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1. Introduction 

In recent years, various methods have been introduced 

to generate analytical solutions of the nonlinear evolution 

equations (NLEEs) in mathematical physics, engineering 

sciences and other real world problems. For example, the 

inverse scattering method [1], the homogeneous balance 

method [2], the generalized Riccati equation method 

[3,4,5,6], the F-expansion method [7], the tanh-coth 

method [8], the Exp-function method [9-11] and others 

[12,13,14]. 

Firstly, the  /G G -expansion method is proposed by 

Wang et al. [15] in 2008. They applied this method to 

some nonlinear partial differential equations and 

   
0

'/

im

i
i

u a G G


   is used as the travelling wave 

solution where 0.ma   Subsequently, many researchers 

applied this method to study various nonlinear partial 

differential equations [16,17,18]. 

Recently,  /G G -expansion method is extended by 

Zhang et al. [19] and they presented the solution form as 

   '/

jm

j
j m

u a G G


  , where either ma  or ma  may 

be zero, but both ma  or ma cannot be zero at a time. 

Consequently, a diverse group of scientists investigated a 

different class of nonlinear PDEs by using this effective 

and straightforward method for establishing many new 

travelling wave solutions. For example, Hamad et al. [20] 

studied higher dimensional potential YTSF equation to 

construct analytical solutions via this method. Nofel et al. 

[21] implemented same method to the fifth-order KdV 

equation for obtaining travelling wave solutions whereas 

Naher et al. [22] investigated compound KdV-Burgers 

equation. 

Naher and Abdullah [23] executed the same method to 

construct travelling wave solutions of the nonlinear 

reaction diffusion equation whilst they [24] studied the 

(2+1)-dimensional modified Zakharov-Kuznetsov equation 

for constructing abundant new travelling wave solutions 

by applying this method. Again, Naher and Abdullah [25] 

constructed analytical solutions of the (2+1)-dimensional 

breaking soliton equation and Naher et al. [26] investigated 

the higher dimensional Jimbo-Miwa equation via the same 

method for obtaining some new solutions. Furthermore, in 

Ref. [27] Naher and Abdullah applied this method to the 

higher dimensional Kadomstev-Petviashvili equation to 

establish some new analytical solutions and so on.  

In this article, auxiliary equation intends to be used to 

generate analytical solutions of the SMCH equation. In 

addition, some new solutions coincide with previous 

results which are available in the open literature. Also, 

some new solutions are displayed in the figures. 

2. Description of the Method  

Consider the general nonlinear partial differential 

equation: 

  , , , , , ,... 0,t x xt t t xxP u u u u u u   (1) 
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where  ,u u x t  is an unknown function, P  is a 

polynomial in  ,u u x t and the subscripts stand for the 

partial derivatives. 

The main steps of the method [19] are as follows: 

Step 1. Suppose, combining the real variables x  and t  by 

a new variable  : 

    , , ,u x t v x V t     (2) 

where V  is the speed of the travelling wave. Now using 

transformation of (2) in equation (1) obtain to the 

following ordinary differential equation for   :v   

  , ', ,... 0,A v v v   (3) 

where the superscripts indicate the ordinary derivatives 

with respect to  . 
 

Step 2. According to possibility, equation (3) can be 

integrated term by term one or more times, then we can 

obtain constant(s) of integration. For simplicity, we can 

consider zero for integral constant. 

Step 3. Suppose that the travelling wave solution of (3) 

can be expressed in the following form:  

    '/

jm

j
j m

v a G G
 

   (4) 

with  G G  satisfies the following second order linear 

ODE: 

 0,G G G      (5) 

where  0, 1, 2,..., ,ja j m      and   are constants 

to be determined later. 

Step 4. To determine the positive integer m , for this 

reason need to take the homogeneous balance between 

highest order nonlinear terms and highest order 

derivatives of equation (3).  

Step 5. Substituting equation (4) and equation (5) into 

equation (3) with the value of m  which obtained in Step 4, 

then obtained polynomials in    '/ , 0, 1, 2,... ,
r

G G r     

and setting each coefficient of the resulted polynomials to 

zero, it follows a set of algebraic equations for 

 0, 1, 2,..., , ,ja j m V      and .   

Step 6. Solving the system of algebraic equations which 

are obtained in step 5 with the aid of algebraic software 

Maple and then, we can obtain values for 

 0, 1, 2,...,ja j m     and .V  Furthermore, substituting 

the values of  0, 1, 2,...,ja j m     and V  in equation 

(4) along with the general solution of (5) which is well 

known, then obtaining some new travelling wave 

solutions of equation (1). 

3. Application of the Method 

In this section, we have investigated the SMCH 

equation by construction some new analytical solutions 

which including solitons solutions and periodic solutions 

via the improved  '/G G -expansion method. 

3.1. The SMCH Equation 

In this work, we choose the SMCH equation: 

 22 0,t x xxt xu k u u u u     (6) 

where k  and 0.   

Details of CH and MCH equation can be found in 

references [28,29,30,31,32]. 

Now, we use the wave transformation equation (2) into 

equation (6), which yields: 

 22 0,Vv kv Vv v v         (7) 

where the superscripts stand for the derivatives with 

respect to .
 

Equation (7) is integrable, therefore, integrating with 

respect to once yields:  

   32 0,
3

k V v Vkv v C


      (8) 

where C  is an integral constant which is to be determined 

later.  

Balancing vwith 3v  in equation (8), we obtain 1.m   

So, the solution of (8) is the form:  

      
1

1 0 1'/ '/ ,v a G G a a G G


    (9) 

where 1 0,a a  and 1a  are constants to be determined. 

Substituting equation (9) together with equation(5) into 

(8), the left-hand side of (8) is converted into a polynomial 

of    '/ , 0, 1, 2,... .
r

G G r     According to Step 5, 

collecting all terms with the same power of  '/ .G G Then, 

setting each coefficient of the resulted polynomial to zero, 

yields a set of algebraic equations (for simplicity, which 

are not presented) for 1 0 1, , , , ,a a a V C   and .   

Solving the system of obtained algebraic equations with 

the help of algebraic software Maple, we obtain three 

different values.  

Case 1:  

 

1 0 2

1 2

2

6
0, ,

4 2

6
2 ,

4 2

4
, 0,

4 2

k
a a

k
a

k
V C


  

  

 

   
 

 
 


 

 

 (10)

 

where , ,k    are free parameters and 0.   

Case 2: 

 

1 2

0 2

1 2

6
2 ,

4 2

6
,

4 2

4
0, , 0,

4 2

k
a

k
a

k
a V C

  


  

 

  
 

 
 


  

 

 (11) 

where , ,k    are free parameters and 0.   
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Case 3: 

 

 

   

 

0 12 2

1 2

3/2

2 3/2
2

6 6
, 2 ,

8 2 8 2

6
2 ,

8 2

4 16 6
, ,

8 2 8 2

k k
a i a i

k
a i

k i k
V C


     


  



    



   
   

 
 

  
   

(12) 

where , ,k    are free parameters and 0.   

Substituting the general solution equation (5) into (9), 

we obtain three different families of travelling wave 

solutions of (8): 

Family 1: Hyperbolic function solutions:  

When 2 4 0,    we obtain 

 

2
1

2
2

2
1

2
1

2
2

2
1

2
2

2
0 1

2
1

2

1
sinh 4

2

1
cosh 4

1 2
4

12 2
cosh 4

2

1
sinh 4

2

1
sinh 4

2

1
cosh 4

1 2
4

12 2
cosh 4

2

sinh

C

C

v a

C

C

C

C

a a

C

C

  

  


  

  

  

  

  


 

  





 


  



 



 


   





  
  
  
  

   
 

 
 

 
 

 
 

     

 
 
 
 
  

2

,

1
4

2
  

 
 
 
 
 
 

 
 

 
 

 
 

     

(13) 

If 1C  and 2C  are taken particular values, various 

known solutions can be rediscovered. 

Family 2: Trigonometric function solutions:  

When 2 4 0,    we obtain 

 

2

1

2

2
2

2

1

2

2

1

1

2
1

2
2

2
0 1

2
1

2
2

1
sin 4

2

1
cos 4

1 2
4

12 2
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2

1
sin 4

2

1
sin 4

2

1
cos 4

1 2
4

12 2
cos 4

2

1
sin 4

2

C

C

C

C

v a

C

C

a a

C

C

  

  


 

  

  



  

  


 

  

  





 

 


 



 



 

 


   



 

  
  
  
  
  
 

 
 

 
 

 
 

  
  

 
 
 
 
  

 
 
 
 
 
 

 
 

 
 

 
 

     

(14) 

If 1C  and 2C  are taken particular values, various 

known solutions can be rediscovered. 

Family 3: Rational function solution:  

When 2 4 0,    we obtain 

 

 
1

2
1

1 2

2
0 1

1 2

2

,
2

C
v a

C C

C
a a

C C














 
  

 

 
   

 

 (15) 

Substituting expression of (10), (11) and (12) in (9), 

account into the general solution (5), then yields the 

hyperbolic function solution for equation (13), with 

corresponds to the conditions 1 0C  , 2 0C  : 

  
 

 

2

2
1 2

6 4 1
, coth 4 ,

24 2

k
v x t

 
  

  


  

 
 

where 
2

4
.

4 2

k
x t

 
 

 
 

 

 
 

2 2

1
2

2

6
,

4 2

4 1
2 coth 4 ,

2 2 2

k
v x t

  

 
   



 
 


   

  
  
     

 

where 
2

4
.

4 2

k
x t

 
 

 
  

 

 
 

3 2

1
2

2

2 2

6
,

8 2

4 1
2 coth 4

2 2 2 ,

1
4 coth 4

2

k
v x t i

  

 
   

    



 
 


 



  

  
  
  

  
 
 
 

 

where 
2

4
.

8 2

k
x t

 
 

 
 

Substituting expression of (10), (11) and (12) in (9), 

account into the general solution (5), then yields the 

trigonometric function solution for equation (14), which 

are traveling wave solutions corresponds to the conditions 

2 0C  , 1 0C  : 

  
 

 

2

2
4 2

6 4 1
. tan 4 ,

24 2

k
v x t

 
  

  


 

 
 

 

 
 

5 2

1
2

2

6
,

4 2

4 1
2 tan 4 ,

2 2 2

k
v x t

  

 
   



 
 


   

  
  
     

 



26 American Journal of Applied Mathematics and Statistics  

 

 

 
 

6 2

1
2

2

2 2

6
,

8 2

4 1
2 tan 4

2 2 2 ,

1
4 tan 4

2

k
v x t i

  

 
   

    



 
 

       
  
 
    
 

 

Substituting expression of (10), (11) and (12) in (9), 

account into the general solution of (5) then yields the 

rational function solution for equation (15), we obtain 

following traveling wave solutions corresponds to the 

condition 2 4 0   : 

  
   

2
7 2

1 2

26
, ,

4 2

Ck
v x t

C C   
 

 
 

where 
2

4
.

4 2

k
x t

 
 

 
 

 
 

1

2
8 2

1 2

6
, 2 ,

24 2

Ck
v x t

C C




  

       
     

 

where 
2

4
.

4 2

k
x t

 
 

 
 

 

 
 

9 2

1

2 2

1 2 1 2

6
,

8 2

2 ,
2

k
v x t i

C C

C C C C

  




 



 
 

      
    

 

where 
2

4
.

8 2

k
x t

 
 

 
 

4. Results and Discussion 

It is worth declaring that some of our obtained solutions 

are in good agreement with already published results 

which are presented in the following table. Moreover, 

some of obtained traveling wave solutions are described 

from the Figure 1 to Figure 8. 

 

Figure 1. Periodic solution for 1, 1, 1, 0.25k       

 

Figure 2. Periodic solution for 12, 1, 1, 0.5, 1,k C         

2 2C   

4.1. Table: Comparison between Liu et al. [32] 

Solutions and New Solutions 
Liu et al. [32] solutions New solutions 

i. If 
2

1 21, 0, 4 4, 1C C k a         solution 

(from example 1 of section 3) becomes: 

     3,4 , 2 3 tan 2 .u x t x t    

i. If 
21, 1,4 4k       and    4 3,4, ,v x t u  solution  4 ,v x t  

becomes:      3,4 , 2 3 tan 2 .u x t x t    

ii. If 1 21, 1, 1, 2, 1C C a       and 1,k    solution 

(from example 1 of section 3) becomes: 

   3,4

1
, 2 3 .

2
u x t

x t
 


 

ii. If 1 20, 1, 1, 2, 1C C        1k    and    7 3,4, ,v x t u  

solution  7 ,v x t  becomes:    3,4

1
, 2 3 .

2
u x t

x t
 


 

iii. If 1 2

1
1, 0, , 0, 1

4
C C a      and 1,k   solution 

(from example 2 of section 3) becomes: 

     3,4

1
, 6 tan 4 .

2
u x t i x t    

iii. If 
1

0, 1, , 1
4

k       and    4 3,4, ,v x t u  solution  4 ,v x t  

becomes:      3,4

1
, 6 tan 4 .

2
u x t i x t    

iv. If 1 21, 1, 1, 2, 1C C a      and 1,k   

solution (from example 2 of section 3) becomes: 

   3,4

1
, 2 3 .

2
u x t i

x t
 


 

iv. If 1 20, 1, 1, 2, 1C C        1k   and    7 3,4, ,v x t u  

solution  7 ,v x t  becomes:    3,4

1
, 2 3 .

2
u x t i

x t
 


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Beyond this table, we obtain new exact travelling wave 

solutions 1 2 3 5 6 8, , , , ,v v v v v v  and 9v  which are not being 

established in the previous literature. 

4.2. Graphical Representations of the 

Solutions 

The graphical presentations of some new solutions are 

depicted in the figures with the aid of commercial 

software Maple: 

 

Figure 3. Solitons solution for  12, 1, 1, 0.25, 2,k C         

2 1C   

 

Figure 4. Solitons solution for 12, 1, 2, 0.25, 0,k C         

2 5C   

 

Figure 5. Solitons solution for   3, 4, 1, 0.25k       

 

Figure 6. Periodic solution for 2, 2, 3, 0.5k       

 

Figure 7. Solitons solution for 14, 4, 2, 5, 9,k C        

2 1C   

 

Figure 8. Periodic solution for 4, 5, 5, 1k       

5. Conclusions  

In this article, the linear ODE is used with the improved 

 '/G G -expansion method to construct some new 

travelling wave solutions of the SMCH equation. The new 
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obtained solutions are presented through the hyperbolic 

function, the trigonometric function and the rational 

functions form. If parameters take particular values some 

of the obtained solutions coincide with published results 

which describes in result and discussion section and verify 

that our obtained all solutions are correct. In addition, 

some figures are illustrated which examined new obtained 

solutions. 
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