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Abstract  Demographic and Health Surveys (DHS) collect information on several landmark events retrospectively 
from the life or birth histories and recollections of past events of individuals. Retrospective information of the sort is 
known to be affected by recall errors which result in the misplacement of dates, and the distortion of reports of 
duration. For example, the retrospectively reported ages of weaning for all births that occurred during the three or 
five years preceding the survey are right censored and commonly display marked heaping at durations 12, 18 and 24 
months. The present article at first tries to understand whether the heaping is a result of true behavior and societal 
norms or it is an age dependent outcome. Further, under an additive error model, a kernel-type deconvolving density 
estimator of weaning time is proposed by smoothing the increments of Kaplan-Meier (KM) cumulative distribution 
function. Using simulated data it has been shown that in small and moderately censored samples these estimators 
can reduce the bias substantially. Finally, an empirical illustration is provided using National Family Health Survey 
(NFHS-3, 2005-06) data from India. 
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1. Introduction 
Duration data or time to event data occur in various 

fields of biological, engineering and social sciences. In 
demographic event history analysis, for instance, a 
primary focus has always been the timing and occurrence 
of events and consequences of these events for population 
stock. Data on the timing and date of events are often 
collected retrospectively [11] by interview, usually by 
conducting a survey or census for a wide variety of topics. 
Among others, these topics include marital events 
collected through marital histories in US Panel Study of 
Income Dynamics (PSID) [15], births from fertility 
histories in World Fertility Survey (WFS) [16], post-
partum amenorrhea (the interval after a pregnancy before 
menstruation returns) in the Malaysian Family Life 
Surveys (MFLS) [4], maternal and child health and 
nutrition in Demographic and Health Surveys (DHS) [1,3]. 

The probability distribution of the time till occurrence 
of an event is useful for several important reasons. For instance, 
comparisons of decline in average durations of breastfeeding 
in developing countries and thereby recommending 
breastfeeding promotion high in their health policy agenda 
[18]; comparing the duration and stability of marital and 
non-marital unions in developed countries [6]; understanding 
of the factors which affect the timing and patterns of 
differential progression to the third birth [5,12] etc. Estimation 
of this distribution is an important inferential issue [10]. 

Distributions of event durations or times can be 
estimated from either current-status or retrospective 
history data [8]. Current-status data comprise information 
on whether the milestone has or has not been reached at 
the time of a survey. If the milestone has been reached, we 
have incomplete information on when this occurred. On 
the other hand, we do not know when it will be reached (if 
ever) for those respondents who have not achieved the 
milestone at the time of survey. Current –status data thus 
correspond to the extreme situation where all the survival 
time data are either right-censored or left-censored. While 
these data constraints are restrictive, it is still possible to 
estimate the distribution using parametric models [13,14], 
and to estimate some non-parametric models [10].  

Retrospective data on the other hand, comprise 
information from the respondents that the milestone (1) 
occurred at a certain age or (2) has not yet occurred, i.e. 
right-censored data (age at milestone > age at survey). The 
major attraction of retrospective data is the obvious ease 
of collection and researchers often opt for cross-sectional 
studies in order to save time and cost. Despite their 
advantages, retrospectively reported data also have the 
drawback that people may not accurately report when 
events occur. It is a stylized fact that, when people report 
the timing of events that happened in the distant past, they 
tend to round up or down the year or time since the event 
occurred. Consequently, events tend to be “heaped” on 
multiples of chronological or calendar units. In case of age 
in months at weaning for instance, as we shall see in 
section 2 later, retrospectively reported ages of weaning 
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commonly display marked heaping at durations 6, 12, 18 
and 24 months. 

Various studies concerning the distribution of weaning 
times [8,18] have observed that the current-status 
measures lead to unbiased estimates of the survival 
function for a sample of births that occur during a fixed 
period. The estimates of the survival function so obtained, 
however, often fail to decline monotonically and are 
subject to larger variations. Retrospective history data are 
to be preferred because the sample size used to estimate 
the hazard rate at each duration is larger than is the case 
for current- status information, so that sampling variation 
is lower. If, however, the accuracy of the retrospective 
information is suspect, then the current-status data may be 
preferable despite the higher sampling variability. Thus, 
the method of analysis must be chosen by taking into 
account knowledge of the accuracy of a specific data set 
and an assessment of the extent of misreporting of 
duration information. 

While dealing with the retrospectively reported right 
censored duration data, the present article proposes to 
examine whether recall errors and heaping of ages is 
universal. Whether such heaping is genuine for some 
obvious reasons such as societal norms or it is dependent 
on time since occurrence of the event. The main purpose 
of this article is to obtain probability density function of 
the right censored duration variable from the data 
contaminated with recall errors. The paper is organized as 
follows. In section 2, I discuss the sources of data used in 
the present work and some of the methodological issues in 
analyzing the information on breastfeeding from large 
scale health surveys. Kaplan-Meier and Nelson-Aalen 
estimates of survival functions are obtained in section 3 
using data from the last two National Family Health 
Surveys for six north-eastern states in India. Following 
this, I propose a kernel-type deconvolving density 
estimator [2,19] of durations of breastfeeding under non-
negligible additive type recall error and has been applied 
to the data mentioned above. 

2. Data on Weaning Time 
Demographic and Health Surveys (DHS) collect 

information on timing and age of several landmark events 
by a representative cross-sectional sample of ever married 
women and their children retrospectively from the life or 
birth histories and recollections of past events. For 
instance, respondent mothers are asked the following 
questions for each of her children born during the last 
three/five years before the survey: 

a. Did you ever breastfed the child? 
b. Are you still breastfeeding the child? 
c. For how many months did you breastfeed the child? 
The dichotomous answers (“yes” or “no”) from the first 

two questions are known as current-status data. In addition, 
if respondents answer the age at which the child is weaned 
when the answer for (b) is a “no”, it is called retrospective 
data. When the child is still breastfeeding at the time of 
survey, the number of months the child already breastfed 
is taken as a right censored observation for the weaning 
time. 

For the present analysis, the information on 
breastfeeding in eight north-eastern states of India: 

Arunachal Pradesh, Assam, Manipur, Meghalaya, Mizoram, 
Nagaland, Sikkim and Tripura have been pooled based on 
National Family Health Survey (NFHS-3) [7]. The NFHS-
3, conducted during December 2005 to August 2006, 
gathered information on 21,843 ever-married women aged 
15 – 49. Information on breastfeeding was collected for 
the children of interviewed women born in the five years 
preceding NFHS-3. For any given woman, a maximum of 
three births were included in the analysis of NFHS-3. For 
a total of 7600 children information on breastfeeding 
duration was available, of whom 3759 (49.5%) children 
were still breast feeding at the date of interview or were 
breastfed until died. The rest of the children (50.5%) 
completed their breast feeding. The duration of 
breastfeeding for the births who were still breastfeeding 
was calculated as the difference between their birth dates 
and the date of the survey. Table 1 below, reports the state 
wise distribution of number of children by the status of 
completeness of information. 

Table 1. Statewise Distribution of Sample Data 

State 
No. of 
House 
holds 

No. of 
women aged 

15-49 
interviewed 

No. of Children 
still 

breast 
feeding 

weaned Total 

Arunachal 
Pradesh 1526 1647 365 321 686 

Assam 3437 3840 728 487 1215 
Manipur 3498 4512 983 646 1629 
Meghalaya 1900 2124 261 390 651 

Mizoram 1513 1791 272 459 731 
Nagaland 3866 3896 586 1070 1656 

Sikkim 1902 2127 235 255 490 
Tripura 1574 1906 329 213 542 

Total 19216 21843 3759 3841 7600 

2.1. Recall Error and Its Characteristics 
As mentioned earlier, retrospectively reported data have 

the drawback that people may not accurately report when 
events occur [15,18]. It is a stylized fact that, when people 
report the timing of events that happened in the distant 
past, they tend to round up or down the year or time since 
the event occurred. Consequently, events tend to be 
“heaped” on multiples of chronological or calendar units 
(e.g. on units of five or ten for data that naturally occur 
over years). In case of retrospectively reported ages of 
weaning, the data commonly display marked heaping at 
durations 6, 12, 18 and 24 months. We illustrate this by 
plotting the proportion of births for both the status 
category: children who are weaned and children who are 
still breastfed against their age in months in Figure 1. 

Figure 1 demonstrates that heaping of ages at weaning 
is pronounced only for those children who are already 
weaned at the time of interview. At the same time, we also 
have the following hypothesis to be validated from the 
sample at hand: 

H01: Heaping of weaning time at multiple of 6 months 
is genuine and it is due to the existing social norms. 

Secondly, people are notoriously poor at recalling 
events and the timing of events [11]. In general, more 
errors occur the greater is the time-lag between an event 
and its recall. Thus, the second hypothesis to be validated 
is as following: 
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H02: For the weaned children, the greater is the time lag between weaning and its recall, the higher is the heaping. 

 

Figure 1. Histograms of Weaning durations for weaned and currently breastfeeding children 

2.1.1. Is Heaping a Result of True Behaviour? 
If heaping is resulted from a true behavior, such as, 

social norms of weaning at ages multiple of 6 months, 
denoted as T6, we would then find (i) substantially more 
masses at T6 than at T6-1 or T6 + 1, and (ii) significant 
differences between the masses at T6-1 and T6+1 months. 
Table 2 below provides the probabilities of weaning at 
ages multiple of 6 months along with its preceding and 
succeeding values. Also, the p-values of testing the 
hypothesis: 

 I[T6 1] I[T6 1] 1 I[T6 1] I[T6 1]: p  p vs H : p p .− + − += ≠0H  

Table 2. Probability of weaning at ages multiple of 6 months 
T6 PI[T6] PI[T6-1] PI[T6+1] p-value 

6 p6 =0.0058 p5 =0.0034 p7 =0.0069 0.1 

12 p12 =0.0855 p11 =0.0081 p13 =0.0184 0.01 

18 p18 =0.0808 p17 =0.0113 p19 =0.0103 0.84 

24 p24 =0.0955 p23 =0.0036 p25 =0.0076 0.42 

Results are indicative of the fact that there is no strong 
evidence against the equality of proportions of weaning at 
ages T6-1 and T6+1. Moreover, if most of the children are 
weaned at ages T6 i.e. multiple of 6 months, we should 
have observed pI[T6-1] > pI[T6+1]; which has not happened 
for the present sample. 

2.1.2. Age Dependent Heaping of Weaning Times  
As earlier, if T6 denote the age that is a multiple of 6 

months, let I[T6] be an indicator of the reported weaning 
age is a multiple of 6 months; so that, I[T6] = 1, if the 
reported weaning time is a multiple of 6 months and 0 
otherwise. Our objective here is to test the hypothesis H02 

as stated earlier. To formally carry this out, we fit the 
logistic regression model 

 [ 6]
0 1

[ 6]
log

1
I T

I T

P
currentAge

P
β β

 
= + ×  − 

 

where ‘currentAge’ is the proxy covariate for the time lag 
between the timing of weaning and the date of interview at 
recall of the event. The results of the test 

 02 1 12 1: 0 : 0H Hβ β= ≠  

is provided in Table 3. We find that the effect of this 
proxy covariate is highly significant. 

Table 3. Estimate of the effect recall age on heaping 
Coefficient Estimate Std Error p-value 
Intercept -1.897 0.098 0.000 

Age 0.047 0.004 0.000 

3. Density Function Estimators 
We consider non-parametric procedure for estimating 

the probability S(x) of surviving to time x, using a random 
sample X1, X2, …, Xn of death times from a distribution 
F(x). The Xi are censored on the right by random variables 
Ci, so that one observes only min(Xi, Ci) = Yi, i=1,…..,n. 
The Ci’s constitute a random sample, drawn independently 
of the Xi, from a distribution G(c). We let Y(1) ≤ ….≤ Y(n) 
denote the ordered observations, and let 

( )( ) ( )i i iI X Cδ = ≤  be an indicator for the event that Y(i) 

is uncensored. Kaplan and Meier [9] developed the 
nonparametric estimator of S(x) as 
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where ri = # alive at time Y(i)-, di = # died at time Y(i). 
Greenwood’s formula for the variance of the survival 
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2

( )

( )

ˆ ˆˆ( ( )) ( ( ))
( )

ˆˆ(ln ( ))
( )

i

i i iY xi

i

i i iY ti

d
V S x S x

r r d

d
or V S x

r r d

≤

≤

=
−

=
−

∑

∑
 (3.2) 

The endpoints of a 100(1-α)% confidence interval for 
S(x) on the cumulative hazard or log-survival scale is 
given by 

 1 /2
ˆ ˆˆexp(ln ( ) (ln ( )))S x z se S xα−±  (3.3) 

Figure 2 shows the plots of Kaplan-Meier and Nelson-
Aalen estimates of survival function and the jumps in 
these estimates may be observed at times multiple of 6 
months as discussed earlier. 

 

Figure 2. (a) Kaplan-Meier Survival Curve with 95% confidence band; 
(b) Comparison of K-M and Nelson –Aalen Estimates of Survival 

A kernel density estimator of fX can be motivated 
through the Kaplan-Meier estimator of the distribution 
function FX, which is given by 
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The kernel estimator of fY(x) induced by ˆKMF  is then 
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where sj is the size of the jump of ˆKMF  at Y(j). 
We now assume that the observable times Y1, 

Y2, ……,Yn are contaminated with non-negligible recall 
error such that 

 , 1,......i i iW Y Z i n= + =  

and, for each i, Zi is a random variable that is independent 
of Yi and has known density fZ, which we call the error 
density. If we apply the ordinary kernel estimate to the 
W1, …, Wn then we will obtain a consistent estimate of 
convolution 

 W Y Zf f f= ∗  

rather than fY which we aim to estimate. Estimation of fY 
requires that we take into account the fact that it is 
convolved with fZ to give the density of the error 
contaminated data. Thus the estimation of fY is a problem 
of deconvolution type. A kernel type solution is obtained 
by using Fourier transform (or characteristic function) 
properties and noting that 

 ( ) ( ) ( )f f fW Y Zt t tϕ ϕ ϕ=  

where gφ is used to denote the c.f. of a density g. 
According to the Fourier inversion theorem, the target 
density can be written as 
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provided ( ) 0 .fZ t tϕ ≠ ∀  An estimate of fY(y) is 
obtained by replacing fW by its kernel estimator 
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which is the deconvolving kernel density estimator [17]. It 
can be shown [19] that the deconvolving kernel density 
estimator of the target density is 

 ( ) 1

1

ˆ , ( ) ,
n

Z i
Y

i

y W
f y h nh K h

h
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=

− =  
 

∑  (3.5) 

where 

 ( ) ( ) { }1, 2 ( ) ( / )Z ity
K fZK u h e t t h dtπ ϕ ϕ− −= ∫  (3.6) 

Kϕ  being the characteristic function of the kernel K used 

in estimating ˆ .Wf  Thus, the kernel ( ),ZK h⋅ is to be used 
for estimating fY instead of K. This effective kernel differs 
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from K in that its shape depends on the bandwidth. We 
now use ( ),ZK h⋅  of (3.6) to rewrite (3.4) as 

 ( ) ( )1ˆ , , .jZ
Y j

j

x Y
f x h h K h s

h
− − 

=   
 

∑  (3.7) 

3.1. Simulation Study of Small sample Bias 
We generate data through simulation to examine the 

small sample bias of the estimator ˆ ( , )Yf x h  in (3.7). The 

effective kernel is obtained for two different error density 
functions. When the error density is Laplacian 

 ( ) ( ) 12 exp( ) , ; 0Zf x x xσ σ σ−= − −∞ < < ∞ >  

and that K(x) = Φ(x), the standard normal kernel, the 
effective kernel for deconvolution of Laplacian error is 

 ( ) ( ) ( ){ }2 2, ( ) 1 1ZK x h x x xσ= Φ + −  (3.1.1) 

Table 4. Small sample Bias B0, BL and BN for three different sample sizes and three different censoring percentages at selected time points 

n 1λ  2λ  π Time Bias 
B0 BL BN 

30 8 - 0  h = 1.8 h = 1.6, σ = 0.8 h = 2.2, σ = 0.9 
    6 -0.009 -0.003 -0.006 
    12 -0.002 0.000 -0.001 
    18 -0.002 -0.001 -0.002 
    24 0.000 0.000 -0.001 

30 12 36 27  h = 2.0 h = 2.0, σ = 0.7 h = 2.5, σ = 1.0 
    6 0.000 0.001 0.001 
    12 -0.016 -0.009 -0.010 
    18 0.009 0.013 0.012 
    24 -0.013 -0.010 -0.010 
    30 0.000 0.000 0.000 
    36 0.000 0.000 0.000 

30 14 12 53  h = 2.5 h = 2.5, σ = 1.0 h = 3.0, σ = 1.0 
    6 0.015 0.014 0.014 
    12 -0.025 -0.017 -0.020 
    18 -0.003 -0.003 -0.003 
    24 -0.001 -0.002 -0.002 

60 18 - 0  h = 3.0 h = 3.0, σ = 1.0 h = 3.5, σ = 1.0 
    6 0.006 0.005 0.005 
    12 -0.009 -0.006 -0.006 
    18 0.002 0.000 0.000 
    24 -0.002 -0.001 -0.001 
    30 0.002 0.001 0.001 
    36 0.000 0.000 0.000 

60 18 18 43  h = 2.5 h = 2.5, σ = 1.0 h = 3.5, σ = 1.0 
    6 0.012 0.012 0.012 
    12 -0.012 -0.006 -0.008 
    18 0.001 -0.001 -0.001 
    24 -0.005 -0.003 -0.004 
    30 0.002 0.003 0.003 

60 22 12 77  h = 2.0 h = 2.0, σ = 1.0 h = 2.5, σ = 1.0 
    6 -0.002 0.005 0.001 
    12 -0.005 0.001 -0.002 
    18 0.001 -0.001 0.000 
    24 0.002 -0.001 0.000 
    30 0.000 0.000 0.000 

100 8 - 0  h = 2.0 h = 2.0, σ = 0.8 h = 2.5, σ = 1.0 
    6 -0.002 0.001 0.001 
    12 0.000 0.000 0.000 
    18 -0.004 -0.003 -0.003 
    24 -0.001 -0.002 -0.002 
    30 -0.003 -0.001 -0.001 
    36 0.001 0.001 0.001 

100 18 22 39  h = 2.0 h = 2.0, σ = 1.0 h = 2.5, σ = 1.0 
    6 0.003 0.003 0.003 
    12 -0.001 0.003 0.004 
    18 0.001 0.001 0.000 
    24 -0.005 -0.003 -0.004 
    30 -0.001 0.000 0.000 

100 22 18 60  h = 2.5 h = 2.5, σ = 1.0 h = 2.5, σ = 1.0 
    6 -0.002 0.002 0.000 
    12 0.005 0.004 0.004 
    18 0.001 0.001 0.001 
    24 0.003 0.004 0.003 
    30 0.000 0.000 0.000 
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Supposing instead that the error variable has a N(0,σ2) 
distribution, the effective kernel would be 
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Further, we use ( ) 11 exp( / )XF x x λ= − −  and 

( ) 21 exp( / )CG c c λ= − − . The choices of pair of values 
for 1 2( , )λ λ  give rise to desired censoring proportion to 
indicate no censoring, moderate censoring and heavy 
censoring. Observations have been simulated from FX and 
GC for three different sample sizes n=30, 60, 100. The 
pulling mechanism to contaminate the simulated data is 
defined through the following function 

 

6, 4 9
12, 9 15

( ) 18, 15 20
24, 21 27
30, 28 32

y
y

f y y
y
y

≤ <
 ≤ <= ≤ ≤
 ≤ ≤

≤ ≤

 

Table 4 presents the results showing bias at selected 
time points. We denote by B0, BL and BN the bias due to 
the density estimate ˆ ( )Yf x in (3.4) without accounting for 
recall error, the bias due to the Laplacian error corrected 
density estimate and the bias due to the normal error 
corrected density estimate respectively. Table 4 illustrates 
the following general findings: (i) All estimators are fairly 
unbiased. (ii) The kernel density estimator ˆ ( )Yf x by 
smoothing the Kaplan-Meier distribution function. 

3.2. Density Estimate from Duration of 
Breastfeeding Data 

We now obtain smooth density estimates from duration 
of breastfeeding data of NFHS-3. Figure 3(a) provides 
smooth estimates of density of breastfeeding duration for 
two different choices of bandwidths (h = 2.5, 4.5). Figure 3(b) 
compares (i) smoothed estimate from Kaplan-Meier 
distribution function, (ii) estimate using Laplacian error 
correction, and (iii) estimate using normal error correction. 
It is well observed from Figure 3(a) that for a smaller 
choice of smoothing parameter (bandwidth = 2.5), the 
estimate of density is marked by the peaks at ages 12, 24, 
36, and 48 months. A higher value (bandwidth = 4.5) 
however, is capable of smoothing the peaks which are 
thought to be not genuine. The right skewness of the 
distribution of weaning time is evident from the plots. 
This is quite reasonable as only few children are breastfed 
for longer durations. The median age at weaning is 
estimated to be 24 months with a 95% confidence interval 
(23.9, 24.1). Overall, an estimated proportion of about 
60% children were continued their breastfeeding till the 
age of 24 months in the north eastern states of India. 

The plots in Figure 3(b) show that there has been a 
locational shift in the density curve after the error 
correction. Both normal and laplacian error models try to 
shift the error corrected density towards the left. However, 
there is hardly any difference in the error corrected density 

due to the selection of the normal and laplacian error 
models. 

The error corrected smooth density sharply rises 
reaching its maximum approximately at 12 months, 
followed by a plateau till 24 months and then trails off 
gradually. It describes well the situation in the whole 
population that more than three fourth of the children 
continue their breastfeeding till the age of 12 months. The 
long right tail is a result of the few subjects who had long 
breastfeeding experiences. 

 

Figure 3. (a) Heaped and Smooth Density of Weaning Time; (b) Error 
Corrected Densit 

4. Concluding Remarks 
In this paper, a well-recognized feature of 

retrospectively collected right censored duration data on 
events that occur in the distant past - heaping on some 
natural time unit has been investigated. It is demonstrated 
that such heaping is pronounced for the subjects with 
completed outcome. Two important hypotheses characterizing 
this feature (1) genuineness and (2) time dependence has 
been validated. It has been observed that there is no 
evidence of heaping is genuine due to social norm and 
practice. Also, the pattern is age dependent i.e. the greater 
is the time lag of reporting, the more the heaping is. 

Having verified the presence of non-negligible recall 
error in the data we have computed smooth error corrected 
density under an additive error model. The kernel 
estimator of density function for breastfeeding duration 
proposed in this article use the idea of convolving a kernel 
weight with the density estimates induced by the natural 
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estimate of the cumulative distribution function. The 
estimator has attractive mean squared error property [19] 
and is pointwise consistent [2].  

For large samples, the effect of bias correction has been 
found to be little, subject to the appropriate selection of 
bandwidth parameter. One can make judicious use of any 
of the several hi-tech bandwidth selectors to implement 
the proposed estimator.  

The methodology proposed in this article is of utmost 
practical use for the nations [18], where government 
intervention programmes are under process to increase the 
percentage of exclusive breastfeeders till six months and it 
is necessary to evaluate the efficacy of such programmes 
through bias free estimates of proportion of weaned cases. 
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