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1. Introduction 
The Nystrom-type methods are popular methods of 

numerical solution of boundary integral equations of 
mathematical diffraction theory [1,2,3,4]. In the countries 
of the former Soviet Union, some variants of Nystrom-
type methods are called methods of discrete vortices [5,6] 
or methods of discrete singularities [7]. In the articles 
[1,2,3,4] and many others (see. [8]) the solution of 
mathematical electrodynamics problems is carried out in 
two stages. 

At the first stage the initial boundary-value problem for 
the Helmholtz equation is reduced to an equivalent system 
of boundary integral equations using the method of 
parametric representation of integral operators [8,9,10]. 
On the second stage the resulting system of integral 
equations are solved numerically by Nystrom-type 
methods. Using this approach the electrodynamics’ 
structures containing not perfectly conducting and 
superconducting elements [12,13,14,15,16] can also be 
investigated numerically.  

In particular, the system of boundary integral equations 
of the problem of electromagnetic waves scattering by a 
system of superconducting band had been taken in the 
article [12]. 

The scheme for numerical solution of this problem and 
the results of numerical experiments had been proposed in 
the article [13]. A rigorous mathematical justification for 
the numerical solution of various electromagnetic 
problems by the method of discrete singularities [6,17,18] 

had existed at the time of publication of the articles 
[12,13]. But the systems of boundary integral equations of 
the problem of electromagnetic waves scattering by a 
system of superconducting band are different from the 
systems of integral equations of other problems that were 
previously solved numerically by the method of discrete 
singularities. 

Due to these differences rigorous mathematical schemes 
for the numerical solution of the problem of electromagnetic 
waves scattering by a system of superconducting band has 
not been given until now.  

In the articles [1,2,16] the integral equations have the 
same properties as the boundary equations of the problem 
of wave scattering by superconducting tapes.  

Therefore, the rigorous justification of schemes for the 
numerical solution of the problem of wave scattering by 
superconducting tapes is of interest. 

In this article a scheme for the numerical solution of 
boundary integral equations of the problem of wave 
scattering by superconducting lattice has been justified. 
Also, the rate of convergence of the approximate solutions 
to the exact solution has been found. 

2. The System of Boundary Integral 
Equations  

The system of boundary integral equations of the 
problem of wave scattering by superconducting tape 
consists of integral equations of two different types. 

The Equations of the first type are singular integral 
equations of the first kind: 
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equations of the second kind: 
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In the equations (1), (3) it is assumed that 
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With the preceding notation (8)-(15), equation (1) with 
the additional condition (2) and equation (3) can be 
written as  

 ,A fϑ =  (16) 

 .Bv g=  (17) 
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Therefore operator А is bijective and bounded. So, by 
the Banach Isomorphism Theorem (see in [20], p.113) the 
operator A has the bounded inverse.  
Proposition 2 

The operator 0
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2 2
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→  is invertible and the 

operator B-1 is bounded. 
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Proof of Proposition 2 
The operator PΛ  is compact as the composition of the 

bounded operator P  and compact operator Λ . This 
follows from the compactness of the operator 
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From the uniqueness of boundary integral equation 
solution (3) follows that  
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Therefore operator B is bijective and bounded. So by 
the Banach Isomorphism Theorem (see in [20], p.113) the 
operator B has the bounded inverse. 

3. The Approximate System of Integral 
Equations and Its Properties 

Let us consider sets of points 
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The functions ϑn(τ) and νn(τ) are sought in the class of 
polynomials of degree n-1. Subsequently, the reasoning 
shows the existence of such solutions. 

We define subspaces Πn,α of spaces L2,α. Elements of 
these subspaces are polynomials of degree n. Also we are 
taking under considerations the spaces  
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We introduce the operators: 
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These estimates are the consequences of Jackson’s 
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The constants M1 and M3 depend only upon µ and γ. 
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follow from the statements of Theorem 1 and 
inequalities (63). By using (36), (37), (64), (65) and 
Propositions 3-4 we complete the proof of Theorem 2. 

4. The Discretization of Approximate 
System of Integral Equations 

As a result of substitution of functions ϑn and νn in the 
left-hand side of equations (26) and (28) we obtain 
polynomials of degree n-2 and, n-1 respectively. The 
right-hand side of equations (26) and (28) are polynomials 
of the same degrees. 

It is well-known that the interpolating polynomial of the 
degree n for a given set of distinct n+1 nods is unique. 
From that follows the statement of Proposition 5. 
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and the problem (35) is equivalent to the equation  
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We take discretization of equations (66)-(68) using the 
interpolation-type quadrature formulas [8,19]: 
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These quadrature formulas are exact for polynomials of 
degree n-1.  

As a result of discretization the system of linear 
algebraic equations in the unknowns 
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been obtained. This system has the form 
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The existence and the uniqueness of the solution of this 
linear algebraic equation system is a consequence of the 
existence and the uniqueness of the solution of system 
(66)-(68) and its equivalence to the problems (34)-(35).  

After solving the system (66)-(68) of linear algebraic 
equations we obtain the solutions of the problems (34)-(35) 
by the formulas:  
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5. Conclusions 
In this article the justification of the method of 

numerical solution of the boundary integral equation 
system (1)-(3) of the problem of wave scattering by 
superconducting tape had been done. This method is one 
of the modifications of method of discrete singularities. 
The convergence of the approximations to the exact 
solution is guaranteed by propositions proved in this 
article. Also, the rate of convergence of the approximate 
solutions to the exact solution had been found. 

6. List of Abbreviations 

[ ]( ), 1,1Cµ γ − - the Hölder space. It consists of functions 
defined on [-1,1], which have the properties: 

1. the functions have continuous derivatives up to order 
µ; 

2. the µ-th derivatives of the functions are Hölder 
continuous with exponent ( ), 0 1 .γ γ< ≤  
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