 

i
/l

l

kφ
φ
+

+

∂ ∂
tends to 0 when r → ∞ , and utilizing the result 

(108), one can easy to show that also in this case the 
inequality (100b) is valid for sufficiently large values of r . 

Finally, in the case when ( , )lf k r−  has in D+ 
singularities of the type (22) for the potentials with the 
exponential law of decreasing, it is convenient to 

introduce the function 
( , )

( , , ) ( , )
( , )

l
l l
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k r
S k r S k

k r
φ

γ γ
φ
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−
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instead of ( , )lS kγ . Then, rewriting equations (18) and (19) 
in the forms: 
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 (19c) 

one can easily conclude that the function ( , , )lS k rγ  has 
the poles of the first order on the upper imaginary semi-
axis which correspond to the bound states with the 
residues  

 
2

1 ( ) ( , )
( 1)

2 ( , )
l nl l nl

l nl

B k r
i

k r
φ

π φ
+ +

−

′
−

′
 

and, unlike ( , , )lS k rγ , it has no “redundant” poles. If one 
chooses the sufficiently large finite values of r′ for which 

at the fixed l the relation 
( , )
( , )

l nl

l nl

k r
k r

φ
φ
+

−

′
′

 will have the same 

sign independently from knl (it can be always obtained, 
because ( , ) 1l nlk rφ ± →  when r → ∞ , if knl does not 
coincide with “redundant” pole; but if such coincidence 
takes place, the correspondent residue will be 0, since the 
correspondent pole vanishes!). Then the direct calculation 
of the quantity 

 τl (γ, r) = arg ( , , ) 2lS k r r
E v
γ∂

+
∂



  

will show the validity of (100b) for sufficiently large r 
also in this case. 

The same procedure (8a)-(9c) etc can be repeated also 
for the case of the presence in the external region r > a of 
the potential tail of the Yukawa type because of the 
coincidence of the logarithmic divergence at points 
kγ=ib/2 of the factor F (k) in the expression (40a) for 

( , , )lS k rγ  and of the term [1+
2
i
k
ρ ln(1+ 2ik

b
)]–1 in the 

expression (24a) for the function fl- (k, r) and hence its 
vanishing in ( , , )lS k rγ .  

The case with the non-unitary ( , , )lS k rγ appears to be 
somewhat more complicated. Let rewrite (94a) in the 
following form: 
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where < >1 and < >2 signify average in the momentum 

space with the weights 2
l lAS f +  and 2

lAf − , relatively, 
then choose without the limitation of the generality such 
A(k) in order that the quantity arg /A E∂ ∂ would be 
limited (such choice of A(k) does physically signify that 
the mean time moment of the incoming-wave entrance 
into the sphere of radius r around the scatterer , which is 

equal to – ([v 2 1
1 1] arg /lf A E−

− > + < ∂ ∂ > , would be 
finite). Then, since two last terms in (94b) are finite, and 
the quantities 1,2arg /lf E±< ∂ ∂ >  are positive and 
proportional to r for sufficiently large r , one can affirm 
that <τ l (γ , r)> ≥ 0 at least at the range r >> a. 

Thus, the completeness condition of the type (11) 
together with the conditions of symmetry and generalized 
unitarity of ( , )lS kγ guarantee the fulfillment of the 
orthodox causality (100b) for sufficiently large values of r 
but, in general, do not ensure the fulfillment of the micro-
causality for r ≥ a (mainly because of the influence of the 
centrifugal barrier and partially because of the distortion 
of the wave-packet form during scattering).  

In the case of non-central or parity-violating 
interactions the relation  
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 (101)  

must be valid instead of (100b) for j
l lS ′  . Here Im knj > 0, 

χm = –ikm < 0, Im ks,s′ < 0, and χp , Im kt,t′ can be not only 
positive but also negative and, moreover, the numbers of 
points with χp , Im kt,, Im kt′ can be infinite. Therefore, a 
causality condition like (100a) and (100b) demands 
certain restrictions for the topology of zeros and poles of 

j
l lS ′ , namely 
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 (102) 

9. Conclusions and Perspectives 
In the presented review there are the results of the 

almost complete study of the non-relativistic S-matrix 
analytic structure for unknown central, non-central (tensor) 
and parity-violating T-invariant interactions, linear or non-
linear, with unknown physical dynamics and kinetics, with 
possible absorption and/or generation of bombarding 
particles inside sphere of small radius r ≤ a, surrounded in 
the external range (a < r < ∞) by centrifugal barrier with 
possible presence of decreasing (more rapidly than any 
exponential function, or according to the exponential law, 
or the Yukawa law etc) potential tails for one-channel and 
discrete-many-channel scattering. This study was based on 
some general mathematical assumptions like the 
possibility of the S-matrix analytic continuation into the 
regions of complex values of particle wave numbers or 
kinetic energies and the completeness conditions for 
external wave functions and on the physical principles like 
the causality and some kinds of the symmetry for the S-
matrix.  

It is rather curious how the results of a research, based 
on the well-known cognitive principle “with the least 
number of assumptions to obtain the most number of 
results of rather general physical and mathematical 
character”, can also help to reveal some concrete physical 
phenomena and effects: (a) the enhancement phenomena 
caused by parity violations, indicated in Appendix V; (b) 
the phenomena of time resonances (explosions), formed 
from the strongly overlapping energy resonances of high-
energy many-channel nuclear reactions. 

It follows from all totality of the presented results an 
interesting perspective of future investigations – a 
research program of concrete tasks, problems and then the 
continuation, extension and application of the rigorous 
study of the analytic properties of the S-matrix on the base 
of general physical principles and general mathematic 
assumptions together with search of the observable 
physical manifestations of microscopic quantum collisions:  

(1) Between remained important tasks it is possible to 
propose (a) the study of enhancement phenomena caused 
by violations of T-invariance, quite similarly to 
enhancement phenomena caused by parity violations; (b) 
the study of the S-matrix analytic structure for unknown 
interactions, enclosed by a centrifugal barrier and a 
screened Coulomb barrier (the last one is namely the 
Yukawa-potential type, differing from the Yukawa 
potential by the positive sign (repulsion instead of 
attraction) and by the scale.  

(2) As an interesting continuation of the presented 
approach there is remained open a way for the study of 
other types of many-channel collisions (for instance, 
collisions with rearrangement of colliding systems, with 
multiple generation of particles, chain reactions etc), the 
classes of T-violating interactions, including the 
interactions with microscopic quantum dissipation 
(quantum friction), various relativistic collisions, 
collisions at the presence of external fields, scattering with 
accompanied processes like bremsstrahlung etc).  

(3) And it is appeared a somewhat unexpected 
perspective – how the rigorous mathematical method or 
approach can help to reveal the physical phenomena and 
effects (enhancement phenomena caused by parity 
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violations in section or may be by T-invariance violations 
and time resonances in section 8). 
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