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1. Introduction 

Let na∑  be a given infinite series with the sequence 

of partial sums { }ns . Let{ }np  be a sequence of positive 
real numbers such that  
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The sequence –to-sequence transformation  
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defines the sequence { }nt  of the ( ), nN p  -mean of the 

sequence { }ns  generated by the sequence of coefficient 

{ }np . If 

 ,nt s as n→ →∞  (1.3) 

then the series na∑  is said to be ( ), nN p  summable to s. 

The conditions for regularity of ( ), nN p - summability 

are easily seen to be 
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The sequence to-sequence transformation, [1]  
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defines the sequence { }nT  of the ( ),E q  mean of the 

sequence { }ns . If 

 ,nT s as n→ →∞  (1.6) 

then the series na∑  is said to be ( ),E q  summable to s. 

Clearly ( ),E q  method is regular. Further, the ( ),E q  

transform of the ( ), nN p  transform of { }ns  is defined by  
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If  

 ,n s as nτ → →∞  (1.8) 

then na∑  is said to be ( )( ), , nE q N p -summable to s. 

Let ( )f t  be a periodic function with period 2π and 
integrable in the sense of Lebesgue over (-π,π). Then the 
Fourier series associated with f  at any point x is defined 
by  



353 American Journal of Applied Mathematics and Statistics  

 ( )0

1 0
( ) ~ cos sin ( )

2 n n n
n n

a
f x a nx b nx A x

∞ ∞

= =
+ + ≡∑ ∑ (1.9) 

and the conjugate series of the Fourier series (1.9) is  
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Let ( );ns f x  be the n-th partial sum of (1.10). The 
L∞ -norm of a function :f R R→  is defined by  

 { }sup ( ) :f f x x R∞ = ∈  (1.11) 

and the Lυ -norm is defined by  
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The degree of approximation of a function :f R R→  
by a trigonometric polynomial ( )nP x  of degree n under 
norm . ∞  is defined by [6] 

 { }sup ( ) ( ) :n nP f p x f x x R∞− = − ∈  (1.13) 

and the degree of approximation ( )nE f  of a function 
f Lυ∈  is given by  

 ( ) minn n
Pn

E f P f υ= −  (1.14) 

This method of approximation is called Trigonometric 
Fourier approximation. 

A function ( )f x Lipα∈  if  

 ( )( ) ( ) ,0 1, 0f x t f x O t tα α+ − = < ≤ >  (1.15) 

and ( ) ( ),f x Lip rα∈ , for 0 2x π≤ ≤ , if 
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For a given positive increasing function ( )tξ , the 

function ( ) ( )( ),f x Lip t rξ∈ , if  
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For a given positive increasing function ( )tξ  and an 

integer 1p > the function ( ) ( )( ),pf x W L tξ∈ , if  
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We use the following notation throughout this paper: 

 { }1( ) ( ) ( ) ,
2

t f x t f x tψ = + − −  (1.19) 

and 
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Further, the method ( )( ), , nE q N p  is assumed to be 

regular throughout the paper.  

2. Known Theorems 
Dealing with the degree of approximation by the 

product, Misra et al [2] proved the following theorem 
using ( )( ), , nE q N p  mean of conjugate series of Fourier 

series: 

2.1. Theorem 
If f  is a 2π −  periodic function of class Lipα , then 

degree of approximation by the product ( )( ), , nE q N p  

summability means of the conjugate series (1.10) of the 
Fourier series (1.9) is given by 
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 where nτ  is as 

defined in (1.7).  
Recently Misra et al [3] established a theorem on 

degree of approximation by the product mean 
( )( ), , nE q N p  of the conjugate series of Fourier series of 

a function of class ( ),Lip rα . They prove:  

2.2. Theorem 
If f  is a 2π −  periodic function of class ( ),Lip rα , 

then degree of approximation by the product 
( )( ), , nE q N p  means of the conjugate series (1.10) of the 

Fourier series (1.9) is given by 
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, where nτ  is 

as defined in (1.7). 
Extending to the function of the class ( )( ),Lip t rξ , 

very recently Misra et al [4] have proved a theorem on 
degree of approximation by the product mean 
( )( ), , nE q N p  of the conjugate series of the Fourier 

series of a function of class ( )( ),Lip t rξ . They prove:  
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2.3. Theorem 
Let ( )tξ  be a positive increasing function and f  a 

2π −  Periodic function of the class 

( )( ), , 1, 0Lip t r r tξ ≥ > . Then degree of approximation 

by the product ( )( ), , nE q N p  summability means on the 

conjugate series (1.10) of the Fourier series (1.9) is given 

by ( )
1 11 , 1.

1
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n
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  − = + ≥  +  
, where nτ  is 

as defined in (1.7). 
Further extending to the class of functions 

( )( ), , 1pW L t pξ > , in the present paper, we establish the 

following theorem: 

3. Main result 

3.1. Theorem 
Let ( )tξ  be a positive increasing function and f  a 

2π −  Periodic function of the class 

( )( ), , 1, 0pW L t p tξ > > . Then degree of approximation 

by the product ( )( ), , nE q N p  summability means on the 

conjugate series (1.10) of the Fourier series (1.9) is given 
by  
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and 
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hold uniformly in x  with 1 1 1
r s
+ = , where δ is an 

arbitrary number such that ( )1 1 0s δ− − >  and nτ  is as 
defined in (1.7). 

4. Required Lemmas 
We require the following Lemmas to prove the theorem. 
LEMMA 4.1: 
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Proof:  
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, we have sin nt ≤ n sin t then  
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This proves the lemma.  
LEMMA 4.2: 
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This proves the lemma. 

5. Proof of Main Theorem 
Using Riemann–Lebesgue theorem, for the n-th partial 

sum ( );ns f x  of the conjugate Fourier series (1.10) 
of ( )f x and following Titchmarch [5], we have 
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Using (1.2), the ( ), nN p  transform of ( );ns f x  is 
given by  
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Denoting the ( )( ), , nE q N p  transform of ( );ns f x  by 

nτ , we have  
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where 1 1 1
r s
+ = , using Hölder’s inequality 
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Next  
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since ( )tξ is a positive increasing function, so is 

( ) ( )1/ / 1/y yξ . Using second mean value theorem we 
get  
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Then from (5.2) and (5.3), we have  
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This completes the proof of the theorem.  

6. Corollaries 
Following corollaries can be derived from the main 

theorem. 
Corollary 6.1: The degree of approximation of a 

function f  belonging to the class 

( ), ,0 1, 1Lip r rα α< ≤ ≥  is given by 
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− = + 

 
 

Proof: The corollary follows by putting 0β =  and 

( )t tαξ =  in the main theorem. 
Corollary 6.2: The degree of approximation of a 

function f  belonging to the class ( ) ,0 1Lip α α< ≤  is 
given by 

 ( )( )1 .n f O n ατ −
∞− = +  

Proof: The corollary follows by letting r →∞  in 
corollary 6.1. 
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