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1. Introduction 
So many studies have been done about systematic 

sampling (Kish [1], Cochran [3], Särndal et al. [4], Sharon 
[5], Thompson [6], Groves et al. [7]). In this paper, on a 
basis of former studies, I propose a new model of 
systematic sampling, which procedure is a little bit 
different from the former ones, and try giving a theory. 
The model, which I call Roulette Model, can be executed 

easily and enables us to calculate the expectation of 
statistic exactly as it is. 

1.1. What is and what should be Systematic 
Sampling? 

1.1.1. Procedures so far 

Let us consider a problem to select n out of N elements 
by systematic sampling. 

 

 
When N  is an integral multiple of ,n  the sampling 

interval N n  is also an integer. If a random start 0N  is 

drawn from 0 to 1,N
n
−  the sample is determined by 

 0 thNN i
n

+ ⋅ −  (1.1.1) 

elements in a population list for 0,1, 2, , 1.i n= −  But N  
is given at first and what we can decide is only .n  What if 
N  is a prime number? In general, N n  is not necessarily 
an integer and problems with the sampling intervals will arise. 

By Kish [1], the following four solutions were given 
(pp. 115-117). 

1. Permit the sample size to be either n  or 1n + . 
2. Eliminate with epsem (equal probability of selection 

method). 

3. Consider the list to be circular. 
4. Using fractional intervals. 
He wrote “the sampler should choose the most 

convenient”. Cochran [3] gave an integral sampling 
interval at first and permitted the sample size to change 
(pp. 205-206). He also introduced a method suggested by 
Lahiri [8] (see Murthy[2] p. 139). Särndal et al. [4] 
organized the former studies and gave the definitions and 
main results. Anyway, the sampling procedures are 
optional. 

1.1.2. Arrangement and Reconstruction 
On a basis of former studies, I will arrange and 

reconstruct the procedure of systematic sampling in my 
own way as follows. Let us draw a numerical line across 
N●-points. 
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Let the random start 0N  be a random number over 

{ }0,1,2, , 1N −  and consider the population list to be 
circular. 

 

And decide the sample by 

 0 thNN i
n

+ ⋅ −  (1.2.1) 

elements in the list for 0,1, 2, , 1.i n= −  The problem 
lies in the case when 0N i N n+ ⋅  is not an integer. Which 
should I select 

 0 0or ?N NN i N i
n n

   + ⋅ + ⋅      
 (1.2.2.) 

 

In a sampling problem, I don't think it essential whether 
N n  is an integer or not. I also think it unnatural that only 
the first sampling point (when 0i = ) is always an integer. 
Since N n  is not necessarily an integer, the procedure of 
systematic sampling should be considered as a continuous 
problem. The following concept seems to be the most 
natural for me. 

1.1.3. Roulette Model 
i. Draw two circles with the same length of 

circumference N. On one, put N●-points 

 { }0,1,2, , 1N −  

with the same interval 1 and set the point 0 at the top. On 
another, put n▲-points 

 { }0,1,2, , 1n −  

with the same interval N n  and setthe point 0 at the top. 
It doesn't matter whether N n  is an integer or not. 

 
ii. Rotate the latter circle by random angle along the 

circumference like roulette. 

 
iii. And lap it over the former one. 
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iv. As a sample, choose ● -points correspondent to 
where ▲-points dropped. 

This simple procedure above is a concept of Roulette 
Model. It can be formulated as follows. 

2. Formulation 

2.1. Assumption 
In this paper, I assume all functions are defined on 
N . That is, if a parameter of a function is outside of 

the interval 

 ) { }0, |0 ,N t t N= < ≦  (2.1.1) 

I add or subtract N  by necessary times so as to settle it 
within )0, N . 

2.2. Identification 
i. A circle with the length of circumference N  can be 

regarded as an interval )0, N . So I identify the 

population list { }0,1,2, , 1N −  with an interval )0, N . 

ii. As the interval )0, N  is a disjoint union of N unit 
intervals 

  (2.2.1) 

I identify an element ( )0,1,2, , 1i i N= −  in a 
population list with a unit interval 

 ), 1 .iI i i= +  (2.2.2) 

iii. If a ▲-point belongs to iI , select i  as an element of 
sample. Here I don't require any relation between N  and 
n . So, when ,n N>  i  can be selected repeatedly the 
same times as the number of ▲-points which belong to iI . 

2.3. Partition of Random Number 
In the above procedure, I used a random angle, which is 

a uniform random number over an interval 

 ) { }0,2 |0 2 .t tπ π= < ≦  (2.3.1) 

Along the circumference, this is equivalent to a uniform 
random number over an interval 

 ) { }0, |0 .N t t N= < ≦  (2.3.2) 

I consider producing the latter from now on. 
As an interval )0, N  is a disjoint union of N  unit 

intervals 

 )
1

0
0 ,,

N

i
i

N I
−

=
= 

 (2.3.3) 

I consider producing two independent random numbers 
0N  and ε  as 

 { } )0 ~ rand 0,1,2, , 1 , ~ rand 0,1 .N N ε−   (2.3.4) 

Here 0N  is a discrete uniform random number over 

{ }0,1,2, , 1N −  and ε  is a continuous uniform random 

number over )0,1 .  Then 0N ε+  will surely be a uniform 

random number over )0, .N  

 )0 ~ rand 0, .N Nε+   (2.3.5) 

By 0N , I select a unit interval 0NI  among N  intervals 

0 21 1, , , , .NI I I I −  And by ε , I focus on a point in the 
selected interval. That is, I decide a random number over 

)0, N  in two steps. 

2.4. Procedure 
In Roulette Model, I decide the first sampling point not 

by 0N  but by 0 ,N ε+  identify an element 

( )0,1,2, , 1i i N= −  in a population list with a unit 

interval ), 1iI i i= +  and choose i  when 

 0 i
NN j I
n

ε+ + ⋅ ∈  (2.4.1) 

for 0,1, 2, , 1.j n= −  Then 

 0 thNN j
n

ε + + ⋅ −  
 (2.4.2) 

elements for 0,1, 2, , 1j n= −  re selected as a sample 
because 

 .it I t i∈ ⇔ =    (2.4.3) 

The existence of ε -term is a different point from the 
former procedures. By contribution of ε -term, even if the 
same first sample 0N  and the same sampling interval 
N n  are given, stilla different sample can be selected 
when neither N n  nor n N  is an integer. 

3. Calculation 

3.1. Expectation of Statistic 
The greatest advantage of Roulette Model is, just by 

adding ε -term, to enable us to calculate the expectation 
of statistic exactly as it is. 
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Assume that our interest is value .x  The population is 
described as 

 { }0 1 2 1, , , , Nx x x x −  (3.1.1) 

and the sample is described as 

 { }0 1 2 1, , , , .nX X X X −  (3.1.2) 

Given 0N  and ε , the sample is decided. Considering 
any statistic written by 

 ( )0 0 1 2 1, ; , , , , ,nf N X X X Xε −  (3.1.3) 

as is known from how we produced two random numbers 
( )0 , ,N ε  its expectation is calculated by 

( ) ( )
11

0 1 2 10
0

1 , ; , , , , ,
N

n
i

E f f i X X X X d
N

ε ε
−

−
=

 
=   

 
∑∫  (3.1.4) 

where the order of summation and integral is commutative. 

3.2. Mathematical Preparation 
I define a characteristic function ( )|I tχ  and a pulse 

function ( )0;t tϕ  by 

 ( ) {1   | 0 ,
t I for I NI t otherwiseχ ∈ ⊆=   (3.2.1) 

 
( ) )( )

{
1

0 0 0

0 0 0

; , 1 |

1 1 1
0 .

t
t

t t t t s ds

t t t t t
otherwise

ϕ χ
+

= +

− − − +=

∫
≦≦

 (3.2.2) 

 

For an interval )( ), 1 0,1, 2, , 1iI i i i N= + = −  , I write 

 ( )
1

0 0
0

, ; | .
n

i
j

NN i I N j
n

χ ε χ ε
−

=

 = + + ⋅ 
 

∑  (3.2.3) 

Then it leads 

 ( )0

the number of points which belo
, ;

ng to .i

N i
I

χ ε

−= ▲
(3.2.4) 

Considering the meaning of χ  and ϕ , we obviously 
have the following lemmas. 
Lemma 1. For any integer j , 

 ( ) ( )0 0, ; , ; .N i j N j iχ ε χ ε± =   (3.2.5) 

Lemma 2. 

 ( )
1

0
0

, ; .
N

i
N i nχ ε

−

=
≡∑  (3.2.6) 

Lemma 3. 

 
( )

( ) ( ) ( )
0

0

| 1 ,

| '| '| '

N
I

N
I

I t dt dt I

I t I t dt I t dt I I

χ

χ χ χ

= =

= =

∫ ∫

∩∫ ∫
 (3.2.7) 

Lemma 4. For any real number s , 

 ( ) ( )0 0; ; .t t s t s tϕ ϕ± =   (3.2.8) 

Lemma 5. 

 ( )0 , ; .n nN i
N N

χ ε   
      

≦ ≦  (3.2.9) 

3.3. Unbiasedness of Sample Mean 
Let the population mean and the population variance 

 ( )
1 1

22

0 0

1 1,
N N

i i
i i

x x
N N

µ σ µ
− −

= =
= = −∑ ∑  (3.3.1) 

respectively. 
Given 0N  and ,ε  the sample is decided. So we can 

regard the sample as a function of ( )0 ,N ε  and, by the 
meaning of ,χ  we have 

 
( ) ( )

( )

1

0 0
0
1

0
0

1, ,

1 , ;

n

i
i
N

i
i

X N X N
n

N i x
n

ε ε

χ ε

−

=

−

=

=

=

∑

∑
 (3.3.2) 

as a sample mean. By lemma 1 and 2, we can calculate its 
expectation as follows. 

 

( ) ( )

( )

( )

( )

( )

11
0

0

1 11
0

0 0

1 11
0

0 0

1 11
0

0 0

1 1

0 0

1 ,

1 1 , ;

1 , ;

1 0, ;

1 0, ;

N

i

N N

j
i j

N N

j
j i

N N

j
j i

N N

j
j i

E X X i d
N

i j x d
N n

x i j d
nN

x j i d
nN

x i
nN

ε ε

χ ε ε

χ ε ε

χ ε ε

χ ε

−

=

− −

= =

− −

= =

− −

= =

− −

= =

 
=   

 

  
  =

  
  

  
 =      

  
 = −     


=

∑∫

∑ ∑∫

∑ ∑∫

∑ ∑∫

∑ ∑
1
0

11
0

0

1 N

j
j

d

nx d
nN

ε

ε
−

=

 
      

 
 =
 
 

∫

∑∫

 (3.3.3) 
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1
0

1

0

1

0

1

1

.

N

j
j

N

j
j

x
N

x

d

N

µ

ε
−

=

−

=

 =  
 

=

=

∑

∫∑

 (3.3.3) 

We hereby get the proof of unbiasedness of sample 
mean by systematic sampling. As is known from the 
above process of calculation, ε -term does not contribute 
at all. So unbiasedness still holds when 0.ε ≡  
Theorem 1. Sample mean by systematic sampling is an 
unbiased estimator of population mean. 

 ( ) .E X µ=  (3.3.4) 

3.4. Variance of Sample Mean 
In an identity 

 ( ) ( ) ( ){ }22 ,V X E X E X= −  (3.4.1) 

we have the relation 

 ( ) ( )
1

0 0
0

, ,1 , ;
N

i
i

X N N i x
n

ε χ ε
−

=
= ∑  (3.4.2) 

so we have 

 
( ){ }

( ) ( )

2
0
1 1

0 02
0 0

1 , ; ; .

,

,
N N

i j
i j

X N

N i N j x x
n

ε

χ ε χ ε
− −

= =
= ∑ ∑

 (3.4.3) 

The expectation is calculated by 

( )
( ) ( )

2

1 1 1 1
2 0

0 0 0

1 , ; , ; .
N N N

i j
i j k

E X

k i k j d x x
n N

χ ε χ ε ε
− − −

= = =

 
=   

 
∑ ∑ ∑ ∫

 (3.4.4) 

By the definition of χ , we get 

 

( ) ( )
1 1

0
0

1

1 1 0
0 10

0

1 1 1 1
0

0 0 0

, ; , ;

|

|

|

|

N

k
n

iN l
nk

j
m

in n N

l m k
j

k i k j d

NI k l
n

d
NI k m
n

NI k l
n

d
NI k m
n

χ ε χ ε ε

χ ε

ε

χ ε

χ ε
ε

χ ε

−

=

−

−
=

−
=

=

− − −

= = =

   + + ⋅       =  
   + + ⋅        
   + + ⋅      =    + + ⋅   

  

∑ ∫

∑
∑ ∫

∑

∑∑ ∑∫

1 1

0
0 0

| |
n n N

i j
l m

N NI l I m d
n n

χ ε χ ε ε
− −

= =





 


   = + ⋅ + ⋅   
   

∑ ∑ ∫

(3.4.5) 

Here, if we put 

 , ,j i j m l m′ ′= + = +  (3.4.6) 

by lemma 3, we have 

)

( )

0

0 '0

1 '
'0

, 1 , 1

| |

0,1 ' ' , ' ' 1

| | '

| .

N
i j

N
j

j

N N N N
i l i l j m j m

n n n n

N NI l I m d
n n

N Nj m j m
n n

NI I m d
n

NI m d d
n

χ ε χ ε ε

χ ε χ ε ε

χ ε ε ε

= − ⋅ − ⋅ + − ⋅ − ⋅ +

   + ⋅ + ⋅   
   

  
    

 = − ⋅ − ⋅ +  

 = + ⋅ 
 

 = + ⋅ 
 

∩

∫

∩

∫

∫

(3.4.7) 

 

( ) ( )
1 1

0
0

1 1 1
'0

0 ' 0
1 1

'0
' 0

1 1 ' ' ' '
0

' 0
1

' '

' 0
1

'

' 0

, ; , ;

| '

| '

, 1 |

;0

; '

N

k
n n

j
l m

n

j
m
n

m
n

m
n

m

k i k j d

NI m d
n

Nn I m d
n

N Nn j m j m d
n n

Nn j m
n

Nn m j
n

χ ε χ ε ε

χ ε ε

χ ε ε

χ ε ε

ϕ

ϕ

−

=
− −

= =
−

=
−

=
−

=
−

=

 = + ⋅ 
 

 = + ⋅ 
 

  = − ⋅ − ⋅ +   

 = − ⋅ 
 

 = − ⋅ − 
 

=

∑ ∫

∑ ∑ ∫

∑ ∫

∑ ∫

∑

∑
1

' '

' 0
; .

n

m

Nn m j
n

ϕ
−

=

 ⋅ 
 

∑

(3.4.8) 

At last, we obtain 

 ( )
1 1 1

2

0 0 0

1 ;
N N n

i j
i j k

NE X k j i x x
nN n

ϕ
− − −

= = =

 = ⋅ − 
 

∑ ∑ ∑  (3.4.9) 

Here I define a function Φ  by 

 ( )
1

0

1Φ ;
n

i

Nt i t
n n

ϕ
−

=

 = ⋅ 
 

∑  (3.4.10) 

and get the explicit description of the variance of sample 
mean as 

 

( ) ( ) ( ){ }

( )

( )

( )

22

21 1 1

0 0 0

21 1 1

0 0 0

1 1

0 0

1 1Φ

1 1Φ

1 1Φ .

N N N

i j i
i j i

N N N

i j i
i j i

N N

i j
i j

V X E X E X

j i x x x
N N

j i x x x
N N

j i x x
N N

− − −

= = =

− − −

= = =

− −

= =

= −

 
= − −   

 

 
= − −   

 

 = − − 
 

∑ ∑ ∑

∑ ∑ ∑

∑ ∑

(3.4.11) 
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Theorem 2. The variance of sample mean by systematic 
sampling is described as 

 ( ) ( )
1 1

0 0

1 1Φ
N N

i j
i j

V X j i x x
N N

− −

= =

 = − − 
 

∑ ∑  (3.4.12) 

That a function Φ  has a parameter j i−  means that 

( )V X  depends on how to sort a population list. 

3.5. Expectation of Sample Variance 
The expectation of sample variance 

 

( ) ( ) ( )( )

( ){ } ( ){ }

( ) ( ){ }

1 22
0 0 0

0
1 22

0 0
0
1 22

0 0
0

1, , ,

1 , ,

1 , ; ,

n

i
i
n

i
i
n

i
i

S N X N X N
n

X N X N
n

N i x X N
n

ε ε ε

ε ε

χ ε ε

−

=

−

=

−

=

= −

= −

= −

∑

∑

∑

(3.5.1) 

is calculated, by lemma 1, 2 and 3, as 

( ) ( ) ( )

( )
( )

( ){ }

( ) ( )( )

1 112 2 2
0

0 0

1 11 2
20

0 0

1 11 2 2
0

0 0

1 1
0

0

1 1
, ;

1
, ;

1
, ;

1

N N

i
i j

N N

i
i j

N N

i
i j

N

i

E S j i d x E X
n N

V X
i j d x

nN E X

i j d x V X
nN

nd x
nN

χ ε ε

χ ε ε

χ ε ε µ

ε

− −

= =

− −

= =

− −

= =

−

=

= −

= − − −
+

= − − +

  
  

    

    
    

       

  
  

    

 =  
 

∑ ∑∫

∑ ∑∫

∑ ∑∫

∑ ∫ ( )( )

( )

( )

( )

2 2

1
2 2

0
1

2 2

0
2

1

1

.

i

N

i
i
N

i
i

V X

x V X
N

x V X
N

V X

µ

µ

µ

σ

−

=

−

=

− +

=

= −

=

−

−

−

−∑

∑

(3.5.2) 

3.6. Conserved Quantity 
In general, sample mean and sample variance can be 

regarded as functions of sample size n . So I write them 

( )X n  and ( )2S n  respectively from now on. From the 
result of 3-5, in systematic sampling, 

 ( )( ) ( )( )2 2V X n E S n σ+ =  (3.6.1) 

holds. On the other hand, in random sampling with 
replacement, 

 ( )( ) ( )( )
2

2 21, ,nV X n E S n
n n
σ σ−

= =  (3.6.2) 

so we have 

 ( )( ) ( )( )2 2.V X n E S n σ+ =  (3.6.3) 

In random sampling without replacement, because 

( )( ) ( ) ( )( ) ( )
( )

2 2 21
,

1
,

1
N nN nV X n E S n

n N n N
σ σ

−−
= =

− −
(3.6.4) 

we again have 

 ( )( ) ( )( )2 2.V X n E S n σ+ =  (3.6.5) 

While ( )X n  and ( )2S n  are random variables, µ  and 
2σ  are constants. In general, ( )( ) ( )( )2V X n E S n+  is 

considered to depend on sample size n and how to select a 
sample. So the above results tell us the conserved quantity 
between random and systematic sampling. 
Theorem 3. Between random and systematic sampling, 
the following quantities are conserved. 

 ( )( ) ( )( ) ( )( )2 2,E X n V X n E S nµ σ≡ + ≡  (3.6.6) 

3.7. Limiting Behavior and Some Other 
Results 

In 

 

( )

)

) ( )

( )

1

0
1 1

0
1 1

0
1 1

0
0

11
00

0

1Φ ;

1 , 1 |

1 0,1 |

1 0,1 |

1 |

1

n

i
n j i

j i
i
n j i

j i
i
n

i

n

i

Nj i i j i
n n

N Ni i t dt
n n n

Nt i dt
n n

Nt j i i dt
n n

NI t j i i dt
n n

n

ϕ

χ

χ

χ

χ

−

=

− − +

−
=

− − +

−
=

−

=

−

=

 − = ⋅ − 
 

  = ⋅ ⋅ +   

 = − ⋅  

 = + − − ⋅  

  = + − − ⋅     

=

∑

∑∫

∑∫

∑∫

∑∫

( )

( )

11
00

0

1
0

|

1 , ;0

n

i

NI j i t i dt
n

j i t dt
n

χ

χ

−

=

  − + + ⋅     

= −

∑∫

∫

 (3.7.1) 

from lemma 5, we immediately have inequalities 

 ( )1 , ;0 1,n n n nj i t
N N N N

χ   − < − < +      
≦ ≦  (3.7.2) 

 ( ) ( )1
0

1 1 1 1 1, ;0 ,j i j i t dt
N n n N n

χ− < Φ − = − < +∫ (3.7.3) 

so we obtain 

 ( ) 1 1Φ .j i
N n

− − <  (3.7.4) 

Applying this estimation to 
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 ( )( ) ( )
1 1

0 0

1 1Φ ,
N N

i j
i j

V X n j i x x
N N

− −

= =

 = − − 
 

∑ ∑  (3.7.5) 

we get an analogy of law of large numbers. 
Theorem 4. In systematic sampling, while 

 ( )( ) ( )( )2 2V X n E S n σ+ ≡  (3.7.6) 

is kept, 

 ( )( )lim 0.
n

V X n
→∞

=  (3.7.7) 

Moreover, while we obviously have 

 ( )( ) 0V X N =  (3.7.8) 

for random sampling without replacement, we also have 

 ( )( ) 0V X N =  (3.7.9) 

for systematic sampling because, when ,n N=  

 ( )1 , ;0 1N Nj i t
N N

χ   = − =      
≦ ≦  (3.7.10) 

and 

 ( ) ( )1
0

1 1Φ , ;0 .j i j i t dt
N N

χ− = − =∫  (3.7.11) 

That is, ( )( )V X n  of systematic sampling has both 
properties of random samplings with and without 
replacement. 

When x  is nonnegative and 0µ > , from (3.7.4), we 
can estimate 
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1 1

0 0
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N

i
i

V X n j i x x
N N

x x
nN

x
nN

N
nN
N
n
N E X n
n

µ

µ

− −

= =

− −

= =

−

=

− −

<

 
=   

 

=

=

=

∑ ∑

∑ ∑

∑

≦

 (3.7.12) 

So the coefficient of variation of ( )X n  is less than 

.N n  
Corollary 1. x  When is nonnegative and 0,µ >  

 ( )( ) NCV X n
n

<  (3.7.13) 

Applying lemma 5 to 

 ( ) ( )
1

0
0

1 ; ,,
N

i
i

X n N i x
n

χ ε
−

=
= ∑  (3.7.14) 

we get the following estimation. 

 ( )
1 1

0 0

1 1N N

i i
i i

n nx X n x
N n N n

− −

= =

   
      

∑ ∑≦ ≦  (3.7.15) 

and 

( ) .n n N n n NX n
N N n N N n

µ µ µ      − − −            
≦ ≦ (3.7.16) 

Here, as 

 1 0,0 1,n n n n
N N N N

   − < − − <      
≦ ≦  (3.7.17) 

we have 

 ( ) .NX n
n

µ µ− <  (3.7.18) 

This result suggests the robustness of systematic 
sampling. 
Corollary 2. When x  is nonnegative and 0,µ >  

 
( )

.
X n N

n
µ

µ

−
<  (3.7.19) 

4. Discussion 

Define a vector x  and an N N×  matrix ( ),A n N  as 

 ( ) ( )
0

11
2

, 0
1

.1, , Φ
N

i j
N

x
x

x A n N j ix
N

x

−

=
−

 
    = = − −    
 
 


 (4.1) 

Then ( )V X  can be regarded as a quadratic form 

 ( )( ) ( )1 , ,V X n x A n N x
N

=   (4.2) 

where ( ),A n N  s obviously a positive semi definite matrix. 

Proposition. For any { }, 1, 2,n N ∈   and any real vector 

,Nx∈  

 ( ), 0x A n N x≧  (4.3) 

and 

 ( ) 0 1 1, 0 | or .Nx A n N x N n x x x −= ⇔ = = =

 (4.4) 

How to sort a population list is nothing but how to 
permutate a population list mathematically. So, if I write 

 ( )

( )
( )
( )

( )

0

1

2

1N

x
x

x x

x

τ

τ

τ

τ

τ

−

 
 
 

=  
 
 
 



 (4.5) 
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for Nτ ∈S  where NS  is a permutation group of degree 

,N  ( )( )V X n  can be regarded as a function of Nτ ∈S  
and written as 

 ( )( ) ( ) ( ) ( )1; , .V X n x A n N x
N

τ τ τ=   (4.6) 

Here the next question will arise. 
What kind of τ  givesless ( )( );V X nτ ? 
Obviously the value is conserved according to a cyclic 

permutation. I leave this problem to the readers. Thank 
you so much for reading my poor English to the end. 
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