Approximation of Conjugate Series of the Fourier Series of a Function of Class $\mathbf{W}\left(\mathbf{L}^{\mathrm{p}}, \xi(\mathbf{t})\right)$ by Product Means

M. Misra ${ }^{1}$, B. Majhi ${ }^{2}$, B.P. Padhy ${ }^{3}$, P. Samanta ${ }^{4}$, U.K. Misra ${ }^{5}{ }^{\text {, }}$,
${ }^{1}$ Department of Mathematics Binayak Acharya College, Berhampur, Odisha, India
${ }^{2}$ Department of Mathematics GIET, Gunupur, Odisha, India
${ }^{3}$ Department of Mathematics Roland Institute of Technology, Golanthara, Odisha, India
${ }^{4}$ Department of Mathematics Berhampur University, Berhampur, Odisha, India
${ }^{5}$ Department of Mathematics National Institute of Science and Technology Pallur Hills, Golanthara, Odisha, India
*Corresponding author: umakanta_misra@yahoo.com

Received September 27, 2014; Revised October 20, 2014; Accepted October 29, 2014

Abstract

In this paper a theorem on degree of approximation of a function $f \in W\left(L^{p}, \xi(t)\right)$ by product summability $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series of Fourier series associated with f has been established.

Keywords: degree of approximation, $W\left(L^{p}, \xi(t)\right)$ class of function, (E, q) mean, $\left(\bar{N}, p_{n}\right)$ mean, $(E, q)\left(\bar{N}, p_{n}\right)$ product mean, Fourier series, conjugate series, Lebesgue integral.

Cite This Article: M. Misra, B. Majhi, B.P. Padhy, P. Samanta, and U.K. Misra, "Approximation of Conjugate Series of the Fourier Series of a Function of Class W($\left.\mathrm{L}^{\mathrm{p}}, \xi(\mathrm{t})\right)$ by Product Means." American Journal of Applied Mathematics and Statistics, vol. 2, no. 5 (2014): 352-356. doi: 10.12691/ajams-2-5-9.

1. Introduction

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} p_{v} \rightarrow \infty, n \rightarrow \infty, P_{-i}=p_{-i}=0, i \geq 0 \tag{1.1}
\end{equation*}
$$

The sequence -to-sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{v=0}^{n} p_{v} s_{v} \tag{1.2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of the $\left(\bar{N}, p_{n}\right)$-mean of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficient $\left\{p_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s, \text { as } \quad n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be $\left(\bar{N}, p_{n}\right)$ summable to s.
The conditions for regularity of $\left(\bar{N}, p_{n}\right)$ - summability are easily seen to be

$$
\left\{\begin{array}{l}
\text { (i) } P_{n} \rightarrow \infty \text {, as } n \rightarrow \infty, \\
\text { (ii) } \sum_{i=0}^{n} p_{i} \leq C\left|P_{n}\right| \text {, as } n \rightarrow \infty . \tag{1.4}
\end{array}\right.
$$

The sequence to-sequence transformation, [1]

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} s_{v} \tag{1.5}
\end{equation*}
$$

defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{s_{n}\right\}$. If

$$
\begin{equation*}
T_{n} \rightarrow s, \text { as } \quad n \rightarrow \infty \tag{1.6}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) summable to s.
Clearly (E, q) method is regular. Further, the (E, q) transform of the $\left(\bar{N}, p_{n}\right)$ transform of $\left\{s_{n}\right\}$ is defined by

$$
\begin{align*}
& \tau_{n}=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} t_{k} \tag{1.7}\\
& =\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} s_{v}\right\}
\end{align*}
$$

If

$$
\begin{equation*}
\tau_{n} \rightarrow s, \text { as } \quad n \rightarrow \infty \tag{1.8}
\end{equation*}
$$

then $\sum a_{n}$ is said to be $(E, q)\left(\bar{N}, p_{n}\right)$-summable to s.
Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesgue over $(-\pi, \pi)$. Then the Fourier series associated with f at any point x is defined by

$$
f(x) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \equiv \sum_{n=0}^{\infty} A_{n}(x)
$$

and the conjugate series of the Fourier series (1.9) is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right) \equiv \sum_{n=1}^{\infty} B_{n}(x) \tag{1.10}
\end{equation*}
$$

Let $\bar{s}_{n}(f ; x)$ be the n-th partial sum of (1.10). The L_{∞}-norm of a function $f: R \rightarrow R$ is defined by

$$
\begin{equation*}
\|f\|_{\infty}=\sup \{|f(x)|: x \in R\} \tag{1.11}
\end{equation*}
$$

and the L_{v}-norm is defined by

$$
\begin{equation*}
\|f\|_{v}=\left(\int_{0}^{2 \pi}|f(x)|^{v}\right)^{\frac{1}{v}}, v \geq 1 \tag{1.12}
\end{equation*}
$$

The degree of approximation of a function $f: R \rightarrow R$ by a trigonometric polynomial $P_{n}(x)$ of degree n under norm $\|\cdot\|_{\infty}$ is defined by [6]

$$
\begin{equation*}
\left\|P_{n}-f\right\|_{\infty}=\sup \left\{\left|p_{n}(x)-f(x)\right|: x \in R\right\} \tag{1.13}
\end{equation*}
$$

and the degree of approximation $E_{n}(f)$ of a function $f \in L_{v}$ is given by

$$
\begin{equation*}
E_{n}(f)=\min _{P_{n}}\left\|P_{n}-f\right\|_{v} \tag{1.14}
\end{equation*}
$$

This method of approximation is called Trigonometric Fourier approximation.

A function $f(x) \in \operatorname{Lip} \alpha$ if

$$
\begin{equation*}
|f(x+t)-f(x)|=O\left(|t|^{\alpha}\right), 0<\alpha \leq 1, t>0 \tag{1.15}
\end{equation*}
$$

and $f(x) \in \operatorname{Lip}(\alpha, r)$, for $0 \leq x \leq 2 \pi$, if

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O\left(|t|^{\alpha}\right) \tag{1.16}\\
& 0<\alpha \leq 1, r \geq 1, t>0
\end{align*}
$$

For a given positive increasing function $\xi(t)$, the function $f(x) \in \operatorname{Lip}(\xi(t), r)$, if

$$
\begin{align*}
& \left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{r} d x\right)^{\frac{1}{r}}=O(\xi(t)) \tag{1.17}\\
& r \geq 1, t>0
\end{align*}
$$

For a given positive increasing function $\xi(t)$ and an integer $p>1$ the function $f(x) \in W\left(L^{p}, \xi(t)\right)$, if

$$
\begin{equation*}
\left(\int_{0}^{2 \pi}|f(x+t)-f(x)|^{p}(\sin x)^{p \beta} d x\right)^{\frac{1}{p}}=O(\xi(t)) \tag{1.18}
\end{equation*}
$$

$\beta \geq 0$.

We use the following notation throughout this paper:

$$
\begin{equation*}
\psi(t)=\frac{1}{2}\{f(x+t)-f(x-t)\} \tag{1.19}
\end{equation*}
$$

and

$$
\begin{align*}
& \bar{K}_{n}(t)=\frac{1}{\pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} \\
& q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\} \tag{1.20}
\end{align*}
$$

Further, the method $(E, q)\left(\bar{N}, p_{n}\right)$ is assumed to be regular throughout the paper.

2. Known Theorems

Dealing with the degree of approximation by the product, Misra et al [2] proved the following theorem using $(E, q)\left(\bar{N}, p_{n}\right)$ mean of conjugate series of Fourier series:

2.1. Theorem

If f is a 2π - periodic function of class Lip α, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means of the conjugate series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha}}\right), 0<\alpha<1 \quad$ where τ_{n} is as defined in (1.7).
Recently Misra et al [3] established a theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series of Fourier series of a function of class Lip (α, r). They prove:

2.2. Theorem

If f is a 2π - periodic function of class $\operatorname{Lip}(\alpha, r)$, then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ means of the conjugate series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left(\frac{1}{(n+1)^{\alpha+\frac{1}{r}}}\right), 0<\alpha<1, r \geq 1$, where τ_{n} is as defined in (1.7).

Extending to the function of the class $\operatorname{Lip}(\xi(t), r)$, very recently Misra et al [4] have proved a theorem on degree of approximation by the product mean $(E, q)\left(\bar{N}, p_{n}\right)$ of the conjugate series of the Fourier series of a function of class $\operatorname{Lip}(\xi(t), r)$. They prove:

2.3. Theorem

Let $\xi(t)$ be a positive increasing function and f a 2π - Periodic function of the class $\operatorname{Lip}(\xi(t), r), r \geq 1, t>0$. Then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means on the conjugate series (1.10) of the Fourier series (1.9) is given by $\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1$., where τ_{n} is as defined in (1.7).

Further extending to the class of functions $W\left(L^{p}, \xi(t)\right), p>1$, in the present paper, we establish the following theorem:

3. Main result

3.1. Theorem

Let $\xi(t)$ be a positive increasing function and f a $2 \pi-\quad$ Periodic function of the class $W\left(L^{p}, \xi(t)\right), p>1, t>0$. Then degree of approximation by the product $(E, q)\left(\bar{N}, p_{n}\right)$ summability means on the conjugate series (1.10) of the Fourier series (1.9) is given by

$$
\begin{equation*}
\left\|\tau_{n}-f\right\|_{r}=O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), r \geq 1 \tag{3.1.1}
\end{equation*}
$$

provided

$$
\begin{equation*}
\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{t \psi(t) \sin ^{\beta} t}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}=O\left(\frac{1}{n+1}\right) \tag{3.1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{t^{-\delta}|\psi(t)|}{\xi(t)}\right)^{r} d t\right)^{\frac{1}{r}}=O\left((n+1)^{\delta}\right) \tag{3.1.3}
\end{equation*}
$$

hold uniformly in x with $\frac{1}{r}+\frac{1}{s}=1$, where δ is an arbitrary number such that $s(1-\delta)-1>0$ and τ_{n} is as defined in (1.7).

4. Required Lemmas

We require the following Lemmas to prove the theorem. LEMMA 4.1:

$$
\left|\bar{K}_{n}(t)\right|=O(n) \quad, 0 \leq t \leq \frac{1}{n+1}
$$

For $0 \leq t \leq \frac{1}{n+1}$, we have $\sin n t \leq n \sin t$ then

$$
\begin{aligned}
& \left|\bar{K}_{n}(t)\right|=\frac{1}{\pi(1+q)^{n}} \left\lvert\,\left\{\begin{array}{l}
\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \\
\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}
\end{array}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k} q^{n-k} \\
& \leq \frac{1}{\pi(1+q)^{n}}\left\{\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\left(\frac{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)}{\sin \frac{t}{2}}+\sin v t\right)\right\}\right. \\
& \leq \frac{1}{\pi(1+q)^{n}} \left\lvert\, \begin{array}{l}
\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \\
\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\left(O\left(2 \sin v \frac{t}{2} \sin v \frac{t}{2}\right)+v \sin t\right)\right\}
\end{array}\right. \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}(O(v)+O(v))\right\}\right| \\
& \leq \frac{1}{\pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \frac{O(k)}{P_{k}} \sum_{v=0}^{k} p_{v}\right| \\
& =O(n)
\end{aligned}
$$

This proves the lemma.

LEMMA 4.2:

$$
\left|\bar{K}_{n}(t)\right|=O\left(\frac{1}{t}\right), \text { for } \frac{1}{n+1} \leq t \leq \pi
$$

Proof:

For $\frac{1}{n+1} \leq t \leq \pi$, by Jordan's lemma, we have $\sin \left(\frac{t}{2}\right) \geq \frac{t}{\pi}$.

Then

$$
\left|\bar{K}_{n}(t)\right|=\frac{1}{\pi(1+q)^{n}} \left\lvert\,\left\{\begin{array}{l}
\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \\
\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right)}{\sin \frac{t}{2}}\right\}
\end{array}\right\}\right.
$$

Proof:

$$
\begin{aligned}
& =\frac{1}{\pi(1+q)^{n}} \left\lvert\,\left\{\begin{array}{l}
\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \\
\left\{\begin{array}{c}
\cos \frac{t}{2}-\cos v t \cdot \cos \frac{t}{2} \\
P_{k} \sum_{v=0}^{k} p_{v} \frac{+\sin v t \cdot \sin \frac{t}{2}}{\sin \frac{t}{2}}
\end{array}\right\}
\end{array}\right\}\right. \\
& \leq \frac{1}{\pi(1+q)^{n}} \left\lvert\,\left\{\left.\begin{array}{l}
\sum_{k=0}^{n}\binom{n}{k} q^{n-k} \\
\frac{1}{P_{k}} \sum_{v=0}^{k} \frac{\pi}{2 t} p_{v}\binom{\cos \frac{t}{2}\left(2 \sin ^{2} v \frac{t}{2}\right)}{+\sin v \frac{t}{2} \cdot \sin \frac{t}{2}}
\end{array} \right\rvert\,\right\}\right. \\
& \leq \frac{\pi}{2 \pi(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v}\right\}\right| \\
& =\frac{1}{2(1+q)^{n} t}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =O\left(\frac{1}{t}\right)
\end{aligned}
$$

This proves the lemma.

5. Proof of Main Theorem

Using Riemann-Lebesgue theorem, for the n-th partial sum $\bar{s}_{n}(f ; x)$ of the conjugate Fourier series (1.10) of $f(x)$ and following Titchmarch [5], we have

$$
\overline{s_{n}}(f ; x)-f(x)=\frac{2}{\pi} \int_{0}^{\pi} \psi(t) \frac{\cos \frac{t}{2}-\sin \left(n+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} d t
$$

Using (1.2), the $\left(\bar{N}, p_{n}\right)$ transform of $\overline{s_{n}}(f ; x)$ is given by

$$
t_{n}-f(x)=\frac{2}{\pi P_{n}} \int_{0}^{\pi} \psi(t) \sum_{k=0}^{n} p_{k} \frac{\cos \frac{t}{2}-\sin \left(n+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)} d t
$$

Denoting the $(E, q)\left(\bar{N}, p_{n}\right)$ transform of $\overline{s_{n}}(f ; x)$ by τ_{n}, we have

$$
\begin{aligned}
& \left\|\tau_{n}-f\right\|= \\
& \frac{2}{\pi(1+q)^{n}} \int_{0}^{\pi}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\sin \left(v+\frac{1}{2}\right) t}{2 \sin \left(\frac{t}{2}\right)}\right\} d t \\
& k=q^{n-k} \\
& =\int_{0}^{\pi} \psi(t) \overline{K_{n}}(t) d t=\left\{\int_{0}^{\frac{1}{n+1}}+\int_{\frac{1}{n+1}}^{\pi}\right\} \psi(t) \overline{K_{n}}(t) d t \\
& =I_{1}+I_{2}, \text { say }
\end{aligned}
$$

Now

$$
\left|I_{1}\right|=
$$

$$
\left.\frac{2}{\pi(1+q)^{n}} \left\lvert\, \int_{0}^{1 / n+1}\left\{\frac{1}{P_{k}} \sum_{v=0}^{k} p_{v} \frac{\cos \frac{t}{2}-\cos \left(v+\frac{1}{2}\right) t}{2 \sin \frac{t}{2}}\right\} \begin{array}{l}
n \\
k
\end{array}\right.\right) q^{n-k},|t|
$$

$$
\leq\left|\int_{0}^{\frac{1}{n+1}} \psi(t) \overline{K_{n}}(t) d t\right|
$$

$$
\leq\left(\int_{0}^{\frac{1}{n+1}}\left|\frac{t \psi(t) \sin ^{\beta} t}{\xi(t)}\right|^{r} d t\right)^{\frac{1}{r}}\left(\int_{0}^{\frac{1}{n+1}}\left|\frac{\xi(t) \bar{K}_{n}(t)}{t \sin ^{\beta} t}\right|^{s} d t\right)^{\frac{1}{s}}
$$

where $\frac{1}{r}+\frac{1}{s}=1$, using Hölder's inequality

$$
=O(1)\left(\int_{0}^{\frac{1}{n+1}}\left(\frac{\xi(t)}{t^{1+\beta}}\right)^{s} d t\right)^{\frac{1}{s}},
$$

using Lemma4.1 and (3.1.2)

$$
\begin{align*}
& =O\left(\xi\left(\frac{1}{n+1}\right)\left(\int_{0}^{\frac{1}{n+1}} \frac{d t}{t^{(1+\beta) s}}\right)^{\frac{1}{s}}\right. \tag{5.2}\\
& =O\left(\xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{-\frac{1}{s}+1+\beta}\right) \\
& =O\left(\xi\left(\frac{1}{n+1}\right)(n+1)^{\beta+\frac{1}{r}}\right)
\end{align*}
$$

$\left|I_{2}\right| \leq\left(\int_{\frac{1}{n+1}}^{\pi}\left|\frac{t^{-\delta} \psi(t) \sin ^{\beta} t}{\xi(t)}\right|^{r} d t\right)^{\frac{1}{r}}\left(\int_{\frac{1}{n+1}}^{\pi}\left|\frac{\xi(t) \bar{K}_{n}(t)}{t^{-\delta} \sin ^{\beta} t}\right|^{s} d t\right)^{\frac{1}{s}}$
where $\frac{1}{r}+\frac{1}{s}=1$, using Hölder's inequality $=O\left((n+1)^{\delta}\right)\left(\int_{\frac{1}{n+1}}^{\pi}\left(\frac{\xi(t)}{t^{\beta+1-\delta}}\right)^{s} d t\right)^{\frac{1}{s}}$, using Lemma 4.2 and (3.1.3) $=O\left((n+1)^{\delta}\right)\left(\int_{\frac{1}{\pi}}^{n+1}\left(\frac{\xi\left(\frac{1}{y}\right)}{y^{\delta-\beta-1}}\right)^{s} \frac{d y}{y^{2}}\right)^{\frac{1}{s}}$
since $\xi(t)$ is a positive increasing function, so is $\xi(1 / y) /(1 / y)$. Using second mean value theorem we get

$$
\begin{align*}
&= O\left((n+1)^{1+\delta} \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{\varepsilon}^{n+1} \frac{d y}{y^{s(\delta-\beta-1)+2}}\right)^{\frac{1}{s}} \\
& \text { for some } \frac{1}{\pi} \leq \varepsilon \leq n+1 \tag{5.3}\\
& O\left((n+1)^{1+\delta} \xi\left(\frac{1}{n+1}\right)\right) O\left((n+1)^{\beta+1-\delta-\frac{1}{s}}\right) \\
&= O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)
\end{align*}
$$

Then from (5.2) and (5.3), we have

$$
\begin{aligned}
& \left|\tau_{n}-f(x)\right|=O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right), \text { for } r \geq 1 \\
& \left\|\tau_{n}-f(x)\right\|_{r}=\left(\int_{0}^{2 \pi} O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)^{r} d x\right)^{\frac{1}{r}}, r \geq 1 . \\
& =O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)\left(\int_{0}^{2 \pi} d x\right)^{\frac{1}{r}} \\
& =O\left((n+1)^{\beta+\frac{1}{r}} \xi\left(\frac{1}{n+1}\right)\right)
\end{aligned}
$$

This completes the proof of the theorem.

6. Corollaries

Following corollaries can be derived from the main theorem.

Corollary 6.1: The degree of approximation of a function f belonging to the class $\operatorname{Lip}(\alpha, r), 0<\alpha \leq 1, r \geq 1$ is given by

$$
\left\|\tau_{n}-f\right\|_{r}=O\left((n+1)^{-\alpha+\frac{1}{r}}\right)
$$

Proof: The corollary follows by putting $\beta=0$ and $\xi(t)=t^{\alpha}$ in the main theorem.

Corollary 6.2: The degree of approximation of a function f belonging to the class $\operatorname{Lip}(\alpha), 0<\alpha \leq 1$ is given by

$$
\left\|\tau_{n}-f\right\|_{\infty}=O\left((n+1)^{-\alpha}\right)
$$

Proof: The corollary follows by letting $r \rightarrow \infty$ in corollary 6.1.

References

[1] G.H. Hardy, Divergent Series (First Edition), Oxford University Press, (1970).
[2] U.K. Misra, M. Misra, B.P. Padhy and S.K. Buxi, "On degree of approximation by product means of conjugate series of Fourier series", International Jour. of Math. Scie. And Engg. Appls. ISSN 0973-9424, Vol 6 No. 1 (Jan. 2012), pp 363-370
[3] Misra U.K.,Paikray, S.K., Jati, R.K, and Sahoo, N.C.: "On degree of Approximation by product means of conjugate series of Fourier series", Bulletin of Society for Mathematical Services and Standards ISSN 2277-8020, Vol. 1 No. 4 (2012), pp 12-20.
[4] U.K. Misra, M. Misra, B.P. Padhy and D.Bisoyi, "On Degree of Approximation of conjugate series of a Fourier series by product summability" Malaya Journal of Mathematik (ISSN: 2319-3786, Malayesia), Vol. 1 Issue 1 (2013), pp 37-42.
[5] E.C. Titchmarch, The Theory of Functions, Oxford University Press, (1939).
[6] A. Zygmund, Trigonometric Series (Second Edition) (Vol. I), Cambridge University Press, Cambridge, (1959).

