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Abstract  Collinearity is a major problem in regression modeling. It affects the prediction ability of ordinary least 

square estimators. Collinearity is established in logistic regression models when the difference between the least and 

highest eigen value of the information matrix is more in relation to the least eigen value. This results in inflated 

variance of estimated regression parameters. Consequently, the resulting model is not reliable and will result in 

incorrect conclusions about the relationship among the variables. To overcome the problem of collinearity in logistic 

regression model a number of estimators were proposed. This article compares the performance of four estimators - 

ordinary logistic estimator, logistic ridge estimator, generalized logistic ridge estimator and modified logistic ridge 

estimator in the presence of collinearity, to ascertain which is more effective in variance reduction. To establish 

superiority among the above estimators, analysis is carried out on a case study in University of Calabar Teaching 

Hospital, Calabar Cross River State, Nigeria. Result showed that modified logistic estimator performed better than 

other estimator considered due to the fact that it had the smallest variance. 
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1. Introduction 

Ordinary Least Squares (OLS) estimation is widely 

used in regression analysis. Logistic regression has proven 

to be one of the most versatile techniques in generalized 

linear models which allows for the modeling of 

categorical variables. Method of least squares performs 

well under some basic assumption such as where error are 

independent and following normal distribution with mean 

zero and having constant variance (Jadhav and Kashid, 

2011). In real life situation, some variables are seen to 

relate with each other thereby introducing 

multicollinearity in models.  

Presence of multicollinearity can make ordinary least 

square estimator to be unstable due to large variances 

which lead to poor prediction (Batah et al, 2008; Batah, 

2011; Joshi, 2012; Nja, 2013). To overcome this problem, 

several measures had been presented. Remedies include 

ridge regression method by Hoerl and Kennard, (1970) 

and the iterative principal component method Marx and 

Smith (1990). Since multicollinearity produces large 

variances in ordinary least square estimation, ridge 

regression attempts to find parameter estimates that have 

smaller variance and hence smaller MSE by enlarging the 

small Eigen values (Nelder and Wedderburn, 1972; 

Hawkin and Yin, 2002; Vago and Kemeny, 2006). 

2. Ordinary Ridge Regression Estimator 

Consider a multiple linear regression model. 

 Y X    (1) 

Where Y is (nx1) vector of observations, β is a (px1) 

vector of unknown regression coefficients, X is a matrix 

of order (nxp) of observations on p predictor (regressor) 

variables x1, x2,…xp and e is an (nx1) vector of errors with 

E(e) = o and var(e) = σ2.  

The least square estimator of β is given by 

 
1

1 1ˆ X X X Y


 .  

The linear model can be written in canonical form as  

 Y Z    (2) 

where Z = XT, T is the matrix of eigen vectors of X'X 

 1 2 pZ'Z T T'X'XT  diag( , , , )       

where λi is the ith eigen value of X'X 

 p T ' , T 'T TT' I     

The OLS estimator of α is given by 

  
1 1 Z'Z Z'Y  J Z'Y
    (3) 

where  
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  Z'Z   J, OLSOLS T    (4) 

  K 1 2 pA diag , K, K, , k        (5) 

where  

 1 2 pK K K ,K 0    

K is a biasing constant. 

K can be generalized as k = (K1, K2,…kp) so that  

  1 2 pKI diag k ,  K , k   

The generalize ordinary Ridge estimator is obtained as  

  1
GOR GORGOR  T T 1 KA      (6) 

where  

  1 1 2 2 p pA diag K ,  K , ,  K        

λi is the ith eigen value of (X'X + KI) 

This procedure is extended to model logistic ridge 

estimator and its subsequent modification, the modified 

logistic ridge regression estimator. 

3. Ordinary Logistic Regression 

Estimator 

The ordinary logistic estimator uses the iterative 

weighted least squares method. The ordinary logistic 

estimate of β is given by  

  
1

1 1ˆ X WX X WZ


  (7) 

where,  

W is a diagonal matrix of weights  

Z is a column matrix of adjusted dependent variables. 

4. Logistic Ridge Regression Estimator 

The generalized ridge regression can be expressed in 

canonical form as 

  1
GLS GLSGLS  T T 1 KA      (8) 

    1 2 P 1K K ,  K , ,K , A diag  K     

λi is the ith eigen value of (X'WX + KI) 

The logistic Ridge regression estimator of β is given by 

  
1

X'WX KI X'WZ


   (9) 

5. Modified Logistic Ridge Regression 

Estimator 

Modified logistic ridge regression estimator was 

proposed by Nja et al (2013). This is given in canonical 

form as follows 

  1 T 1 KA GLSMLS    (10) 

Where 

  i iA  diag  K   

λi is the ith eigen value of (
1

'X W X KI


 ) 0≤  ≤1. 

The modified logistic ridge estimator of β is given by 

  
1

1 1 1
' 'X W X KI X W Z

  




  
   (11) 

6. Methodology 

If the probability of an event taking place is P, then the 

odd of that event is given by: 

 Odd 
1

p

p



 

That is, odd is the probability of an event taking place 

divided by the probability of the event not taking place. 

The log of the odds is known as logit given as  

  logit P   log
1

p

p

 
  

 
 

Logistic regression like other regression has a 

dependent variable and independent variable(s). In logistic 

regression the dependent variable is a logit which is the 

natural log of the odds, 

    Log odds logit P   log
1

p

p

 
   

 
 

Logistic regression is a modeling strategy that relates 

the logit to a set of explanatory variable with a linear 

model (Bender and Groven, 1997; Hosmer and Lemeshow, 

2008; Lamote 2012). That is, 

 0 1 1  X
1

p
In

p
 

 
  

 
 

where:  

β0 = the constant 

β1 = the regression coefficient  

X = the predictor variable  

So that  

 

 

   

120 1

2 2
0 1

2

0 1

(var ( ) X 'WX )
1

1 0
,

1 1

X

X
i ii

X

p
e

p

e
P

N e

 

  

 

 

 








 
  

 

  
 

 


 

7. The Model 

We are modeling the probability that a person selected 

from a subpopulation has respiratory infection given by, 

 
 

 
0 1 1 2 2 3 3

0 1 1 2 2 3 3

exp

1 exp

X X X
P

X X X

   

   

  


   
 

where, 

β0 = constant  

β1 = sex 
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β2 = location 

β3 = % of exposure 

The estimation of s  are as follows: 

i. Ordinary logistic estimator 

 1(X'WX) X'WZ   

W is a diagonal matrix of weights given by  

  i i iW m 1 , i 1,2,3,4µ µ    

where: 

mi is the sub population total  

µi is the response probability 

and Z is a column matrix of adjusted dependent variate 

given by  

 
 

i i i
i i

1
Z , 1,2,3,4

1

i

i

y
µ i

m


 

 
    

 
 

where: 

ηi is the link function  

yi is number of favourable outcome  

ii. Logistic Ridge Estimator 

 1(X'WX+KI) X'WZ   

Computation for Z and W are the same as those of 

ordinary logistic estimator. 

KI is diagonal matrix of Tikhonov constants (small 

positive biasing constants). 

where: 

 1 2 3 4K  K  K  K    

iii. Generalized Logistic Ridge Estimator 

 1(X'WX+K1) X'WZ   

The computation for Z, W and K are the same as those 

of logistic ridge except that; 

 1 2 3 4K K K K    

iv. Modified Logistic Ridge Estimator  

  
1

1 1 1
' 1 'X W X K X W Z

  




  
   

where, 

 

 

 

1 1

1

1

1 1 1

1

1

1

i

i
i

i

W m

y
Z

m

 



  

 

 
 

 





  

 

 
   

  

 

The variance of the parameter is given by Var(  ) = 

σ2(X’WX)-1 

where: 

 

2

2

1

N
ii

e

N
 




 

where ei is the error.  

The estimation of parameters and calculation of 

variances were done with MATLAB iteratively. 

8. Data Collection 

The data for this research were obtained from the 

University of Calabar Teaching Hospital, Calabar, in 

Cross River State of Nigeria. This was facilitated by a 

well structured questionnaire that was administered to 

patients attending the family medicine clinic of the 

hospital within a period of two weeks. A total of 180 

questionnaires were issued out and 169 were properly 

filled and returned which is presented in Table 1. Data are 

obtained on location of patients’ residents, sex and levels 

of exposure. The explanatory variables are sex, location 

and percentage level of exposure of which the first two are 

dichotomous and the third is continuous. The response 

variable is dichotomous. 

Table 1. Data on Respiratory Infection 

Location Gender 
% level of 

exposure 
Disease 

No 

Disease 
Total 

Rural Female 20 31 17 48 

Rural Male 26 20 9 29 

Urban Female 39 32 28 60 

Urban Male 42 15 17 32 

9. Result of Analysis 

Table 2. Parameter estimates 

1st iteration 

Estimators 
0  1  2  3  

Ordinary logistic: -2.4499 -3.3470 -0.7292 0.1519 

Logistic ridge: -0.0601 -1.2495 -0.2128 0.0355 

Generalized logistic ridge: -0.1551 -1.3357 -0.2332 0.0402 

Modified logistic ridge: 0.1091 -1.3275 -0.2343 0.0403 

2nd iteration 

Estimators 
0  1  2  3  

Ordinary logistic: -2.4420 -3.3576 -0.7150 0.1521 

Logistic ridge: -0.0330 -1.2453 -0.2079 0.0350 

Generalized logistic ridge: -0.1283 -1.3311 -0.2278 0.0396 

Modified logistic ridge: -0.1034 -1.3056 -0.2262 0.0400 

3rd iteration 

Estimators 
0  1  2  3  

Ordinary logistic: -2.4449 -3.3600 -0.7155 0.1523 

Logistic ridge: -0.0316 -1.2442 -0.2074 0.0349 

Generalized logistic ridge: -0.1280 -1.3313 -0.2278 0.0396 

Modified logistic ridge: 0.0994 -1.3120 -0.2280 0.0402 
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Table 3. Variances of the different estimators 

Estimators  0Var    1Var    2Var    3Var   

Ordinary logistic: 5.0261 3.8151 0.2438 0.0118 

Logistic ridge: 1.0639 0.8090 0.0720 0.0025 

Generalized logistic ridge: 1.1313 0.8644 0.0748 0.0026 

Modified logistic ridge: 1.0629 0.8084 0.0719 0.0025 

10. Fitted Model  

The probabilities that a person selected from a sub 

group has respiratory infection as given by the different 

estimators are as follows:  

1. Ordinary logistic estimator 

 

1

2 3

1

2 3

2.4449 3.3600
exp

0.7155 0.1523

2.4449 3.3600
1 exp

0.7155 0.1523

X

X X
P

X

X X

  
 
  


  

  
  

 

2. Logistic ridge estimator 

 

1

2 3

1

2 3

0.0316 1.2442
exp

0.2074 0.0349

0.0316 1.2442
1 exp

0.2074 0.0349

X

X X
P

X

X X

  
 
  


  

  
  

 

3. Generalized logistic ridge estimator 

 

1

2 3

1

2 3

0.1280 1.3313
exp

0.2278 0.0396

0.1280 1.3313
1 exp

0.2278 0.0396

X

X X
P

X

X X

  
 
  


  

  
  

 

4. Modified logistic ridge estimator 

 

1

2 3

1

2 3

0.0994 1.3120
exp

0.2280 0.0402

0.0994 1.3120
1 exp

0.2280 0.0402

X

X X
P

X

X X

 
 
  


 

  
  

 

From Table 3 (variances of the different estimators) we 

can see that modified logistic ridge estimator has the least 

variances of the parameters and hence we take the model 

obtained using modified logistic estimator.  

The model given by modified logistic ridge estimator 

can be explained as follows: 

1. The probability that a female living in a rural area 

with 20% level of exposure is 0.7116 

2. The probability that a male living in a rural area with 

26% level of exposure is 0.7144. 

3. The probability that a female living in an urban 

centre with 39% level of exposure is 0.5879. 

4. The probability that a male living in an urban centre 

with 42% level of exposure is 0.5616. 

11. Discussion of Findings  

Result presented in Table 2 show significant difference 

in the parameter estimates by the different estimators. It is 

observed that the estimates obtained by using ordinary 

logistic estimator is significantly different from those of 

the ridge estimators. In Table 3 it is seen that there is 

significant difference in the variances of the parameter 

estimates from the different estimators. Looking closely at 

the result, modified logistic ridge estimator is more 

sensitive and performs better than the other estimator due 

to its ability to reduce the variance associated with 

multicollinearity. The probability shows that males living 

in rural area with an exposure level of 39% have a higher 

probability of having respiratory infection. 

12. Conclusion 

Base on the findings of this study, it can be concluded 

that modified logistic ridge estimator is more superior to 

other estimators (ordinary logistic, logistic ridge and 

generalized logistic ridge) on the basis of variances of the 

parameter estimates. Also persons living in rural areas are 

seen to be more prone to having respiratory infection.  
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