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Abstract  In this study the performance of Minimum Expected Cost of Misclassification method (MECM) and 
Quadratic Discriminant Function approach (QDF) were compared and evaluated for the case of equal mean 
discrimination under unequal misclassification cost. 30 pairs of Female liked sex twins extracted from Stocks (1933) 
ten (10) variate data on 832 twin children was used for evaluation. Discriminant functions were derived under each 
of the following misclassification cost ratios; 1: 1, 1: 2, 1: 3 and 1: 4 and their error rate estimates determined using 
the Cross Validation (CV) and Balanced Error Rate (BER) methods. Least Mean error rates were recorded under 
QDF method as compared to that of MECM. The error rate estimates showed the QDF outperforming the MECM in 
the provision of maximum separation between the two groups. Also the two classification rules were found to be 
sensitive to misclassification cost ratios exceeding 1:2. 
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1. Introduction 
The problem of equal mean classification or zero mean 

difference has posed a challenge to researchers for a long 
time and several attempts have been made at deriving 
parsimonious rules that address this hurdle. This study 
considered the equal mean discrimination problem by 
evaluating the performance of MECM and the QDF under 
the case of unequal misclassification cost. The problem of 
discrimination was first initiated by [5] in his paper titled 
“the use of multiple measurements in taxonomic 
problems”. Fishers approach to classification with two 
populations was based on arriving at a linear classification 
statistics using an entirely different argument. Fisher's 
idea was based on transforming multivariate observations 
'x' to univariate 'y' observations such that 'y' being derived 
from either population one or population two were truly 
separated as much as possible [9]. [8] studied a variable 
selection criterion for linear discriminant rule and its 
optimality in high dimensional data where a new variable 
procedure was developed for selecting the true variable set. 
Also [11] studied discriminant analysis of multivariate 
time series and its application to diagnosis. They 
demonstrated with real and synthetic ECG data and 
concluded that their approach to classifying multivariate 
time series outperforms other well-known approaches for 
classifying multivariate time series. 

[13] first studied the problem of discrimination with 
common mean vector and with different covariance 

structure of two multidimensional normal populations. [3] 
considered the specific problem of zero-mean uniform 
discrimination. The problem was investigated for the case 
when the variance covariance matrices for the two groups 
were known to have uniform structures, with an 
assumption of equal and unequal correlation coefficients 
( ρ ).  

A discriminant function based on equal correlation 
coefficient as well as uniform covariance matrix was 
obtained for classificatory purposes. [4] studied the same 
problem of common mean discrimination by focusing on 
the case where the difference of the means of the two 
groups are the zero vector. [7] based their discrimination 
on several methods in order to compare the performance 
of each of them after their application. They employed the 
classical approach, semi Bayesian and complete Bayesian 
approach, Discrimination with equal and unequal 
covariance matrices. [10] derived a simple model for 
discriminating among equal mean data for two 
populations and the problem of assigning observations to 
one of the two populations by an investigation into the 
covariance matrices of populations using the absolute 
deviations. He observed that the Absolute Linear 
Discriminant Function (ALDF) was almost as good as the 
QDF when the two groups are closer. In concluding, the 
derived absolute linear discriminant rule performed 
slightly worse than the quadratic discriminant rule as used 
earlier by [3] and [4]. His absolute linear rule performed 
reasonably well, after the data was contaminated by the 
introduction of outliers into the two groups/populations. 
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On the other hand, the quadratic discriminant rule 
performed poorly after the contamination. 

[12] studied the asymptotic expected error rate for the 
equal-mean uniform-covariance discrimination problem. 
They approximated the unconditional expected error rate 
of the sample discriminant function up to the second order 
term and compared with the Monte Carlo simulation 
evaluated at several combinations of the parameters to 
ensure accuracy of the approximation of the error rate. [2] 
compared the performance of both Linear and Quadratic 
classifier under unequal cost of misclassification and 
concluded that both classifiers are insensitive to some 
specified cost ratios. They found that the procedures are 
insensitive to cost ratio exceeding ratio 1:2. [1] 
investigated the performance of the homoscedastic 
discriminant function (HDF) under the non-optional 
condition of unequal group representation (prior 
probabilities) in the population and the asymptotic 
performance of the classification function. The 
misclassification of observation from the smallest group 
increased when the sample size ratio exceeded the 
sampling ratio 1:2 and this resulted in increases in error 
rate and was not corrected by increases in the sample size. 

2. Materials and Methods 
The concept of Discrimination and Classification are 

concerned with separating objects from different 
populations into different groups and with allocating new 
observations to one of these groups. Discriminant analysis 
is rather exploratory in nature and used as a separative 
procedure which is normally employed on a one time 
basis. This section outlines the various methods and 
materials employed in obtaining the results for the study. 

2.1. Data Used 
Female like sex twins comprising thirty (30) pairs of 

monozygotic twins and 25 pairs of dizygotic twins was 
used for the data analyses. A sample size of fifteen (15) 
from each group were selected after 10 replications based 
on simple random sampling and the estimates of 

2
1 2, ,σ ρ ρ  were estimated from the mean estimates of the 

10 replicated samples. The final sample size, 1 2 15n n= =  
was selected based on the closeness of the estimated 
parameters to that of the mean values of the 10 replicated 
estimates. The 10 variables selected from the data 
included: Height (Ht), Weight (Wt), Head length (HL), 
Head breadth (HB), Head circumference (HC), 
Interpupillary distance (ID), Systolic blood pressure (SBP), 
Pulse interval (PI), Strength of left(SGL) grip, Strength of 
right grip (SGR). The difference between the first and the 
second recorded twin was taken as an observation for each 
variate. [14]. R-console version 2.15.1 was used to analyse 
the data. 

2.2. Discrimination and Classification for two 
Populations 

Let 1π  and 2π  be two p-variate groups with density 
functions 1( )f x  and 2 ( )f x  respectively. Now consider an 

observed value ( ,..., )TX x x= . The observed vector X 

must be assigned to either population 1π  or 2π . Denote 
Ω  the sample space (collection of all possible outcomes 
of X) and partition the sample space as 1 2R URΩ =  where 

1R  is the subspace of outcomes which we classify as 
belonging to population 1π  and 2 1R R= Ω−  the subspace 
of outcomes classified as belonging to 2π . It follows 
therefore that the (conditional) probability of classifying 
an object as belonging to jπ  when it really comes from 

iπ  equals;  

 ( | ) ( | ) ( ) , , ,j i i
R j

P i j P X R X f x dx i j i jπ= ∈ ∈ = ∀ ≠∫  (1) 

The conditional probabilities can also be obtained for 
i j=  when , 1, 2i j = . Prior class probabilities are 
obtained when we want to obtain the probability of 
correctly and incorrectly classifying an observation/ 
objects. We denote the following. Let ( )i iP P X π= ∈ , 

1, 2i =  be the prior probability of iπ  where 1 2 1P P+ = . 
The overall probabilities of correctly and incorrectly 
classifying observations are: P (object is correctly 
classified as iπ ) = 

( | ) ( ) ( | )i i i iP X R X P X P i i pπ π∈ ∈ = ∈ =  Where 
1,2i = . P (object is misclassified as iπ ) = 

( | ) ( ) ( | )i j j jP X R X P X P i i pπ π∈ ∈ = ∈ =  Where i j≠ . 

2.3. Cost of Misclassification 
Denote ( | )c i j  as the cost of classifying an 

object/observation into iπ  when actually belongs to jπ . 
Where the ECM is derived as  

 1 2(2 |1) (2 |1) (1 | 2) (1 | 2)ECM c P p c P p= +  (2) 

Where 1p  and 2p  are the prior probabilities for the 
two populations. The two regions 1R  and 2R  are used to 
minimized the expected cost of misclassification. 

 1 2
1

2 1

( ) (1 | 2);
( ) (2 |1)

f x pcR x
f x c p

    = ∈Ω ≥   
    

 (3) 

 1 2
2

2 1

( ) (1 | 2);
( ) (2 |1)

f x pcR x
f x c p

    = ∈Ω <   
    

 (4) 

2.4. Classification of Normal Populations 
when 1 2∑ ≠ ∑  (Quadratic Classification Rule) 

The regions of minimum ECM and minimum Total 
Probability of Misclassification (TPM) depends on the 
ratio of the densities. Hence substituting the normal 
densities with different covariance matrices in equation 3 
and 4 after taking natural logarithm gives the following 
classification regions. Allocate x to 1π  or otherwise to 2π  
if,  
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1 1 1 1
1 2 1 1 2 2

2

1

1 ( ) ( )
2

(1 | 2)ln
(2 |1)

x x x k

pc
c p

µ µ− − − −′ ′ ′− ∑ −∑ + ∑ − ∑ −

   
≥    

    

 (5) 

Where 1 11
1 1 1 2 2 2

2

| |1 1ln ( )
2 | | 2

k µ µ µ µ− − ∑ ′ ′ ′= + ∑ − ∑ ∑ 
 

2.5. The Minimum Expected Cost of 
Misclassification Method (MECM) 

Let ( )if x  be the multivariate normal density associated 
with population , 1, 2,...i i gπ = . Let ip = the prior 
probability of population , 1, 2,...i i gπ = . ( | )c k i = the cost 
of allocating an item to kπ  when infact it belongs to iπ  
for , 1, 2,...k i g= . For k=i, ( | ) 0c i i = . Finally, let kR be 
the set of x’s classified as kπ  and ( | )P k i = P (classifying 

item as kπ | iπ ) = ( )i
Rk

f x dx∫  for , 1, 2,...,k i g= . Hence the 

Expected Cost of Misclassification (ECM) becomes:  

 
1 1

( | ) ( | )
g g

i
i k

k i

ECM p p k i c k i
= =

≠

 
 

=  
 
 

∑ ∑  (6) 

We seek rules that minimize the ECM. This leads to an 
optimal classification rule: classify an object ( mx ) into 1π  
if 

 1 1

2 2

( ) (2 |1)
1

( ) (1 | 2)
m

m

f x c p
f x c p

>  (7) 

Also assign Dx  to 2π  if  

  1 1

2 2

( ) (2 |1)
1

( ) (1 | 2)
D

D

f x c p
f x c p

>  (8)  

Where 1( )f x  and 2 ( )f x  are the density functions for 
both the Monozygotic and Dizygotic twin groups 
respectively. Mx and Dx  being the monozygotic and 
dizygotic twin observations. [9]. 

2.6. Error Rate Estimation 
The performance of any classification procedure is 

based on the error rates or misclassification probabilities.  

2.6.1. Balanced Error Rate (BER) 
The Balanced Error Rate (BER) statistic is the average 

of the misclassification rates on samples drawn from 
populations 1π  and 2π  as shown in the table below. 
Where a, b, c, d are the entries in the confusion matrix. 

Table 3.1. Confusion matrix for the two groups 
Prediction 

True Pop 1π  2π   

1π  a b  

2π  c d  
The balanced error rate is given mathematically as  

 1
2

b cBER
a b c d
 = + + + 

 (9) 

2.6.2. Cross Validation 

Let 1
CV
Mn  and 2

CV
Mn  be the number of left out 

observations misclassified in group 1 and 2 respectively 
and it’s given by 

 1 2

1 2

CV CV
M Mn nCV
n n
+

=
+

 (10) [9]. 

3. Results and Discussion 
After the application of the methods in section 2 above, 

the following results were obtained in studying the effect 
of unequal misclassification cost on the two classification 
functions namely QDF and Minimum Expected Cost of 
Misclassification (MECM). 

The equality of the two mean vectors for Monozygotic 
and Dizygotic twin groups were tested with Hoteling 2T  
to ensure that the equal mean assumption is not violated. 
Based on the results, the test proved to be insignificant 
indicating that there is no significant difference between 
the two mean vectors. 

3.1. Application with QDF 
From the methodology section the QDF obtained under 

equal prior probabilities ( 1 2 0.5p p= = ) and equal 
misclassification cost ( (1 | 2) (2 |1) 1c c= = ) was derived as: 
Allocate x to 1π , otherwise to 2π  if 

 
{ }

{ }

11
1 1 1

2

1
2 2 2

| |
ln ( ) ( )

| |

( ) ( ) 0

x x

x x

µ µ

µ µ

−

−

 ∑ ′− − ∑ − 
∑ 

′+ − ∑ − >

 (11) 

The QDF as well as the quadratic classification rules 

for equal and unequal misclassification ratios (1 | 2)
(2 |1)

c
c

 
 
 

 

for 1 2:π π  in the order 1:1, 1:2, 1:3 and 1:4 were obtained 
as follows: 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 0.192

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − <
 (12) 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 0.500

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − < −
 (13) 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 0.906

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − < −
 (14) 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 1.193

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − < −
 (15) 



 American Journal of Applied Mathematics and Statistics 412 

 

The following QDF’s were obtained when the cost 

ratios (2 |1)
(1 | 2)

c
c

 for the two groups were alternated as 

2 1:π π  in the order of the following misclassification cost 
ratios: 1:2, 1:3, and 1:4. 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 0.885

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − <
 (16) 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 1.291

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − <
 (17) 

 
{ }
{ }

1
1 1 1

1
2 2 2

( ) ( )

( ) ( ) 1.579

x x

x x

µ µ

µ µ

−

−

′− ∑ −

′− − ∑ − <
 (18) 

Table 1a. Discriminant scores for the various misclassification cost ratios using QDF 
c(1|2):c(2|1) c(1|2):c(2|1) 

1:1 1:2 1:3 1:4 

DM<0.19 DD >0.19 DM <-0.5 DD>-0.5 DM<-0.91 DD≥ 0.91 DM<-1.19 DD≥ -1.19 

-2.16 -0.88 -2.2 -0.88 -2.16 -0.9 -2.16 -0.9 

-1.02 3.72 -1.0 3.72 -1.02 3.72 -1.02 3.72 

-1.06 2.84 -1.1 2.84 -1.06 2.84 -1.06 2.84 

0.69 9.32 0.69 9.32 0.69 9.32 0.69 9.32 

-2.49 0.54 -2.5 0.54 -2.49 0.54 -2.49 0.54 

1.59 -2.8 1.59 -2.8 1.59 -2.8 1.59 -2.8 

-1.82 3.81 -1.8 3.81 -1.82 3.81 -1.82 3.81 

-3.92 -1.51 -3.9 -1.51 -3.92 -1.5 -3.92 -1.5 

-6.08 2.49 -6.1 2.49 -6.08 2.49 -6.08 2.49 

-4.28 0.75 -4.3 0.75 -4.28 0.75 -4.28 0.75 

0.95 8.87 0.95 8.87 0.95 8.87 0.95 8.87 

-1.38 3.45 -1.4 3.45 -1.38 3.45 -1.38 3.45 

-3.57 6.29 -3.6 6.29 -3.57 6.29 -3.57 6.29 

1.32 1.97 1.32 1.97 1.32 1.97 1.32 1.97 

0.65 2.02 0.65 2.02 0.65 2.02 0.65 2.02 
The bolded figures indicates the misclassified observations; DM and DD being the discriminant scores for Monozygotic and Dizygotic groups 
respectively. 

Based on the above functions under the two 
misclassification cost ratios, the following discriminant 
scores were obtained in Table 1a and Table 1b. 

Table 1b. Discriminant scores for the various misclassification cost 
ratios using QDF 

c(2|1):c(1|2) 
1:2 1:3 1:4 

DM<0.8
8 

DD ≥ 0.8
8 

DM<1.2
9 

DD ≥ 1.2
9 

DM<1.5
8 

DD ≥ 1.5
8 

-2.16 -0.88 -2.16 -0.9 -2.16 -0.88 
-1.02 3.72 -1.02 3.72 -1.02 3.72 
-1.06 2.84 -1.06 2.84 -1.06 2.84 
0.69 9.32 0.69 9.32 0.69 9.32 
-2.49 0.54 -2.49 0.54 -2.49 0.54 
1.59 -2.8 1.59 -2.8 1.59 -2.8 
-1.82 3.81 -1.82 3.81 -1.82 3.81 
-3.92 -1.51 -3.92 -1.5 -3.92 -1.51 
-6.08 2.49 -6.08 2.49 -6.08 2.49 
-4.28 0.75 -4.28 0.75 -4.28 0.75 
0.95 8.87 0.95 8.87 0.95 8.87 
-1.38 3.45 -1.38 3.45 -1.38 3.45 
-3.57 6.29 -3.57 6.29 -3.57 6.29 
1.32 1.97 1.32 1.97 1.32 1.97 
0.65 2.02 0.65 2.02 0.65 2.02 
From Table 1a and Table 1b, we observed no 

misclassified observations from the monozygotic twin 

group whilst three twin pairs of observations were 
misclassified from the dizygotic group. The proportion of 
correct classification was recorded as 0.80. Five (5) and 
three (3) observations were misclassified from 
monozygotic and dizygotic twin groups representing 
approximately 73 percent of correct classification when 
the cost of misclassifying an observation as monozygotic 
twin was twice the cost of the misclassifying observation 
as dizygotic twin. For ratio 1:3, the correct proportion of 
classification was 0.77 since 5 and 2 twin observations 
were misclassified from monozygotic and dizygotic 
groups. Seven (7) and nine (9) were misclassified from 
monozygotic and dizygotic groups with 70 percent correct 
classification of observations. After alternating the cost 
ratios, 0.73, 0.83 and 0.80 were the correct proportion of 
classification for 1:2, 1:3 and 1:4 misclassification cost 
respectively. (See Table 1a and Table 1b). 

3.2. Results for the Various Misclassification 
Cost Ratios Using MECM Classification Rule 

The optimal classification rule derived in the 
methodology section (equations 7 and 8) were used to 
derive the discriminant scores as shown in Table 2 and 
Table 2a below.  
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Table 2. Scores obtained from the optimum classification rule based on the MECM 
C(1|2): C(2|1)= C(1|2): C(2|1)= 

1:1 1:2 
DM DD DM DD 

2.43E+00 2.04E+00 4.86E+00 4.09E+00 
4.55E+00 5.18E-01 9.10E+00 1.04E+00 
1.28E+00 1.76E-01 2.55E+00 3.52E-01 
9.63E-01 5.98E-02 1.93E+00 1.20E-01 
2.12E+00 1.78E+00 4.23E+00 3.55E+00 
8.09E-01 1.53E+00 1.62E+00 3.06E+00 
3.05E+00 1.10E-01 6.09E+00 2.21E-01 
5.50E+00 3.31E-01 1.10E+01 6.63E-01 
1.90E+01 3.89E-01 3.81E+01 7.79E-01 
7.95E+00 7.13E-01 1.59E+01 1.43E+00 
1.59E+00 1.27E-03 3.18E+00 2.53E-03 
2.13E+00 1.11E-01 4.27E+00 2.21E-01 
3.66E+00 6.27E-03 7.32E+00 1.25E-02 
1.38E+00 1.09E+00 2.76E+00 2.18E+00 
1.00E+00 2.55E-01 2.01E+00 5.10E-01 

C(1|2):c(2|1)= C(1|2): C(2|1)= 
1:3 1:4 

DM DD DM DD 
7.29E+00 6.13E+00 9.71E+00 8.17E+00 
1.36E+01 1.56E+00 1.82E+01 2.07E+00 
3.83E+00 5.28E-01 5.11E+00 7.03E-01 
2.89E+00 1.79E-01 3.85E+00 2.39E-01 
6.35E+00 5.33E+00 8.46E+00 7.11E+00 
2.43E+00 4.59E+00 3.24E+00 6.12E+00 
9.14E+00 3.31E-01 1.22E+01 4.42E-01 
1.65E+01 9.94E-01 2.20E+01 1.33E+00 
5.71E+01 1.17E+00 7.62E+01 1.56E+00 
2.39E+01 2.14E+00 3.18E+01 2.85E+00 
4.77E+00 3.80E-03 6.36E+00 5.07E-03 
6.40E+00 3.32E-01 8.53E+00 4.43E-01 
1.10E+01 1.88E-02 1.46E+01 2.51E-02 
4.14E+00 3.27E+00 5.52E+00 4.37E+00 
3.01E+00 7.66E-01 4.02E+00 1.02E+00 

The bolded figures indicates the misclassified observations; DM and DD being the discriminant scores for Monozygotic and Dizygotic groups 
respectively. 

Table 2a. Scores obtained as a result of the classification rule from MECM under various costs in the ratio order of c(2|1):c(1|2) 
1:2 1:3 1:4 

DM DD DM DD DM DD 
1.21E+00 1.02E+00 8.10E-01 6.81E-01 6.07E-01 5.11E-01 
2.27E+00 2.59E-01 1.52E+00 1.73E-01 1.14E+00 1.30E-01 
6.38E-01 8.79E-02 4.26E-01 5.86E-02 3.19E-01 4.40E-02 
4.82E-01 2.99E-02 3.21E-01 1.99E-02 2.41E-01 1.49E-02 
1.06E+00 8.88E-01 7.05E-01 5.92E-01 5.29E-01 4.44E-01 
4.05E-01 7.64E-01 2.70E-01 5.10E-01 2.02E-01 3.82E-01 
1.52E+00 5.52E-02 1.02E+00 3.68E-02 7.62E-01 2.76E-02 
2.75E+00 1.66E-01 1.83E+00 1.10E-01 1.37E+00 8.28E-02 
9.52E+00 1.95E-01 6.35E+00 1.30E-01 4.76E+00 9.73E-02 
3.98E+00 3.57E-01 2.65E+00 2.38E-01 1.99E+00 1.78E-01 
7.94E-01 6.33E-04 5.30E-01 4.22E-04 3.97E-01 3.17E-04 
1.07E+00 5.53E-02 7.11E-01 3.69E-02 5.33E-01 2.77E-02 
1.83E+00 3.14E-03 1.22E+00 2.09E-03 9.14E-01 1.57E-03 
6.90E-01 5.46E-01 4.60E-01 3.64E-01 3.45E-01 2.73E-01 
5.02E-01 1.28E-01 3.35E-01 8.51E-02 2.51E-01 6.38E-02 

From Table 2, the discriminant scores generated under 
equal cost of misclassification (i.e. with cost ratio 

(1 | 2) : (2 |1) 1:1c c = ) was able to misclassify 2 and 9 twin 
pair observations from both the monozygotic and the 
dizygotic groups respectively with proportion of correct 
classification as 0.633. The proportion for correct 
classification of twin observations under the cost ratios 
1:2, 1:3 and 1:4 were obtained as 0.70, 0.70 and 0.80 
respectively. Hence as the cost of misclassifying a twin 
observation into dizygotic twin group increases, better and 
maximum separation were achieved since few 
observations were misclassified hence with a recorded 

least error rates. The misclassification cost ratios were 
alternated in the order 2 1:π π  and the effect of the 
misclassification cost on the classification rule was 
assessed. Based on this, the proportion of correct 
classification as shown in Table 2a for the 
misclassification costs 1:2, 1:3, 1:4 were obtained as 0.33, 
0.20 and 0.133. This results indicates that, as we increase 
the cost of allocating a twin observation into monozygotic 
group when it actually belongs to the dizygotic group, the 
proportion of correct classification reduces in that manner, 
hence increases the number of misclassified observations. 
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3.3. Evaluating the Classification Rules of 
QDF and MECM under Various 
Misclassification Costs 

The performance of two classification functions namely 
QDF and MECM were evaluated by estimating their error 
rates as a result of the misclassified observations with CV 
and BER methods. From Table 3, we observed generally 
that, the error estimates obtained using CV error estimator 
was quiet higher than the estimates of that of the Balanced 
Error Rate (BER). However the mean error rates obtained 
for the QDF method under the cost ratios in the order 
c(1|2): c(2|1) recorded low error rates generally as 
compared to when the cost ratios were alternated in the 
order of c(2|1): c(1|2). This means that the discriminant 
functions performs better in the provision of maximum 
separation between the two twin groups when the 
associated misclassification cost assigned to 
misclassifying an observation to population 2 (dizygotic 
group) increases. Also the function performed slightly 
poor when the cost ratios exceeded 1:1 and 1:2 and 
somehow having no effect on the classification rule, under 
both misclassification cost situations. This shows some 
slight conformation with the research work of [1] in which 
they discovered that the misclassification of observation 
from the smallest group increased when the sample size 
ratio exceeded the sampling ratio 1:2 and this resulted in 
increases in error rate and was not corrected by increases 
in the sample size. Also [2] asserted that their three 
derived linear classifiers were insensitive under the cost 
ratios exceeding 1:2. 

Similarly, the classification rule obtained under MECM 
performed slightly better when the cost of misclassifying 
an observation into the dizygotic group was increased 
beyond one in the ratio order c(1|2): c(2|1) than when it 
was alternated.  

Table 3. Error rate estimates for QDF and MECM under unequal 
misclassification cost ratios  

 Error rates Mean Error 
Classification methods CV BER  

QDF    
c(1:2):c(2:1) 

0.266 0.100 0.183 
1:1 

1:2 0.233 0.107 0.170 
1:3 0.166 0.233 0.199 
1:4 0.200 0.295 0.248 

c(2:1):c(1:2)    
1:2 0.233 0.267 0.250 

1:3 0.233 0.166 0.199 
1:4 0.366 0.200 0.283 

MECM    
c(1:2):c(2:1) 

0.333 0.367 0.350 
1:1 

1:2 0.200 0.300 0.250 
1:3 0.200 0.300 0.250 

1:4 0.133 0.200 0.167 
c(2:1):c(1:2)    

1:2 0.500 0.667 0.584 

1:3 0.700 0.800 0.750 
1:4 0.767 0.867 0.817 

In comparing the two methods based on their mean 
error rates in Table 3, we discovered that, the error rate for 
the MECM was appreciably higher ranging from 
approximately 17% to 82%. Whilst QDF recorded least 
error rates ranging from approximately 17%-28% under 
the various misclassification cost ratios. Hence the QDF 
outperformed the MECM in the provision of maximum 
separation between the two twin observations. The results 
conforms to the work of [10] where his derived absolute 
linear discriminant rule performed slightly worse than the 
quadratic discriminant rule as used by [3] and [4].  

4. Conclusion 
Two classification methods were studied; QDF and 

MECM when the assumptions of equal misclassification 
cost were violated. Generally, most of the twin 
observations were correctly classified under the various 
misclassification cost ratios in the order of c(1|2): c(2|1) 
than when it was alternated. Hence increasing the cost of 
misclassifying a dizygotic observation provided maximum 
separation than when the cost of misclassifying an 
observation into the monozygotic twin group was 
increased. Also both classification methods were found to 
be sensitive when the misclassification cost ratios 
exceeded 1:2. Least mean error rates were recorded for the 
QDF based on the misclassified observations whiles the 
MECM recorded high mean error rates, thus 
outperforming the MECM. Hence maximum separation 
between the two twin groups (monozygotic and Dizygotic) 
with equal group vectors assumed were provided by the 
Quadratic Discriminant Function (QDF) classification 
method. 
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