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Abstract  In randomized clinical trials using clustered multi-drug resistant tuberculosis (MDR-TB) data, groups of 
human population are routinely assigned to treatments; whereas, observations are taken on the individual subjects 
using clinically-oriented explanatory covariate coefficient estimates for identifying sites of hyperendemic 
transmission. Further, standard methods for data analyses of clinical MDR-TB data postulate models relating 
observational parameters to the response variables without accurately quantitating varying observational intra-cluster 
error coefficient effects. Implicit in this assumption is that the effect of these error coefficient estimates are identical. 
However, non-differentiation of varying and constant residual within-cluster covariate coefficient uncertainty effects 
in a time-series clinical MDR-TB endemic transmission model can lead to misspecified forecasted predictors of 
endemic transmission zones (e.g., mesoendemic). In this research we constructed multiple georeferenced 
autoregressive hierarchical models accompanied by non-generalized predictive residual uncertainty non-normal 
diagnostic tests employing multiple covariate coefficient estimates clinically-sampled in San Juan de Lurigancho 
Lima, Peru. Initially, a SAS-based hierarchical agglomerative polythetic clustering algorithm was employed to 
determine high and low MDR-TB clusters stratified by prevalence data. Univariate statistics and Poisson regression 
models were then generated in R and PROC NL MIXED, respectively. Durbin-Watson statistics were derived. A 
Bayesian probabilistic estimation matrix was then constructed employing normal priors for each of the error 
coefficient estimates which revealed both spatially structured (SSRE) and spatially unstructured effects (SURE). The 
residuals in the high MDR-TB explanatory prevalent cluster revealed two major uncertainty estimate interactions: 1) 
as the number of bedrooms in a house in which infected persons resided increased and the percentage of isoniazid-
sensitive infected persons increased, the standardized rate of tuberculosis tended to decrease; and, (2) as the average 
working time and the percentage of streptomycin-sensitive persons increased, the standardized rate of MDR-TB 
tended to increase. In the low MDR-TB explanatory time series cluster single marital status and building material 
used for house construction were important predictors. Latent explanatory non-normal error probabilities in 
empirically regressed MDR-TB clinical-sampled covariate estimates can be robustly spatiotemporally quantitated 
employing a first-order autoregressive resdiualized model and a Bayesian diagnostic uncertainty estimation matrix. 
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1. Introduction 
Prevalence of Multidrug-resistant tuberculosis, (MDR-

TB), defined as a disease caused by strains of 
Mycobacterium tuberculosis that are resistant to at least 
isoniazid and rifampin, the two most important first-line 
anti-TB drugs, appeared after the introduction of 
rifampicin in 1966. Until 1990, most MDR-TB cases 
occurred in patients receiving prolonged, inappropriate 
therapy; while sporadic outbreaks of primary transmission 
occurred, the magnitude and impact was relatively limited 
(Cegielski et al., 2006). In the early 1990’s, several large 
outbreaks of MDR-TB unfolded in hospitals and 
institutions in the United States implicating MDR-TB as a 
major public health threat (Frieden et al., 1993; Pearson et 
al., 1992). High rates of nosocomial transmission to health 
care workers and human immunodeficiency virus (HIV) 
positive patients in particular, were documented. From 
1999 through 2002, the median prevalence of MDR-TB in 
new case-patients was at critical levels (>6.5%) in specific 
regions of the world, including the Baltic states and other 
eastern European countries (Zignol et al., 2006). 
Subsequent nosocomial and institutional outbreaks in Italy, 
Spain, Russia, and Chile made it clear that MDR-TB 
ranked among the most serious public health issues facing 
the world. 

Recently, public health awareness about MDR-TB has 
been re-enforced by the occurrence of extensively drug-
resistant (XDR)-TB outbreaks defined as a form of MDR-
TB with additional resistance to fluoroquinolones and at 
least one of the second-line injectable drugs used in 
tuberculosis treatment: amikacin, kanamycin and 
capreomycin. MDR-TB raises concerns of future TB 
epidemic treatment options, and jeopardizes the major 
gains made in TB control and progress on reducing TB 
deaths, especially among people living with HIV/AIDS.  

In implementing an MDR-TB control program, newer 
predictive spatial statistical algorithms may provide a 
powerful robust tool for identifying high prevalence areas 
for understanding where at-risk populations are 
geographically located for resource targeting and cost-
effective control. Traditionally, cluster-based algorithms 
have been useful for estimating the force of morbidity of 
MDR-TB.for generating statistics in a sampled population 
for comparing the disease burden across various 
environmental settings, with different underlying 
incidence rates. For example, Becerra et al., (2000) sought 
to refine the definition of MDR-TB transmission 'hot 
spots' first described in 1994, by the World Health 
Organization (WHO), the International Union against 
Tuberculosis and Lung Disease (IUATLD) and other 
partners who launched the Global Project on Anti-TB drug 
resistance surveillance. They obtained estimates of two 
global MDR-TB indicators, MDR-TB incidence per 
100,000 population per year and expected numbers of new 
patients with MDR-TB per year using a hierarchical 
explanatory residual within-cluster based time-series 
analyses for various global regions where data were 
available. They concluded that it was useful to include 
georeferenced covariate coefficient estimates of 
underlying TB –related time series incidence rates and of 
absolute numbers of MDR-TB cases for seasonally 
defining indicators of MDR-TB transmission 'hot spots'. 

Furthermore, according to their findings, estimating the 
absolute number of MDR-TB patients was critical for 
planning the delivery of directly observed MDR-TB 
therapy and the rational procurement of second-line drugs. 
In another hierarchical residual explanatory time series 
MDR-TB regression model analysis, Shafer et al (1995) 
ascertained the role of the HIV and Mycobacterium 
tuberculosis transmission on MDR-TB emergence in New 
York City using drug susceptibilities and restriction-
fragment-length-polymorphisms of TB cases at a city 
hospital between two nine-month periods (1987/1988 and 
1990/1991). The proportion of TB patients with MDR 
increased from 10% (27/267) to 17% (38/222; P =.03). 
Among MDR-TB patients of known HIV status, the 
proportion with HIV increased from 16% (3/19) to 58% 
(22/38; P =.006). HIV-infected MDR-TB patients were 
more likely than HIV-seronegative MDR-TB patients to 
have initial MDR (88% vs 56%; P = .03). Among 56 
MDR-TB cases, 12 had unique patterns while 44 belonged 
to only one of six groups. The hierarchical, 
residual ,explanatory, endemic transmission-oriented, risk- 
analyses revealed that 75% (27/36) of MDR-TB patients 
during the 1990/1991 period were infected with strains 
cultured from HIV-seronegative patients during the 
1987/1988 period.  

Mapping, and analyzing prevalence or incidence MDR-
TB data with conventional hierarchical residual 
explanatory statistical approaches; however, can be 
problematic as spatiotemporal clinical residualized model 
outputs can be affected by random variation due to 
population variability leading to a loss of statistical power 
when cases are assigned to subgroups. Spatiotemporal 
explanatory classification of MDR-TB endemic 
transmission-oriented data is common as the distribution 
of clinical and environmental sampled georeferenced 
predictor covariate coefficient estimates usually 
encompasses several geographic areas (see Gandhi et al. 
2006). 

To reduce this within-subject standard deviation, 
previous research in other medical disciplines have 
employed a compound Poisson approach for detection of 
residual clustering of varying and constant georeferenced 
explanatory time series covariate coefficient estimates by 
testing individual areas that may be combined with their 
neighbors. For example, Besag and Newell (1991) 
proposed a hierachical within residualized explanatory 
cluster-based model to screen for collections of childhood 
leukemia cases in northern England; whereby each 
georefernced classified sub-location was based on the 
number of neighbors that had to be combined in order to 
contain a minimum number of cases (i.e., cluster sampled 
size). This method scanned the data for collections of 
cases that appeared to be unusual clusters. To do so, the 
hierarchical explanatory time series intra-cluster 
diagnostic error detection algorithm centered a circular 
window on each sub-region. This window was then 
expanded to include neighboring regions until the total 
number of cases in the window reached a user-specified 
threshold, k. Then, the population size inside the window 
was compared to that expected under an average or 
expected frequency rate. They found no evidence for 
clustering of leukemia cases in the years surveyed (1975-
85). Waller et al. (1994) used the same method to 
quantitate prevalence survey patterns in leukemia in 
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upstate New York. They did not find strong evidence for 
clustering, although there was a suggestion of some 
clustering in one county. They did however recommend 
employing the technique to prioritize areas for further 
study. Le, Petkau, and Rosychuk (1996) used a 
modification of the Besag and Newell hierarchical 
residual algorithimic error detection method to examine 
whether time series cancer clusters appeared near pulp and 
paper mills in British Columbia, Canada. This format 
relied on a pre-determined cluster size for each test, which 
was provided by Le et al. (1996) who generated a testing 
algorithm for the automatic selection of infectious 
disease–oriented time series cluster sizes. The method 
successfully re-identified several knownexplanatory 
clusters of different types of cancers. 

Commonly, Besag and Newell's method calculates two 
statistics: l which is the local statistic, the number of 
regions required for the window centered over an 
individual region to contain k cases. To evaluate whether 
the k cases form a cluster, the method looks to see whether 
the number of cases in the window are unlikely for the 
window's population at risk. The null hypothesis 
employing the classified intra-cluster time series 
explanatory error detection algorithm is that there is no 
clustering, (e.g., a Poisson disease rate does not exist 
across the epidemiological study area). Thus, the case 
count inside the window would be proportional to the 
population at risk, otherwise the null hypothesis is rejected. 
Following the null spatial model as defined by Besag and 
Newell (1991), cases that are distributed among the areas 
in an epidemiological interventional study site may be 
tabulated to be proportional to a sampled population size 
employing a common disease rate. The method can 
calculate probability for l under the null spatial model 
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may also calculate probability that l has reached or 
exceeded the value predicted by the null hypothesis (L) in 
a robust, explanatory, spatiotemporal, endemic, 
transmission-oriented, MDR-TB-related, forecasting, risk 
model. In general in MDR-TB time series data analyses it 
is 1 minus the probability that l is less than L, (i.e., the 
probability that there are fewer than k cases in the area) 
( see Ghandhi et al. 2006). The probability of 0 through k-
1 MDR-TB cases may then be found by summing the 
Poisson term from  0x =  to 1x k= − . Lambda, ( )λ , is 
the average or expected case count, the average or 
expected disease frequency multiplied by the population-
at-risk. The term e will then indicate the exponential 
function in the explanatory, clinical, MDR-TB, endemic, 
transmission-oriented, explanatory, risk-related, model 
residual forecasts. 

When performing a Besag and Newell analysis 
however, there is a necessity to calculate l and its 
significance for all the georeferencable explanatory 
clusters identified. By so doing, the algorithm will list all 
clusters that have a probability less than the significance 
level specified, (e.g., alpha). The default alpha normally in 
the MDR-TB explanatory residual forecasts thereafter 
would then be calculated using 0.05. Unfortunately, it is 
difficult to determine the appropriate cluster size k of a 
prior and thus this test clearly will face multiple testing 
problems for time series MDR-TB risk modeling 

spatiotemporal, clinical, uncertainity-based covariate 
coefficients by repeating the test with a number of 
plausible values of k. 

Spatial statistics may help quantitate local and global 
clustering in explanatory, spatiotemporal-sampled, clinical 
and/or environmental MDR-TB endemic transmission-
oriented data. For example, the standard spatial scan 
statistic is a maximum likelihood (ML) ratio test statistic 
based on a circular window of variable size scanning an 
epidemiological geographical area under surveillance to 
determine hotspots. In recent years, there has been much 
effort invested in designing efficient algorithms for 
geographically locating "high discrepancy" regions in 
statistical software (e.g., SAS/GIS) with methods ranging 
from fast heuristics for special cases, to generalized 
orthogonalizable digitized grid-based matrices (see Jacob 
et al. 2013, Jacob et al. 2010b, Ghandhi 2006). Employing 
spatial scan statistics and explanatory time series 
approximation cluster-based error-detection algorithms, 
the number of contributions to the computational studies 
of spatiotemporal MDR-TB endemic transmission may 
robustly be constructed based on sampled clinical and/or 
environmental georeferenced explanatory observational 
covariate coefficient estimates. By so doing, spatial 
statistics may elucidate the mechanics of MDR-TB 
transmission by prioritizing seasonal-sampled, 
georeferenced ,district-level, explanatory covariate 
coefficients. Thus, covariates for identifying spatial 
distribution of high-risk populations and random time 
series heterogeneity in resistant strains may be efficiently 
quantitated employing explanatory, residual-based, 
hierarchical ,cluster-based, error diagnostics for 
determining multivariate heteroscedastic parameters, for 
example, from hierarchical explanatory intra-cluster-based 
regression model residuals. This is vital since 
inconspicuous latent uncertainty coefficients and error 
probabilities found in an empirical-sampled dataset of 
MDR-TB regression model residual forecasts have 
revealed that errors in variance estimation can 
substantially alter numerical predictions of the model by 
inflating the value of test statistic thereby, increasing the 
chance of a Type I error - incorrect rejection of the null 
hypothesis (Jacob et al. 2010b). 

An approximation, explanatory, georeferencable, 
hierarchical ,residualized, intra-cluster, error- detection 
algorithm for a large class of discrepancy-oriented MDR-
TB endemic transmission-oriented risk model derived 
functions may also improve the operationalizable 
approximation of prior methods employing the Kulldorff 
scan statistic. Kulldorff’s framework assumes that counts 
ci are Poisson distributed with ci ~ Po(qbi), where bi 
represents the known census population of cell si and q 
which then in a predictive, epidemiological, explanatory, 
spatiotemporal,endemic, transmission-oriented,predictive, 
risk model would represent the unknown underlying 
MDR-TB infection rate (see Cressie 1993). Since 
extensions of these simple approximation algorithms can 
be seasonally generated using explanatory, clinical-based, 
endemic, transmission-oriented, MDR-TB, covarite, 
coefficient, measurement values within sub-meter 
resolution orthogonalizable grid-based matrices (see Jacob 
et al. 2013, Jacob et al. 2010b, Ghandhi 2006), extant 
methods may be statistically customized for efficiently 
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regressing georeferenced, clinically-oriented, explanatory, 
time series MDR-TB datasets. 

For large, spatiotemporal, empiricial, MDR-TB–related, 
explanatory datasets, an intra-cluster-based, diagnostic, 
error-detection algorithm can also be constructed using 
spatial scans to examine whether small-space, 
spatiotemporal-dependent, streaming, algorithms yield 
accurate residualized, interpolated ,forecasts targeting 
explanatory endemic regions based on clinical density 
count data (e.g., resistant strain data). Streaming 
algorithms may also provide optimal answers to the 
discrepancy maximization problem commonly found in 
predictive, spatiotemporal, clinical, endemic, transmission-
oriented, MDR-TB, epidemiological, risk models using 
space –time, explanatory covariate coefficients as the 
input. Streams can be denoted as an ordered sequence of 
points (or "updates") that must be accessed in order and 
can be read only once or a small number of times.Much of 
the streaming literature is concerned with computing 
statistics on frequency distributions that are too large to be 
stored. For this class of problems, there is a vector 

( )1, , na a a=   (initialized to the zero vector 0) that has 
updates presented to it in a stream. The goal of these 
algorithms is to compute functions employing considerably 
less space than it would take to represent a precisely. A 
notable special case is when c=1 (only unit insertions are 
permitted).Besides the above frequency-based problems, 
some other types of problems have also been studied for 
MDR-TB predictive modeling. Many MDR-TB time 
series graph problems are solved in the setting where the 
adjacency matrix or the adjacency list of the graph is 
streamed in some unknown order. There are also some 
problems that are very dependent on the order of the 
stream (i.e., asymmetric MDR-TB model functions), such 
as counting the number of inversions in a stream and 
finding the longest increasing subsequence. 

Minimizing the discrepancy of a set system is a 
fundamental problem in combinatorics associated to 
explanatory infecious diease models such as MDR-TB 
predictive epidemiological risk models. Combinatorics is 
a branch of mathematics concerning the study of finite or 
countable discrete structures. Aspects of combinatorics 
include counting the structures of a given kind and size 
(enumerative MDR-TB-related combinatorics), for 
deciding when certain criteria can be met, and 
constructing and analyzing objects meeting the criteria (as 
in combinatorial designs and matroid theory), finding 
"largest", "smallest", or "optimal" objects (extremal 
combinatorics and combinatorial optimization), and 
studying combinatorial structures arising in an algebraic 
context, or applying algebraic techniques to combinatorial 
problems (algebraic combinatorics). Combinatorial 
problems arise in many areas of pure mathematics, 
notably in algebra, probability theory, topology, and 
geometry, and combinatorics also has many applications 
in mathematical optimization, computer science, ergodic 
theory and statistical physics. Many combinatorial may be 
considered in isolation, giving an ad hoc solution to a 
problem arising in a dataset of explanatory time series 
MDR-TB predictive risk model residually forecasted 
derivatives in some mathematical contex. 

Many combinatorial problems can be efficiently solved 
for MDR-TB related series-parallel graphs or partial k-

trees. In graph theory, a k-tree is a chordal graph all of 
whose maximal cliques are the same size k + 1 and all of 
whose minimal clique separators are also all the same size 
k. Optimal infectious disease –related epidemiological 
MDR-TB risk-related k-trees would be exactly the 
maximal graphs with a given treewidth, graphs to which 
no more edges can be added without increasing their 
treewidth. The graphs that have treewidth at k would then 
be exactly the subgraphs of MDR-TB risk-related k-trees, 
and for this reason they would be considered partial k-
trees. Every explanatory, spatiotemporal, predictor, k-tree 
may be formed by starting with a (k + 1)-vertex complete 
graph and then repeatedly adding vertices in such a way 
that each added vertex has exactly k neighbors that form a 
clique(Cressie 1993).  

Certain explanatory, spatiotemporal, MDR-TB k-trees 
(e.g., with  3k ≥ ) may be also the graphs formed by the 
edges and vertices of stacked polytopes.These polytopes 
are formed by starting from a simplex and then repeatedly 
gluing simplices onto the faces of the polytope; this gluing 
process will mimicic the construction of k-trees by adding 
vertices to a clique.Every stacked MDR-TB-related 
polytope would then form a k-tree. Unfortunately, not 
every k-tree comes from a stacked polytope since MDR-
TB k-tree is the graph of a stacked polytope if and only if 
no three (k + 1)-vertex cliques have k vertices in common 
(see Spencer 1985). 

Many combinatorial problems can be efficiently solved 
for partial k-trees. However,the edge-coloring problem is 
one of a few combinatorial problems for which no linear-
time algorithm has been obtained for partial k-trees. The 
best known algorithm solves the problem for partial k-
trees G in time ( )( )22 1O n k∆ +  where n is the number of 
vertices and Δ is the maximum degree of G. A linear 
algorithm which optimally edge-colors may be provied for 
given partial MDR-tb related k-tree for fixed k. The edge-
coloring problem is one of a few combinatorial problems 
for which no efficient algorithms have been obtained for 
series algorithms. - In any system of n sets in a universe of 
size n, there always exists a coloring which achieves 
discrepancy 6\sqrt{n} (Spencer 1985). The original proof 
of Spencer was existential in nature, and did not give an 
efficient algorithm to find such a coloring in a 
spatiotemporal, predictive, epidemiological MDR-TB 
endemic, transmission-oriented, explanatory, 
georeferencable risk model . Recently, a breakthrough 
work of Bansal (2010) gave an efficient algorithm which 
finds such coloring. His algorithm was based on an 
Semidefinite programming SDP relaxation of the 
discrepancy problem and a clever rounding procedure in 
the risk model residually forecasted derivatives. 

Semidefinite programming (SDP) is a subfield of 
convex optimization concerned with the optimization of a 
linearized objective function (that is, a function to be 
maximized or minimized) over the intersection of the cone 
of positive semidefinite matrices with an affine space, (i.e., 
a spectrahedron). Semidefinite programming is a 
relatively new field of optimization which is of growing 
interest for several reasons. Many practical time serie 
endemic trasnmission-oriented explanatory MDR-TB 
problems in clinical operations research can be modeled or 
approximated using semidefinite programming. In 
automatic control theory, MDR-TB –related SDP's may be 
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employed in the context of linear matrix inequalities. 
SDPs are in fact a special case of cone programming and 
can be efficiently solved by interior point methods 
(Cresssie 1993). All linear programs for predictive MDR-
TB epidemiological risk modeling can be expressed as 
SDPs, and via hierarchies of SDPs the solutions of 
polynomial optimization problems can be approximated. 
Semidefinite programming has been used in the 
optimization of complex systems. In recent years, some 
quantum query complexity problems have been formulated in 
term of semidefinite programs which may be employed 
also in epidemiological MDR-TB risk forecast modeling. 

Linearized programming problem is one in which we 
wish to maximize or minimize a linear objective function 
of clinical-sampled MDR-TBendemic trasnmission-
oriented predicot variables over a polytope. In 
semidefinite programming,an experimenter may use real-
valued vectors and to quantitate the dot product of vectors; 
nonnegativity constraints on real variables in LP are 
replaced by semidefiniteness constraints on matrix 
variables in SDP (see Hazewinkle 2002). Specifically, a 
general semidefinite programming problem can be defined 
as any mathematical programming problem of the form 
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A time series, forecasting, regression-based, endemic, 
trasnmission-oriented, MDR-TB epidemiological n n×  
matrix M  is positive semidefinite if it is the gramian 
matrix of some vectors (i.e. if there exist vectors 1, nx x  

such that ,
i j

i jm x x=   for all ,i j ). In linear algebra, the 
Gramian matrix (or Gram matrix or Gramian) of a set of 
vectors 1, , nv v  in an inner product space is the 
Hermitian matrix of inner products, whose entries are 
given by ,ij j iG v v= . For finite-dimensional real vectors 

with the usual Euclidean dot product, the Gram matrix is 
simply TG V V=  (or *G V V=  for complex vectors using 
the conjugate transpose), where V is a matrix whose 
columns are the vectors kv  (Griffith 2003)An important 
application for MDR-TB time series risk modeling would 
be to compute linear independence: a set of vectors is 
linearly independent if and only if the Gram determinant 
(the determinant of the Gram matrix) is non-zero (see 
Cressie 1993). If this is the case, an MDR-TB experimeneter 
may denote this as 0.M   Note that there are several 
other equivalent definitions of being positive semidefinite 
in MDR-TB risk modeling. For example, positive 
semidefinite endemic, transmission-oriented, explanatory 
matrices generally would have only non-negative 
eigenvalues and have a positive definite square root. In 
order to quantitate parameter estimator significance levels 
in a endemic trasnmission-oriented explanatory MDR-TB 
risk model. Furthermore, there would be a necessity to 
denote the n  of all n n×  clinically-related, time-series, 
symmetric matrices. The space would have to equipped 
with the inner product where tr  denotes the trace where 

( )
1, 1

, .
n

T
n ij ij

i j
A B tr A B A B

= =
= = ∑  in the risk model. An 

MDR-TB experimeneter could rewrite the time series 
mathematical program as 

0
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 where entry i, j in C  

which may be then given by ,i jc  and kA  in an n n×  

matrix having ,i j  th entry , ,i j ka . Note if an an the 
experimenter adds slack variables appropriately to the risk 
model, the SDP can be converted to one of the form 

0

min ,

, , 1, ,

n
nX

ni i
X

C X

subject to A X b i m
∈

≤ =








. 

In an optimization problem, a slack variable is a 
variable that is added to an inequality constraint to 
transform it to an equality (Cressie 1993). Introducing a 
slack variable into an endemic trasnmission-oriented 
explanatory MDR-TB risk-related forecasting model 
would replace an inequality constraint with an equality 
constraint and a nonnegativity constraint in the forecasted 
deriavtives for effectively targeting the statsitically 
significant clinical variables.In linear programming for 
constructing a robust, spatiotemrporal, endemic, 
trasnmission-oriented, explanatory, MDR-TB risk model 
it may be required to turn an inequality into an equality 
where a linear combination of the clinical variables is less 
than or equal to a given constant in the former. As with 
the sampled clinical-sampled explanatory variables in the 
augmented constraints, the slack –oriented explanatory 
MDR-TB predictor variables may not take on negative 
values, as the Simplex algorithm requires them to be 
positive or zero. 

The simplex algorithm operates on linear programs in 
standard form, that is linear programming problems of the 
form, Tc X  subject to , 0X iA b x= ≥  with 

1( , , ).nx x x=   The clincal-sampled MDR-TB variables 
of the problem, 1( , , )nc c c=   would be the coefficients 
of the objective function, A a p×n matrix, and 

1( , , )pb b b=   constants with 0.jb ≥  There is a 
straightforward process to convert any time series, 
explanatory, endemic, trasnmission-oriented, MDR-TB 
risk-related linear program into one in standard form so 
this results in no loss of generality in the forecasted 
derivatives..In geometric terms, the feasible region 

, 0X iA b x= ≥  may be a possibly unbounded convex 
polytope. Convex polytope is a special case of a polytope, 
having the additional property that it is also a convex set 
of points in the n-dimensional space Rn (Cressie 1993). By 
so doing, a simple characterization of the extreme sampled 
clinical points or vertices namely 1( , , )nx x x=   in the 
epidemiological MDR-TB risk model may be identified 
where an extreme point may be quantiated parsimoniously, 
if and only if the subset of column vectors iA  
corresponding to the nonzero entries of x ( 0)ix ≠  are 
linearly independent in the risk model. 
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For convenience, an SDP for a robust, endemic, 
trasnmission-oriented , explanatory, MDR-TB risk model 
may be specified in a slightly different equivalent forms. 
For example, linear expressions involving nonnegative 
spatiotemporal -sampled MDR-TB-related clinically 
oriented scalar variables may be added to the program 
specification. This remains an SDP because each clinical 
sampled variable can be incorporated into the time series 
matrix X  as a diagonal entry ( iiX  for some i ). To ensure 
that 0,iiX ≥  constraints 0ijX =  can be added for all 
j i≠  in the model residuals. By introducing the slack 

variable 0,y ≥  the inequality XA b≤  can be converted to 
the equation .XA y b+ =  Slack variables may give an 

embedding of a polytope 0( ) fP R≥→  into the standard f-
orthant, where f is the number of constraints (facets of the 
polytope). This MDR-TB risk map may then be expressed 
in terms of the constraints (e.g.,linear functionals, 
covectors).Slack variables are dual to generalized 
barycentric coordinates, and, dually to generalized 
barycentric coordinates (which are not unique but can all 
be realized), are uniquely determined, but cannot all be 
realized. Dually, generalized barycentric coordinates 
express a polytope with n vertices (dual to facets), 
regardless of dimension, as the image of the standard 
( )1n − -simplex, which has n vertices – the map is onto: 

1n P−∆ →  and expresses points in terms of the vertices 
(points, vectors). The endemic trasnmission-oriented risk 
map would be classified one-to-one if and only if the 
polytope is a simplex, in which case the map would be an 
isomorphism. As such, the model would correspond to 
any clincal-sampled point not having a unique generalized 
barycentric coordinate. 

As another example, note is that for any positive 
semidefinite spatiotemporal MDR-TB epidemiological 
matrix X , there would exist a set of vectors { }iv  such 
that the ,i j  entry of X  is , ( , )i j i jX v v=  the scalar 

product of iv  and .jv  Therefore, a MDR-TB-related 
explanatory SDPs may be formulated in terms of linear 
expressions on scalar products of vectors. Given the 
solution to the SDP in the standard form, the vectors { }iv  

can be recovered in 3( )O n  time (e.g., by using an 
incomplete Cholesky decomposition of X). 

The Cholesky decomposition of a Hermitian positive-
definite matrix A is a decomposition of the form *=A LL  
where L is a lower triangular matrix with real and positive 
diagonal entries, and *L  denotes the conjugate transpose 
of L. Every Hermitian MDR-TB related positive-definite 
matrix (and thus also every real-valued symmetric 
positive-definite matrix) would have a unique Cholesky 
decomposition. If the matrix A is Hermitian and positive 
semi-definite, then it still has a decomposition of the form 

*=A LL  if the diagonal entries of L are allowed to be 
zero. When A has real entries, L has real entries as well 
and the factorization may be written   =A LL  (Griffith 
2003). 

Analogously to linear programming, given a 
generalized MDR-TB related SDP of the form 

min ,

, , 1, ,

0

C X n
nX

subject to A X b i mni i
X

∈
≤ = 







 (the primal problem or 

P-SDP), may define the dual semidefinite program (D-

SDP) as 
max ,

1

b y n
my

m
subject to y A Ci i

i

∈

∑
=






 where for any two matrices 

P  and Q , P Q  would signify 0.P Q−   The weak 
duality theorem states that the value of the primal SDP is 
at least the value of the dual SDP. Therefore, any feasible 
solution to the dual SDP lower-bounds in a MDR-TB risk 
model would involve the primal SDP value, and 
conversely, any feasible solution to the primal SDP upper-
bounds would then involve the dual SDP value in the 
forecasted derivatives. This is because 

1

1 1

, , ,

, , , 0,

m

i i
i

m m

i i i i
i i

C X b y C X y b

C X y A X C y A X

=

= =

− = −

= − = − ≥

∑

∑ ∑

 where the last 

inequality is because both matrices are positive 
semidefinite, where the result of this function is 
sometimes referred to as duality gap. 

In optimization problems in applied mathematics, the 
duality gap is the difference between the primal and dual 
solutions. If *d  is the optimal dual value and *p  is the 
optimal primal value then the duality gap is equal to 

* *p d− . This value in a endemic trasnmission-oriented 
risk model would always be greater than or equal to 0. The 
duality gap is zero if and only if strong duality holds 
(Hazewinkle 2002). Otherwise the gap is strictly positive 
and weak duality holds. In general given two dual pairs of 
clinical-sampled MDR-TB predictor variables separated 
locally convex spaces *( , )X X  and *( , )Y Y  then given the 
function { }: ,f X → ∪ +∞  an experimenter may define 

the primal problem by ( )inf .
x X

f x
∈

 If there are constraint 

conditions in the risk model, these can be built into the 
function f  by letting int= constra sf f I=  where I  is the 
indicator function. Then, if the expermnter lets 

{ }:F X Y× → ∪ +∞  be a perturbation function in the 

risk model such that ( ) ( ),0F x f x=  the duality gap may 
be quantitated by the difference given by 

( ) ( )* *

* *
inf ,0 sup 0,
x X y Y

F x F y
∈ ∈

 − −     
 where *F  is the 

convex conjugate in the sampled time series MDR-TB 
risk-related clinical variables. 

Interestingly, im computational optimization, another 
"duality gap" is often reported, which is the difference in 
value between any dual solution and the value of a 
feasible but suboptimal iterate for the primal problem. 
This alternative "duality gap" quantifies the discrepancy 
between the value (e.g., sampled MDR-TB endemic 
trasnmission-oriented explanatory variable) while deriving 
suboptimal iterates for the primal problem and the value 
of the dual problem. The value of the dual problem is, 
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under regularity conditions, equal to the value of the 
convex relaxation of the primal problem: The convex 
relaxation is the problem arising replacing a non-convex 
feasible set with its closed convex hull and with replacing 
a non-convex function with its convex closure, that is the 
function that has the epigraph that is the closed convex 
hull of the original primal objective function(Hazewinkle 
2002). 

Under a condition known as Slater's condition, the 
value of the primal and dual SDPs may be equal in a time-
series, explanatory, endemic, transmission-oriented, 
epidemiological, risk model. This is known as strong 
duality. Unlike for linear programs, however, not every 
MDR-TB-related SDP would satisfy strong duality; in 
general, the value of the dual SDP may lie strictly below 
the value of the primal. Suppose the primal problem (P-
SDP) is bounded below and strictly feasible in a 
spatiotemporal MDR-TB risk forecasting model(i.e., there 
exists 0 0, 0nX X∈   such that 0, ni iA X b= , 

1, ,i m=  )[equation 1.1]. Then there is an optimal 

solution *y  to (D-SDP) and * *, , .n mC X b y=


 

Suppose the dual problem (D-SDP) is bounded above and 

strictly feasible in the model (i.e., ( )0
1

m

ii
i

y A C
=
∑   for 

some 0
my ∈ ). Then there is an optimal solution *X  to 

(P-SDP) and the equality from (1.1) holds. 
Consider three random variables A , B , and C  in a 

robust MDR-TB risk model. By definition, their 
correlation coefficients , ,AB AC BCρ ρ ρ  are valid if and 

only if 
1

1 0

1

AB AC

AB BC

AC BC

ρ ρ

ρ ρ

ρ ρ

 
 
 
  
 



 Suppose that an 

experimenter knows from some prior knowledge 
(empirical results of a MDR-TB clinical experiment, for 
example) that 0.2 0.1ABρ− ≤ ≤ −  and 0.4 0.5BCρ≤ ≤ . 
The problem of determining the smallest and largest 
clincial sampled values that ACρ  can take may be then 
given by: minimize/maximize 13x  subject to 

120.2 0.1x− ≤ ≤ − , 230.4 0.5x≤ ≤  11 23 33 1x x x= = =  

1 12 13
1 012 23

113 23

x x

x x

x x

 
 
 
  
 



 where an exprimenter could set 

12 13 23, ,AB AC BCx x xρ ρ ρ= = =  to obtain paramter 
estimator significance levels. This can be formulated by 
an SDP. The experimenter may then handle the inequality 
constraints by augmenting the variable matrix and 
introducing slack variables, for example 

 

1 0 00 1 0 0 0 0 01312
0 010 0 0 0 0 0 012 23
0 00 0 1 0 0 0 0113 23

00 0 0 1 0 0 00 0 0 1
0 0 0 0 0 0 000 0 0 2
0 0 0 0 0 0 00 00 0 0

0.112 1

xx
x x
x x

tr
s

s

x s

   
   
   
   
   
   
   
           

= + = −

  

Solving this SDP would then render the minimum and 
maximum values of 13AC xρ =  as −0.978and 0.872 
respectively 

Semidefinite programs are important tools for 
developing approximation algorithms for NP-hard 
maximization problems. The first approximation 
algorithm based on an SDP is due to Goemans and 
Williamson (JACM, 1995). They studied the MAX CUT 
problem: Given a graph ( ) ,G V E= , output a partition of 
the vertices V so as to maximize the number of edges 
crossing from one side to the other. This problem can be 
expressed as an integer MDR-TB related quadratic 

program by maximizing 
( ),

1
,

2
i j

i j E

v v

∈

−
∑  such that each 

{ }1, 1iv ∈ − . Unless P  NP= , however the program 
would not be able to solve this maximization problem in a 
spatiotemrpaol MDR-TB epidemiological forecasting risk 
model efficiently. However, Goemans and Williamson 
observed a general three-step procedure for attacking this 
sort of problem by relaxing the integer quadratic program 
into an SDP and solving the SDP to within an arbitrarily 
small additive of error. Thereafter, by rounding the SDP 
solution an approximate solution to the original integer 
quadratic program in the risk model may be obtained. For 
MAX CUT, the most natural relaxation is 

( ),

1
max ,

2
i j

i j E

v v

∈

−
∑  such that 2 1iv = , where the 

maximization is over vectors { }iv  instead of integer 
scalars. (Griffith 2003).This relaxation in an MDR-TB 
related SDP in the model would be associated to the 
objective function and constraints which are all linear 
functions of vector inner products. Solving the MDR-TB -
related time series SDP would then render a set of unit 
vectors in nR . Importantly, since the vectors in a MDR-
TB forecasting endemic transmission-oriented explanatory 
model cannot be collinear (see Jacob et al. 2013c, Jacob et 
al. 2010b), the value of this relaxed program can only be 
higher than the value of the original quadratic integer 
program. Finally, a rounding procedure would be needed 
in the dataset of the residually forecasted derivatives 
targeting the statistically significant MDR-TB related 
clinical predictors to obtain a partition. Goemans and 
Williamson simply chose a uniformly random hyperplane 
through the origin and divided the vertices according to 
which side of the hyperplane the corresponding vectors 
lay. Straightforward analysis shows that this procedure 
achieves an expected approximation ratio (i.e., 
performance guarantee) of 0.87856 - ε . The expected 
value of the cut would then be the sum over edges of the 
probability in the risk model outputs where the edge is cut, 
which may be proportional to the angle 1cos ,i jv v−  

between the vectors at the endpoints of the edge over π . 

Comparing this probability to ( )1 , 2i jv v− , in 

expectation the ratio is always at least 0.87856. Assuming 
the Unique Games Conjecture, it can be shown that this 
approximation ratio is essentially optimal. 

In computational complexity theory, the Unique Games 
Conjecture is a conjecture made by Subhash Khot in 2002. 
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The conjecture postulates that the problem of determining 
the approximate value of a certain type of game, known as 
a unique game, has NP-hard algorithmic complexity. It 
has broad applications in the theory of hardness of 
approximation. If it is true, then for many important 
problems in MDR-TB epidemiological risk modeling it is 
not only too hard to get an exact solution (as postulated by 
the P versus NP problem), but also too hard to get a good 
approximation for proper clinical and/or environmental 
parameter estimator significance testing.. There are 
however important implications for constraint satisfaction 
problems in endemic tranmission-oriented MDR-Tb 
forecasting risk models. The formulation of the unique 
games conjecture is often used in hardness of 
approximation (Hazewinkle 2002).The conjecture 
postulates the NP-hardness of the following promise 
problem known as label cover with unique constraints. For 
each edge, the colors on the two vertices in a robust MDR-
TB risk model would then be restricted to some particular 
ordered pairs. In particular, unique constraints means that 
for each edge none of the ordered pairs have the same 
color for the same node.This means that an instance of 
label cover in the risk model with unique constraints over 
an alphabet of size k can be represented as a graph 
together with a collection of permutations 

[ ] [ ]:    e k kπ → , one for each edge e of the endemic 
trasnmission-oriented graph. An assignment to a label 
cover instance gives to each vertex of G a value in the set 
[ ]k , often called “colours.” 

 

Figure 1.1. The 4 vertices in a predictive MDR-TB epidemiological risk 
model that have been assigned colors while satisfying the constraints at 
each edge 

 

Figure 1.2. A solution to the unique label cover instance for a predictive 
MDR-TB epidemiological risk model 

Unfortunately, such instances in a time-series, 
explanatory, endemic, trasnmission-oriented, MDR-TB 
risk model may be strongly constrained in the sense that 
the colour of a vertex uniquely would define the colours of 
its neighbours, and hence for its entire connected 
component. Thus, if the input instance admits a valid 
assignment in the risk model, then such an assignment can 
be found efficiently by iterating over all colours of a 

single node. In particular, the problem of deciding if a 
given instance admits a satisfying assignment can be 
solved in polynomial time. 

 
Figure 1.3. An instance of unique label cover that does not allow a 
satisfying assignment in a MDR-TB risk model 

 
Figure 1.4. An assignment that satisfies all edges except the thick edge 
in a MDR-TB risk model 

The sampled MDR-TB endemic trasnmission-oriented 
explanatory time-series value of a unique label cover 
instance would then be the fraction of constraints that can 
be satisfied by any assignment. For satisfiable instances, 
this value would be 1. On the other hand, it may be very 
difficult for an experimenter to determine the value of an 
unsatisfiable MDR-TB predictive risk model , even 
approximatively. The unique games conjecture would 
formalize this difficulty. More formally, the (c, s) gap 
label cover problem with unique constraints would be (Lyes, 
Lno): Lyes = {G where, some assignment satisfies at least a 
c-fraction of constraints in G} and Lno = {G: Every 
assignment satisfies at most an s-fraction of constraints in 
G}where G is an instance of the label cover problem with 
unique constraints in the model output (Cressie 2003).The 
unique games conjecture states that for every sufficiently 
small pair of constants ,    0ε δ > , there exists a constant 
k such that the ( )1  ,  δ ε−  gap label cover problem with 
unique constraints over alphabet of size k is (Non-
deterministic Polynomial-time hard), NP-hard 
(Hazewinkle 2002). 

Non-deterministic Polynomial-time hard in 
computational complexity theory, is a class of problems 
that are, informally, "at least as hard as the hardest 
problems in NP". A problem H is NP-hard if and only if 
there is an NP-complete problem L that is polynomial 
time Turing-reducible to H (i.e., TL H≤ ). In other words, 
L can be solved in polynomial time by an oracle machine 
with an oracle for H. Informally, an MDR-TB 
experimenter could think of an algorithm that can call 
such an oracle machine as a subroutine for solving H, and 
solves L in polynomial time, if the subroutine call takes 
only one step to compute. NP-hard-related forecasting 
MDR-TB endemic trasnmission-oriented problems may 
be of any type: decision problems, search problems, or 
optimization problems. Instead of time series MDR-TB 
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graphs, the label cover problem can be formulated in 
terms of linear equations. For example, suppose that an 
MDR-TB experimater has a system of linear equations 
over the integers modulo 7: ( )1 22 mod 7x x≡  , 

( ) ( )2 5 1 74 mod 7 2 mod 7x x x x≡ ≡   This would an 
instance of the label cover problem in a time-series, robust 
MDR-TB epidemiological risk model with unique 
constraints. For example, the first equation corresponds to 
the permutation (1, 2)π  where ( )(1, 2) 1 2  2x xπ =  modulo 
7 .A P-problem in a MDR-TB risk model whose solution 
time is bounded by a polynomia is always also NP 
(Hazewinkle 2000). If a problem is known to be NP, and a 
solution to the problem is somehow known, then 
demonstrating the correctness of the solution can always 
be reduced to a single P ( e.g., MDR-TB polynomial time) 
verification. If P and NP are not equivalent in a time series 
MDR-TB epidemiological risk model, then the solution of 
NP-problems requires an exhaustive search. Linear 
programming, long known to be NP and thought not to be 
P, was shown to be P by L. Khachian in 1979. It is an 
important unsolved problem to determine if all apparently 
NP problems are actually P in a MDR-TB epidemiological 
risk model . A problem is said to be NP-hard if an 
algorithm for solving it can be translated into one for 
solving any other NP-problem(Haxewinkle 2002). It may 
be much easier to show that a problem of statistical 
significance testing in a time series MDR-TB model is NP 
than to show that it is NP-hard . A problem which is both 
NP and NP-hard is called an NP-complete problem 
(Cressie 1993). 

In more recent work a new randomized algorithm has 
been employed to find a coloring based on a restricted 
random walk (E.G., "Edge-Walk"). The algorithm and its 
analysis uses basic linear algebra and is truly constructive 
in that it does not appeal to the existential arguments. The 
algorithm may then provide significant contributions to 
literature such as a new proof of Spencer's theorem and 
the partial coloring lemma employing time- series 
explanatory MDR-TB predictive risk model parameter 
estimators. One of the most basic techniques for 
combinatorial optimization is linear programming 
relaxation which may be applicable to time series, 
explanatory, MDR-TB, predictive, endemic, transmission-
oriented, risk modeling. Phrasing optimization in a 
language more suitable for time series MDR-TB 
epidemiological forecasting risk models would however, 
require a constraint matrix m mA ×∈ , a target vector 

nb∈  to render { }0,1 nx∈  so as to minimize Ax b ∞− . 
In order to derive robust clinical explanatory MDR-TB 
residualized forecasts, an experimenter could relax this 
‘discretness’ in the coefficinet estimates and instead solve 
the linear program 

[ ]0,1
min

ny
Ay b ∞

∈
−  in the derivatives. 

This can be done efficiently employing a restricted random 
walk algorithm and linear algebra. The next step, and 
often the most challenging one for most epidemiological 
infectious disease predictive explanatory risk modeling 
exercises, would be to round the fractional solution 

[ ]0,1 ny∈  to an integer solution in { }0,1 n  while maintaining 
minmal “loss”. How well an MDR-TB experimenter 

rounds off these intergers would be vital for determining 
robustness of a constraint time series matrix A , and general 
vectors b  for obtaining robust, endemic, transmission-
oriented, explanatory, time-series, estimators. This may be 
captured efficiently by the notion of linearized discrepancy 
introduced by Lovasz, Spencer and Vesztergombi (LSV): 

[ ] { }
( ) max min .

0,10,1
lindisc A Ax Ay

nn xy
= − ∞

∈∈
 

LSV introduced the notion of parameter estimation 
originally as a generalization of discrepancy which could 
be formulated theretically in a time-series, explanatory, 
MDR-TB, endemic, transmission-oriented, explanatory, 
predictive, risk model as follows: 

{ }1, 1
( ) min

n
disc A Aε

ε
∞

∈ −
= . 

This equation would correspond exactly to the notion of 
discrepancy in the risk model outputs. On the other hand, 
an MDR-TB experimenter could also write 

{ }0,1
( ) 2max / 2 ,nx

disc A Ax Ae
∈

= −  where denotes the 

vector. Thus, ( )disc A  would correspond to discrepancy 
variables in a robust, linearized, explanatory, time-series 
predictive, epidemiological, MDR-TB model especially 
when an experimenter is trying to round a particular ( / 2e ) 
fractional solution. The remarkable result of LSV is that 
the definition seems to be much weaker than lindisc  
which has to round all fractional solutions in order that 
there is a natural extension, (i.e., discrepancy, ) of disc  
but the derivatives are much stronger. As such, for a 
matrix m nA ×∈  and [ ]S n⊆ , for robust, explanatory, 
time- series, MDR-TB, risk-related modeling, an 

experimenter could let SA denote the m S×
  sub-matrix 

corresponding to the columns of A  indexed by S . Then, 
by defining ( ) max ( )s

S
A disc A=  the time-series, 

explanatory, clinical-sampled, parameter estimators may 
be parsimoniously quantiated. Discrepancy is a natural 
and more “robust” version of discrepancy (Cressie 1993). 

In a time series, MDR-TB, epidemiological, endemic, 
transmission-oriented, risk model ‘discrepancy can be 
small, but it may carry more structural information than 
other residually forecasted derivatives. For example, if an 
MDR-TB experimenter lets A  be a random 1, 1−  matrix 
in a time-series, explanatory, endemic, transmission-
oriented, epidemiological, risk model with the constraint 
that each row has sum 0 . Then, ( ) 0disc A = , but 

( )( )disc A n= Ω  will make intuitive sense in the risk 

model as random matrices may be expected to have little 
structure in the predictive residualized covaraite 
coefficinet estimates. It is also worth noting that several 
notable results in discrepancy theory have been bound by 
issues of discrepancy. For example, Spencer’s original 
proof as well as Gluskin’s argument revealed that for all 

matrices [ ]1,1 n nA ×∈ − , ( )( )disc A O n= . LSV may then 

show the following connection between linearized, time-
series, explanatory, MDR-TB model discrepancies. For 
any matrix A , ( )( )lindisc A herdisc A≤  (i.e., heterogenous 
disc A). [eqn 1.2] (Cressie 1993) . In other words, any 
fractional solution for a linear program of the form 
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Equation 1.2 can be rounded to an integer solution with an 
additive error of at most ( )herdisc A  in a robust 
explanatory, endemic, transmission-oriented, predictive, 
epidemiological, MDR-TB risk model. 

Suppose a experimeneter has a fractional solution 

[ ]0,1 ny∈  in the MDR-TB model time -series parameter 
estimators statiatical sinificance tests.The goal of the 

experimenter may then be to find an { }0,1 nx∈  in the 

epidemiological, risk model such that Ay Ax ∞−  is small. 
He or she could then construct the risk model in such a 
mannerism that x  may be parsimoniously quantitated by 
iteratively making y  more integral. The experimenter 
could then write the binary expansion of each of the 
sampled clinical/environmental parameter estimator 
coordinates of y : for each [ ] 1 2, 0. .i i ii n y y y∈ =  To 
avoid unnecessary technical issues, the experimeneter may 
further suppose that each coordinate has a finite expansion 
of length m . An MDR-TB experimenter could then 
robustly build a sequence of solutions 

1, , , my y y y xυ = =  in the epidemiological risk model 

such that the coordinates of iy  when written in binary 
will have expansions of length at most m i− . Thereafter, 
by deriving 1y ; the time s-series explanatory clinical 
MDR-TB parameter estimators will be efficiently 
quantitated such that all the estimator significance levels 
will be rendered accurately. Then, if an experimenter lets 

[ ]{ }: 1imS i n y= ∈ =  by defining herdisc  in the MDR-
TB epidemiological risk model, there would exist a vector 

{ }1, 1 Sε ∈ −  such that ( )S SA herdisc Aε ∞ ≤ . Therefater, 

by letting 1 / 2m
Sy y ε= +  in the model outputs, 

interpreting ε  as a vector in { }1, 1,0 n−  may be conducted 
in a natural mannerism. Clearly, the binary expansions of 
the coordinates of 1y  then would have length at most 

1m −  in the time series, explanatory MDR-TB-related, 
risk model residual forecasted derivatives. Further, 

( )1 2 / 2m m
S SAy Ay A herdisc Aε ∞∞

− = ≤  in the 

regressed derivatives. Iterating this argument, a MDR-TB 
experimenter would then derive 1, , my y x=  such that 

( )1 / 2i i m iAy Ay herdisc A+ −
∞

− ≤ . Therefore,  

 ( ) ( )
1

0
.

2

m

m i
i

herdisc A
Ay Ax herdisc A

−

−
=

− ≤ ≤∑  [1.2] 

As appealing as equation 1.2 for timely quantitating 
spatiotemporal -sampled MDR-TB clinical paramter 
estimators is, the method comes with one important caveat. 
The original motivation for examining linearized 
programming relaxations was that an MDR-TB 
experimeneter could solve them efficiently in a time-series, 
explanatory, predictive, epidemiologica,l risk model. For 
this to make sense, however, an experimenter would need 
to perform the rounding procedure efficiently . Optimally, 
to make the rounding efficient, in a time -series, 

explanatory, clinically-related, endemic, trasnmission-
oriented, MDR-TB risk model, an experimenter would 
need to find a small discrepancy solution efficiently (e.g., 
find Sε  given SA ). Unfortunately, this in general is very 
difficult as recently shown by Charkiar, Newman and 
Nikolov. Furthermore, Spencer’s original proof as well as 
Gluskin’s proof do not give an efficient algorithm for 
finding a good coloring in an edge algorithm for efficently 
quantitating time-series MDR-TB explanatory covariate 
coefficients in order to derive robust endemic 
transmission-oriented clinical parameter estimator 
significance threshold levels. 

For vectors { }1, , 1, 1 nna a ∈ − , there exists 

{ }1, 1 n∈ −  such that for every [ ]j n∈ , ( ),ja O n=  

(Theorem 1.1), Gluskin’s proof follows the partial 
coloring approach with the crucial lemma proved using a 
volume argument. The partial coloring method was 
introduced by Beck in 1981 and all proofs of Theorem 1.1 
and many other important discrepancy results in fact use 

this method. Here, instead of looking for a { }1~ 1, n−  
solution as in the theorem, an MDR-TB experimenter 

would search for a { }1,0, 1 n−  solution first in the risk 

model. The main idea is to instead look for a { }1,0, 1 n−  

solution which has ( )nΩ  support. The experimenter 
would then recurse on the set of clincal sampled MDR-TB 
clinical and/or environmental coordinates which are set to 
0. If everything goes optimally therefater, the geometric 
decrease would reveal an the ambient dimension in the 
forecasted derivatives. By so doing, geometrically 
decreasing discrepancy bounds may be tolerated in the 
derivatives. This is fundamentally inherent based on one 
important argument. This is the Minkowski’s theorem 
employing the pigeon-hole principle with exponentially 
has many “holes” which is rather non-algorithmic in 
nature. 

Importantly, For vectors { }1, , 1, 1 nna a ∈ − , there 

exists { }1,0, 1 n∈ −  such that for every [ ]j n∈ , 

( ),ja O n=  and ( ) ( )Support n= Ω . To prove the 

above partial-coloring-lemma, a MDRE-TB experimenter 
would have to rephrase the problem employing geometric 
risk modeling language. For example, he or she may 
choose to let nR⊆  be the symmetric convex set 
(symmetric meaning x∈  implies x− ∈ ) which may 
be then defined in a robust MDR-TB forecasting risk 
model as follows for which may then be re-written 

as : [ ]{ }: , , .jx a x j n= ≤ ∆ ∀ ∈   Optimally, the 

experimenter would want to show that   contains a 

{ }1,0, 1 n−  lattice point of large support. This derivation 
may be qunatiated indirectly by proving that   instead 
contains a lot of clinical/environmentral sample points 

from { }1,0, 1 n− . Gluskin would do this by a clever volume 
argument for constructing a MDR-TB risk model by first 
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showing that the volume of [ ]1,1 n∩ −  was large and 
then applying Minkowski’s theorem to show that there are 
many lattice points. To lower bound the first volume, 
Gluskin actually would work in the Gaussian space. But if 
a MDR-TB experimenter looks at a predictive, risk-related, 
forecasting, endemic, transmission-oriented analysis, a 
clear advantage would be that the projections would 
behave better in the Gaussian space. For example, if an 
MDR-TB experimenter employes a set like 

{ }1: 1nS x R x= ∈ ≤ , then the Lebsgue mesasure of S  

would be infinite in the residual model outputs. If the 
experimenter projects along the first sampled clinical 
coordinates the outputs would become finite. 

Lebesgue integration is a mathematical construction 
that extends the integral to a larger class of functions 
which may extend the domains on which a series of 
MDR-TB-related explanatory functions could be defined. 
Jacob et al. (2013) proved for non-negative MDR-TB 
functions with a smooth enough output graph such as 
continuous quantitated process, the Lebesgue integral 
plays an important role, since the risk model robustness 
would involve a pivotal portion of the axiomatic theory of 
probability functions on closed bounded intervals. This 
according to the authors was the area under the curve on 
the graph which could be defined as the integral and 
computed using Euclidean techniques of approximation of 
a study region by cartographically displaying time-series 
SAS/GIS constructed polygons. 

In Kolmogorov's probability theory, the probability P 
of some event E, denoted ( )P E , is usually defined such 
that P satisfies the Kolmogorov axioms. These 
assumptions can be summarized in a MDR-TB 
epidemiological forecasting risk model by letting 
( ), ,F PΩ  be a measure space with ( ) 1P Ω = . Then 

( ), ,F PΩ  would be a probability space, with sample 
space Ω , event space F and probability measure P. 
However, as the need to consider more irregular, time-
series ,MDR-TB functions arise it may become clear that 
more careful approximation techniques would be needed 
to define a suitable integral for the risk model. Also, an 
experimeneter might wish to integrate on spaces more 
general than the real line; the Lebesgue integral may 
provide the right abstractions needed to do this in a robust 
MDR-TB time-series explanatory risk model.In 
probability theory, the Donsker’s theorem (i.e., central 
limit theorem) identifies and quantitates time-series 
explanatory stochastic processes. Employing the Laplace 
distribution, the regressed endemic, transmission-oriented, 
MDR-TB-related, explanatory, covariate coefficients 
would then involve the inverse of the kurtosis of the 
predictors. By the classical central limit theorem for fixed 
x, however, the random variable ( )Gn x  (e.g., explanatory-
sampled, georeferenced, operationalizable, field and/or 
environmental specified, MDR-TB, predictor variable) 
would converge in distribution to Gaussian (i.e., normal) 
randmomized variable when ( )G x  with zero mean and 
variance ( ) (1 ( ))F x F x−  as the sample size n grows 

Suppose an MDR-TB experimeneter wants to employ a 

standardized Gaussian vector ( )~ 0,1 ng  . Then, for 

any unit vector , ,nv R v g∈  has the standard normal 
distribution. Now, suppose the experimenter has several 
risk-based, explanatory, endemic, transmission-oriented, 
unit vectors 1, , n

mv v R∈ . Then, the clinical/environmental 
random variables ,i iX v g=  would be individually 
standard normals, but would be correlated with one 
another. Sidak’s lemma (1967) states that no matter what 
the sampled correlations of iX  ‘s are, to bound the 
probability that none of the ‘s is too large. iX  The “worst-
behaviour” an MDR-TB experimenter could thus expect 
for the sampled clinical/environmental data is to be 
independent. Concretely: Let 1, , n

mv v R∈  and let 

( )~ 0,1 ng   be a standard Gaussian vector in a MDR-
TB epidemiological risk model. Then, for all 
1, , mt t R+∈ . In the epidemiological risk model a 

experimenter may derive { }: ,n
i i iC x R v x t= ∈ ≤ . 

Then, Sidak’s lemma says that for ( )~ 0,1 ng  , 

[ ]
[ ] [ ] [ ]

1 2

1 2

Pr

Pr .Pr Pr .
m

m

g C C C

g C g C g C

∈ ∧ ∧ ∧

≥ ∈ ∈ ∈





 The correlation 

conjecture asserts that this inequality is in fact true for all 
symmetric convex sets (in fact, an MDR-TB experimenter 
would only need to look at 2m =  in the forecasting 
model). Sidak’s lemma says the conjecture is true for slabs. 
It is also known to be true for ellipsoids. The statement for 
ellipsoids also has a discrepancy implication leading to a 
vector generalization of Spencer’s theorem as pointed out 
by Krzysztof Oleszkiewicz. 

The second inequality required for constructing a robust 
endemic , transmission-oriented explanatory MDR-TB 
risk model is a comparison inequality due to Kanter. The 
lemma essentially would let an MDR-TB experimenter 
quantitate certain relations between any two sampled 
related distributions ,p q  to their product distributions 

,n np q . Thereafter, the experimenter could employ the 
notion of peakedness of the clincal distributions. For 
instance, ,p q  may be two symmetric MDR-TB related 

distributions on mR  for some m . Thus, p  may be less 
peaked than q  (written p q ) if for all symmetric MDR-
TB related convex sets  , ( ) ( )p q≤  . Intuitively, 
this means that p  is putting less of its mass near the 
origin than q  (hence the term less peaked). For example, 

( ) ( )0,2 0,1  . Therefater, according to Kanter’s 
lemma, the peakedness relation tensorises in the MDR-TB 
data may be parsimoniously quantiated provided 
unimodality exists. A univariate distribution is unimodal if 
the corresponding probability density function has a single 
maximum and no other local maxima (Cressie 1993). 
Then, by letting ,p q  be two symmetric MDR-TB 

distributions on nR  such that p q  and by letting µ  be 

a unimodal distribution on mR , the product distributions 
p µ× , q µ×  on n mR ×  would satisfy p qµ µ× × . The 

proof of this paramter estimation technique is not too hard, 



263 American Journal of Applied Mathematics and Statistics  

 

but is non-trivial in that it uses the Brunn-Minkowski’s 
inequality. Combining the technique with the not-too-hard 
fact that the standard Gaussian distribution is less peaked 
than the uniform MDR-TB endemic transmission-oriented 
distribution on [ ]1,1− , µ  would be the uniform 

distribution on [ ]1,1− . Then, ( )0,1 .n nµ  
In mathematics, Minkowski's theorem is the statement 

that any convex set in Rn which is symmetric with respect 
to the origin and with volume greater than ( )2 dn L  
contains a non-zero lattice point. Suppose that L is a 
lattice of determinant ( )d L  in the n-dimensional real 

vector space Rn  in a spatiotemporal MDR-TB 
epidemiological, endemic, transmission-oriented, 
predictive, risk model and S is a convex subset of Rn that 
is symmetric with respect to the origin. Then, if x is in S in 
the risk model then −x would also be S. Minkowski's 
theorem states that if the volume of S is strictly greater 
than ( )2 dn L , then S must contain at least one lattice 
point other than the origin(Cressie 1993). The following 
argument may then prove Minkowski's theorem for the 
special case of 2L Z=  in a robust, explanatory, MDR-TB, 
epidemiological, endemic, trasnmission-oriented, risk 
model. Thereafter, the clinically residually forecasted 
derivatives could be generalized to arbitrary lattices in 
arbitrary dimensions. 

Consider a time-series, explanatory, time-series, 
predictive, epidemiological, MDR-TB risk map 

( ) ( )2: , , mod 2, mod 2f S x y x y→   . Intuitively, this 
map could cut the plane into 2 by 2 squares. then the 
squares would be stacked on top of each other. Clearly 
( )f S  would have an area  4≤ . Suppose f were injective 

in the MDR-TB epidemiological risk model. Then, the 
pieces of S cut out by the squares would stack up in a non-
overlapping way. Since f is locally area-
preserving(Cressie 1993) , this non-overlapping property 
in the risk model would render forecasted derivatives for 
all of S area-preserving, so the area of ( )f S  would be the 
same as that of S, which would then be greater than 4. 
This not being the optimal case, f would not be injective, 
and ( ) ( )1 2f p f p=  would be rendered during the 
analyses of the sampled clinical MDR-TB explanatory 
clinical/environmental data points 1 2,p p  in S. Moreover, 
the definition of f that ( )2 1 2 ,2p p i j= +  for some 
sampled integers i and j, where i and j could not be both 
zero. Then, since S is symmetric about the origin, 1p−  
would also be a point in S in the risk model. Since S 
would be convex, the line segment between 1p−  and 2p  
would lay entirely in S, and in particular the midpoint of 
that segment would lie in S. In other words, 

( ) ( )( ) ( )1 2 1 1
1 1 2 ,2 ,
2 2

p p p p i j i j− + = − + + =  would lay 

in S. (i,j) which would be a lattice point in the MDR-TB 
epidemiological risk model and not the origin since i and j 
could not both be zero. 

Nikhil’s argument studies a carefully constructed semi-
definite programming relaxation of the problem and then 

gives a new and amazing rounding algorithm for the SDP. 

For vectors [ ]1, , 1, 1 nna a ∈ − , thyen there would exist 

{ }1,0, 1 nε ∈ −  such that for every [ ]j n∈ , 

( ),ja O n=  and ( ) ( )Support n= Ω  . If an MDR-

TB experimenter rephrases the problem in geometric 
language for fitting a robus,t explanatory, spatiotemporal, 
predictive, endemic, transmission-oriented, risk model and 
then lets n⊆   be the symmetric convex set, the 

forecasted derivatives would reveal ( )O n∆ = . 

Additionally, in the MDR-TB risk model symmetrical 
output x∈  would then imply x− ∈ . 

Interestingly, the partial coloring lemma may be 
equivalent to determining whether   contains a 

{ }1,0, 1 n−  lattice point in a robust, explanatory, MDR-TB, 
predictive, epidemiological, risk model. As it turns out, 
however, an experimenter would need to find a lattice 
point in   in the predictive risk model in order to 
adequately perform robust parameter estimator 
significance testing. Any MDR-TB clinical/environmental 
sampled point with many { }1, 1−  (or close to { }1, 1− ) 
coordinates will serve equally well. Concretely, a 
experimeneter would attempt to quantitate   as to 
determine if there exists x∈  such that 

{ } ( ): 1ii x n= = Ω . Thus, derivation of a robust, MDR-

TB, endemic, transmission-oriented, explanatory, risk 
model output would then be equivalent to finding a vertex 
of   which would then be tight on ( )nΩ  coloring 
constraints. For intuition, a MDR-TB experimenter could 
use the distance from the origin as a proxy for efficiently 
quantitating how many clinical/environmental coordinates 
are close to 1 in the absolute value in the risk model 
explanatory output. Thus, the goal for robust MDR-TB 
predictive risk modeling may be to find a vertex of   as 
far away from the origin as possible in order to 
parsimoniously quantitate the sampled clincial 
explanatory covariates based on their statistcal 
significance levels. The starting point optimally would be 
the all-zeros vector in the empirical sampled dataset. The 
x  in the MDR-TB epidemiological, endemic, 
transmission-oriented, explanatory, predictive, risk model 
may be then updated by employing Brownian motion. 

The GBM (i.e., exponential Brownian motion) is a 
continuous-time stochastic process in which the logarithm 
of the randomly varying quantity follows a Brownian 
motion. Brownian motion is the presumably random 
drifting in a mathematical model used to describe random 
movements (Cressie 1993). In 1956 Skorokhod and 
Kolmogorov defined a separable metric d, called the 
Skorokhod metric, on the space of cadlag functions on 
[0,1], such that convergence for d to a continuous function 
is equivalent to convergence for the sup norm, and showed 
that Gn converges in law in [ ]0,1  to the Brownian 
bridge. Let (M, d) be a metric space, and let RE ⊆ . A 
function ƒ :E M→  is called a càdlàg function if, for 
every t E∈ , the left limit ( )ƒ( ) :  lims tt f s↑− =  exists; 
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andthe right limit ( ) ( )ƒ :  lims tt f s↓+ =  exists and equals 
ƒ(t).That is, ƒ is right-continuous with left limit. In 
mathematics, a càdlàg (French "continue à droite, limite à 
gauche"), RCLL (“right continuous with left limits”), or 
corlol (“continuous on (the) right, limit on (the) left”) 
function is a function defined on the real numbers (or a 
subset of them) that is everywhere right-continuous and 
has left limits everywhere(Hazwewinkle 2002).. Càdlàg 
functions are important in the study of stochastic 
processes that admit (or even require) jumps, unlike 
Brownian motion, which has continuous sample paths 
(Cressie 1993). The collection of càdlàg functions on a 
given domain is known as Skorokhod space. 

The set of all càdlàg functions from E to M is often 
denoted by ( );D E M  (or simply D) and is called 
Skorokhod space. Skorokhod space can be assigned a 
topology that, intuitively allows us to "wiggle space and 
time a bit" (whereas the traditional topology of uniform 
convergence only allows us to "wiggle space a bit"). For 
simplicity, take [ ] 0,E T=  and RnM =  — see 
Billingsley 1999 for a more general construction. We must 
first define an analogue of the modulus of continuity, 

( )ƒϖ δ′ . For any F E⊆ , set 

( ) ( ) ( )
,

: supf
s t F

w F f s f t
∈

= −  and, for  0δ > , define the 

càdlàg modulus to be 

 ( ) [ ]( )1
1

: inf max , ,f f i i
i k

w t tϖ δ −
∏ ≤ ≤

′ =  

where the infimum runs over all partitions 
{ }0 1  0    kt t t TΠ = = < < … < = ,   Nk ∈ , with 

( )1min   i i it t δ−− > . This definition makes sense for 
non-càdlàg ƒ (just as the usual modulus of continuity 
makes sense for discontinuous functions) in a MDR-TB 
risk model and thus it can be shown that ƒ is càdlàg if and 
only if ( )ƒ   0ϖ δ′ →  as  0δ → . Then, if a experimenter 
lets Λ denote the set of all strictly increasing, continuous 
bijections from E to itself (these are "wiggles in time"). 
Then by letting ( )sup

t E
f f t

∈
=  in the risk model , robust 

uniform norms may be denoted on functions on E. The 
experimenter can then define the Skorokhod metric σ  on 
D by 

 ( ) { }, : inf max , | ,f g I f g
λ

δ λ ολ
∈∧

= − −  

where :I E E→  is the identity function. In terms of the 

"wiggle" intuition,   Iλ −  would measure the n MDR-

TB size of the "wiggle in time", and ƒ  g λ−   
measures the size of the "wiggle in space". It can be 
shown that the Skorokhod metric is indeed a metric. The 
topology Σ  generated by σ  is called the Skorokhod 
topology on D (Hazewinkle 2002). 

By an application of the Arzelà–Ascoli theorem, one 
can show that a sequence ( ) 1,2,n nµ = …  of probability 

measures on Skorokhod space D is tight if and only if both 
the following conditions are met: 

{ }( )
0

lim limsup 0,n
n

f D f a
δ

µ
→ →∞

∈ ≥ = and 

{ }lim limsup 0 0.
0

f D for alln f
n

µ ϖ ε ε
δ

 ′∈ ≥ = > 
 → →∞

 

sequence { }n nf ∈N  of continuous functions on an interval 

[ ] ,I a b=  is uniformly bounded if there is a number M 

such that ( )nf x M≤  for every function   nf  belonging 

to the sequence, and every [ ],x a b∈ . The sequence is 
equicontinuous if, for every    0ε > , there exists  0δ >  
such that ( ) ( )n nf x f Y ε− <  whenever | |  x y δ− <   for 
all functions  fn  in the sequence. Succinctly, a sequence is 
equicontinuous if and only if all of its elements admit the 
same modulus of continuity. In simplest terms, the 
theorem can be stated as follows: Consider a sequence of 
real-valued continuous functions { }n nf ∈N  defined on a 
closed and bounded interval [a, b] of the real line. If this 
sequence is uniformly bounded and equicontinuous, then 
there exists a subsequence ( )nkf  that converges 
uniformly.The converse is also true, in the sense that if 
every subsequence of { }nf  itself has a uniformly 
convergent subsequence, then { }nf  is uniformly bounded 
and equicontinuous based on the a proof Let 

[ ] ,I a b= ⊂ R  be a closed and bounded interval. If F is 
an infinite set of functions   :f I → R  which is uniformly 
bounded and equicontinuous, then there is a sequence fn of 
elements of F such that nf  converges uniformly on I. 

Importantly, by fixing an enumeration { } Ni ix ∈  of 
rational MDR-TB clinical/environmental explanatory , 
endemic, trasnmission-oriented, covariate values in I, F 
would be uniformly bounded, by the set of points 

( ){ }1 Fff x
∈

 which would alsoe be bounded, based on the 

Bolzano-Weierstrass theorem. In mathematics, 
specifically in real analysis, the Bolzano–Weierstrass 
theorem, is a fundamental result about convergence in a 
finite-dimensional Euclidean space Rn. The theorem states 
that each bounded sequence in Rn has a convergent 
subsequence. An equivalent formulation is that a subset of 
Rn is sequentially compact if and only if it is closed and 
bounded there is a sequence { }1nf  of distinct functions in 

F such that ( ){ }1 1nf x  converges. Repeating the same 
argument for the sequence of sampled MDR-TB 
epidemiological sampled points ( ){ }1 2nf x , there would 

be a subsequence { }2nf  of { }1nf  such that ( ){ }2 2nf x  
converges.By induction this process can be continued 
forever, and so there is a chain of subsequences 

{ } { }1 2n nf f⊇ ⊇  such that, for each  1,  2,  3,  ...k = , 

the subsequence { }nkf  would converge at 1,  ..., kx x . 
Now if an MDR-TB experimenter forms the diagonal 
subsequence { }f  in the risk model whose mth term mf  is 

the mth term in the mth subsequence { }nmf  then, mf  
would converge at every rational point of I. Therefore, 
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given any  0ε >  and rational kx  in I, there would be an 
integer ( ), kN N xε=  such that 

( ) ( ) , , .
3n mf x f x n m Nε

− < ≥  Since the family F would 

be equicontinuous, for this fixed ε  and for every x  in I in 
the MDR-TB risk model, there would be an open interval 

xU  containing x  such that ( ) ( )
3

f s f t ε
− <  for all 

Ff ∈  and all ,s t  in I such that , xs t U∈ . The collection 
of intervals ,xU x I∈  would then form an open cover of I. 
Since I  is compact, this covering would then admit a finite 
subcover 1,  ..., JU U . Then there would exist an integer K 
such that each open interval ,  1 jU j J≤ ≤  would 

contains a rational   kx  with 1 k K≤ ≤ . Finally, for any 
t I∈ , there are j and k so that t and kx  belong to the same 
interval jU . For this choice of k, 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

3 3 3

n n k

n m n k m k

m k m

f t f x

f t f t f x f x

f x f t

ε ε ε
 −
 
 − ≤ + − < + +
 
 + − 

 for 

all ( ) ( ){ }1,  max , ,  ..., , Kn m N N x N xε ε> = . 

Consequently, the MDR-TB sequence { }nf  would be 
uniformly Cauchy, and therefore wouold converge to a 
continuous function. 

The definitions of boundedness and equicontinuity can 
also be generalized in a MDR-TB epidemiological risk 
model to the setting of arbitrary compact metric spaces 
and, more generally still, compact Hausdorff spaces. Let X 
be a compact Hausdorff space, and let C(X) be the space 
of real-valued continuous functions on X. A subset 

( )C X⊂F  is said to be equicontinuous if for every 
x X∈  and every  0ε > , x has a neighborhood xU  such 

that ( ) ( ), :xy U f F f y f x ε∀ ∈ ∀ ∈ − <  (Hazewinkle 
2002). A set F ⊂ C(X, R) is said to be pointwise bounded 
if for every x ∈ X, ( ){ }sup :f x f F∈ < ∞ . A version of 

this holds also in the space C(X) of real-valued continuous 
functions on a compact Hausdorff space X (Dunford and 
Schwartz 1958):Let X be a compact Hausdorff space. 
Thus, a subset F of C(X) in a MDR-TB risk model is 
relatively compact in the topology induced by the uniform 
norm if and only if it is equicontinuous and point wise 
bounded. The Arzelà–Ascoli theorem would thus be a 
fundamental result in the study of the algebra of 
continuous functions on a compact Hausdorff space. 

Various generalizations may be then constructed 
employing MDR-TB risk models. For instance, functions 
can assume clinical covariate coefficient values in a metric 
space or (Hausdorff) topological vector space with only 
minimal changes to the statement (Kelley and Namioka 
1982) Kelley (1991)]:Let X be a compact Hausdorff space 
and Y a metric space. Then ( ),C X Y⊂F  is compact in 
the compact-open topology if and only if it is 
equicontinuous, pointwise relatively compact and 
closed.Here the pointwise relatively compact means that 

for each x X∈ , the set ( ) {  : }x f x f= ∈F F  is relatively 
compact in Y.The proof given can be generalized in a way 
that does not rely on the separability of the domain. On a 
compact Hausdorff space X, in a MDR-TB risk model, for 
instance, the equicontinuity could be used to extract, for 
each   1 / nε = , a finite open covering of X such that the 
oscillation of any function in the family is less than ε on 
each open set in the cover. The role of the rationals can 
then be played by a set of samplede clinical points drawn 
from each open set in each of the countably many covers 
obtained in this way, and the main part of the proof 
proceeds exactly as above. 

Whereas most formulations of the Arzelà–Ascoli 
theorem assert sufficient conditions for a family of 
functions to be (relatively) compact in some topology, 
these conditions are typically also necessary. For instance, 
if a set F is compact in C(X), the Banach space of real-
valued continuous functions on a compact Hausdorff 
space with respect to its uniform norm, then it is bounded 
in the uniform norm on C(X) and in particular is pointwise 
bounded. Let ( ),N Uε  be the set of all functions in F 
whose oscillation over an open subset U X⊂  is less than 

( ) { }: , .UN U f osc fε ε ε= <  For a fixed x X∈  and ε , 

the sets ( ),N Uε  form an open covering of F as U varies 
over all open neighborhoods of x. Choosing a finite 
subcover then gives equicontinuity.To every function g 
that is p-integrable on [0, 1], with 1  p< ≤ ∞ , associate 

the function G defined on [0, 1] by ( ) ( )
0

.
x

G x g x dt= ∫  Let 

F be the set of functions G corresponding to functions g in 
the unit ball of the space [ ]( )0,  1pL . If q is the Hölder 

conjugate of p, defined by 1/p  + 1/q = 1, then Hölder's 
inequality implies that all functions in F satisfy a Hölder 
condition with α = 1/q  and constant M = 1.It follows that 
F is compact in C([0, 1]). This means that the 
correspondence g G→  defines a compact linear operator 

T between the Banach spaces [ ]( )0,  1pL  and [ ]( )0,  1C . 

Composing with the injection of [ ]( )0,  1C  into 

[ ]( )0,  1pL , one sees that T acts compactly from 

[ ]( )0,  1pL  to itself. The case  2p =  can be seen as a 
simple instance of the fact that the injection from the 
Sobolev space ( )1

0H Ω  into ( )2L Ω , for Ω  a bounded 
open set in Rd, is compact.When T is a compact linear 
operator from a Banach space X to a Banach space Y, its 
transpose T ∗ is compact from the (continuous) dual Y ∗  to 
X ∗ . This can be checked by the Arzelà–Ascoli 

theorem.Indeed, the image T(B) of the closed unit ball B 
of X is contained in a compact subset K of Y. The unit ball 
B∗ of Y ∗ defines, by restricting from Y to K, a set F of 
(linear) continuous functions on K that is bounded and 
equicontinuous. By Arzelà–Ascoli, for every sequence 
{ }y n∗ , in B∗ , there is a subsequence that converges 

uniformly on K, and this implies that the image ( )* *
nkT y  

of that subsequence is Cauchy in  X ∗ . 
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When  f  is holomorphic in an open disk ( )1 0 ,D B z r=  
in a MDR-TB model with modulus bounded by M, then 
(for example by Cauchy's formula) its derivative  f ′ would 
have a modulus bounded by 4M/r in the smaller disk D2 = 
B(z0, r/2). If a family of holomorphic functions on D1 is 
bounded by M on D1, it follows that the family F of 
restrictions to D2 is equicontinuous on D2. Therefore, a 
sequence converging uniformly on D2 can be extracted. 
This is a first step in the direction of Montel's theorem. In 
complex analysis, an area of mathematics, Montel's 
theorem refers to one of two theorems about families of 
holomorphic functions which give conditions under which 
a family of holomorphic functions is normal.Arzelà–
Ascoli theorem is a fundamental result of mathematical 
analysis giving necessary and sufficient conditions to 
decide whether every sequence of a given family of real-
valued continuous functions defined on a closed and 
bounded interval has a uniformly convergent subsequence. 
The main condition is the equicontinuity of the family of 
functions. The theorem is the basis of many proofs in 
mathematics, including that of the, Montel's theorem in 
complex analysis. 

Kolmogorov (1933) showed that when F is continuous, 
the supremum ( )supt nG t  and supremum of absolute 

value, ( )supt nG t  converges in distribution to the laws of 
the same functionals of the Brownian bridge B(t), s.In 
1952 Donsker stated and proved employing a general 
extension for the Doob-Kolmogorov heuristic approach. 
Donsker proved that the convergence in law of nG  to the 
Brownian bridge holds for Uniform [0,1] distributions (e.g. 
regressively quantiated explanatory clinically oriented 
MDR-TB variables) with respect to uniform convergence 
in t over the interval [0,1]. By the classical central limit 
theorem, for fixed x, the random variable ( )nG x  
converges in distribution to a Gaussian (normal) random 
variable ( )G x  with zero mean and variance 

( ) ( )(1 )F x F x−  as the sample size n grows (Hazewinkle 
2002). HDonsker's formulation may not be useful for 
constructing a robust MDR-TB epidemiological risk 
model because of the problem of measurability of the 
functionals of discontinuous processes. However, in 
probability theory, Donsker's theorem identifies a certain 
stochastic process as a limit of empirical processes. It is 
sometimes called the functional central limit theorem. A 
centered and scaled version of empirical distribution 
function nF  in a time-series, explanatory, epidemiological, 
forecasting, risk-related, MDR-TB model would then 
define an empirical process employing 

( ) ( ) ( )( )n nG x n F x F x= −  indexed by x∈R . The 

sequence of ( )nG x  in the risk model forecasted 
derivatives would bethen random elements of the 
Skorokhod space ( ),−∞ ∞  which could then converge 
in distribution to a Gaussian process G with zero 
mean .Brownian motion is among the simplest of the 
continuous-time stochastic (or probabilistic) processes, 
and it is a limit of both simpler and more complicated 
stochastic processes (e.g., random walk and Donsker's 
theorem). 

Random walk may be defined in a time series 
explanatory MDR-TB epidemiological predictive risk 
model formally by taking independent sampled clinical 
sampled randomized variables 1 2, ,Z Z  , where each 
variable is either 1 or −1, with a 50% probability for either 

value, set to 0 0S =  and 
1

.
n

n j
j

S Z
=

= ∑  The MDR-TB 

related time series { }nS  would then be simple random 
walk on  . This series (i.e., the sum of the sequence of 
−1s and 1s) would render the distance measurements in 
the empirical sampled dataset of clinical regressors, if 
each part of the walk is of length one in the model. The 
expectation ( )nE S of nS  then would be zero. That is, as 
the mean of all the sampled clinical data approaches zero, 
the number of clinical MDR-TB regression paramter 
estimated values would increase. This follows by the finite 
additivity property of expectation 

( ) ( )
1

0.
n

n j
j

E S E Z
=

= =∑  A similar calculation, employing 

the independence of the sampled MDR-TB time series 

randomized variables and the fact that ( )2 1nE Z = , would 

then reveal that ( ) ( ) ( )2 2

1 1 1
2 .

n n n

n j j i
j i j

E S E Z E Z Z n
= = =

= + =∑ ∑∑  

This would hint that ( )nE S  is the expected translation 

distance after n steps, based on  the order of n . In fact 
the risk model forecasted derivatives may be qunatiated 

using 
( ) 2lim n

n

E S

n π→∞
= . This result may reveal that 

statsitcal diffusion is ineffective for mixing MDR-TB 
sampled time-series explanatory clinical paramter 
estimators because of the way the square root behaves for 
large N  in the model. Thereafter, if a MDR-TB 
experimenter tet [ ]0,1=   be the space of real-valued 

clincal functions x  on [ ]0,1  in the risk model, all right-
continuous varaibles that and have left-hand limits may be 
expressed employing ( ) ( )lim ,

s t
x t x s exists

↓
+ =  

( ) ( )
( ) ( )

0 1,

lim 0 1.
s t

x t x t for all t

x t x s exists for all t
↑

+ = ≤ <

− = < ≤
 In probabilistic 

literature, such a function is also said to be a cadlag 
function (Cressie 1993). Introducing a norm on   by 
setting ( )0 1sup tx x t≤ ≤= , then   in the MDR-TB 
epidemiological predictive risk model would become a 
Banach space. 

A Banach space is a vector space with a metric that 
allows the computation of vector length and distance 
between vectors and is complete in the sense that a 
Cauchy sequence of vectors always converges to a well 
defined limit in the space (Cressie 1993). A sequence 

1 2 3, , ,x x x   an empirical-sampled dataset of MDR-TB 
related paramter estimators would be a Cauchy sequence, 
if for every positive sampled clinical environmental 
sampled explanatory endemic trasnmission-oriented 
covariate estimate value ε , there is a positive integer N 
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such that for all the values ,m n N> , ,m nx x ε− <  where 
the vertical bars denote the absolute value (Griffith 2003). 
Cauchy formulated such a condition by requiring m nx x−  
to be infinitesimal for every pair of infinite m, n. To define 
Cauchy sequences in a robust explanatory MDR-TB 
epidemiological forecasting risk model thenin any metric 
space X, the absolute value m nx x−  would have to 

replac the distance ( ),m nd x x  (where :d X X× → R  
with some specific properties, between mx  and nx . 
Formally, a metric space ( ),X d  in an empirical sampled 
dataset of MDR-TB -related parameter estimator time 
series sequence 1 2 3, , ,x x x   is Cauchy, if for every 
positive clinical sampled real number  0ε >  there is a 
positive integer N such that for all positive integers 

,m n N> , the distance ( ), .m nd x x ε<  Roughly speaking, 
the terms of the sequence then would be getting closer and 
closer together in a way that suggests that the time series 
explanatory MDR-TB related sequence ought to have a 
limit in X. Nonetheless, such a limit may not always exist 
within X in the model in order to be able to efficiently 
render robust forecast derivatives. 

A metric space X in a time –series, explanatory, 
predictive, epidemiological, MDR-TB risk model where 
every Cauchy sequence converges to an element of X 
would be considered complete.This non-separability in the 
model paramters causes well-known problems of 
measurability however in the theory of weak convergence 
of measures on the space. To overcome this inconvenience, 
A.V. Skorokhod introduced a metric (and topology) under 
which the space   becomes a separable metric space. 
Although the original metric introduced by Skorokhod 
would have a drawback for quantiating uncertaity 
estimates in a predictive MDR-TB epidemiological 
forecasting risk model, in the sense that the metric space 
obtained would not be complete, it may be possible to 
construct an equivalent metric (i.e., giving the same 
topology) in the model under which the space   
becomes a separable and complete metric space. This 
metric may be defined as follows: Let Λ  denote the class 
of strictly increasing continuous spatiotemporal MDR-TB 
endemic transmission-oriented, explanatory, clinically 
oriented, risk-related mappings of [ ]0,1  onto itself. Then, 

for λ ∈Λ , and ( ) ( ) ( )( ){ }1

0 1
sup log .
s t

t s t sλ λ λ−

≤ < ≤
= − −  

Furthermore, for ,x y∈  an MDR-TB experimenter could 

define ( ) ( ) ( )( )
0 1

, inf max , sup .
t

d x y x t y t
λ

λ λ
∈Λ ≤ ≤

 
= − 

 
 

The topology generated by this metric in the endemic 
trasnmission-oriented risk model forecasted derivatives 
would reveal the Skorokhod topology where the complete 
separable metric space   would be the Skorokhod space 
(cf. also Skorokhod topology). This space is very 
important in the theory of random processes (cf. also 
Stochastic process). 

Fortunately, the general theory of weak convergence of 
probability measures on metric spaces and, in particular, 
on the space   is well developed in literature.For 
example, Jacob et al. (2014)employed the process G(x) 

which was written as B(F(x)) in the previously mentioned 
S. damnosum s.l. explanatory time series, epidemiological 
endemic trasnmission oriented risk model to map 
hyperendemic foci at a riverine study site as defined by an 
emepirical sampled datast of georeferenced observations 
of positively autocorrelated productive larval habitats 
where B was a standard Brownian bridge on the unit 
interval.In, Jacob et al. (2014) the context of a topological 
group of sampled georefernced riverine larval habitats was 
defined as a sequence ( )kx in a topological group G  
which was a Cauchy sequence since for every open 
neighbourhood U of the identity in G there existed some 
sampled explanatory endemic trasnmission-oriented 
explanatory measurement indicator value N  such that 
whenever ,m n N>  it followed that 1

n mx x U− ∈ . The 
authors checked this for the spatial S.damnosum s.l. –
related neighbourhoods employing the local base of the 
identity in G . Furthermore, the authors defined a binary 
relation based on the spatiotemporal regressed field -
sampled larval habitat Cauchy sequence which then 
determined G  such that ( )kx and ( )ky  were equivalent if 
for every open neighbourhood U of the identity in G  
there existed some N such that whenever ,m n N> ;thus it 

followed that 1
n mx y U− ∈ . This relation was an 

equivalence relation. It was reflexive since the time- series 
sampled S.damnosum s.l. –related sequences were Cauchy 
sequences. The risk model was symmetric since 

1 1 1
n m m ny x x y U− − −= ∈  which by continuity of the inverse 

was parsimoniously quantitated employing another open 
neighbourhood of the identity. Additionally, the model 
was transitive since 1 1 1

n l n m m lx z x y y z U U− − − ′ ′′= ∈  where 
U ′  and U ′′  were open neighbourhoods of the identity 
such that U U U′ ′′ ⊆ . In the epidemiological risk model 
the pairs existed by the continuity of the group operation. 

Interestingly, there may be a concept of Cauchy 
sequence which may be defined in a group G  in a time- 
series, explanatory, predictive, epidemiological, endemic, 
transmission-oriented, MDR-TB risk model. For example, 
suppose a MDR-TB experimeneter lets ( )rH H=  be a 
decreasing sequence of normal subgroups of G  of finite 
index in a predictive, time-series, explanator, y risk model. 
Then, a sequence ( )nx  in G  would be Cauchy (w.r.t. H ) 
if and only if for any r  there is N  such that 

1, , n m rm n N x x H−∀ > ∈ . Technically, this would be the 
same thing as quantitating a topological group MDR-TB-
related explanatory Cauchy sequence for a particular 
choice of topology on G , namely that for which H  is a 
local base. The set C  of such Cauchy sequences would 
then form a group for the componentwise product, which 
would thereafter parsimoniously reflect a set 0C  of null 
sequences (s.th. , , , n rr N n N x H∀ ∃ ∀ > ∈ ) which would 
be a normal subgroup of C . The factor group 0/C C  
would then be the completion of G  with respect to H  in 
the model output targeting the hyperendemic 
trasnmission-orienetd foci in an epidemiological 
interventional study site. A MDR-TB experimenter could 
then show that this completion in the derivatives is 
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isomorphic to the inverse limit of the sequence ( )/ rG H . 
An example of this construction, familiar in number 
theory and algebraic geometry is the construction of the p-
adic completion of the integers with respect to a prime p. 
In this case, G would be the integers under addition, and 

rH  would be the additive subgroup consisting of integer 

multiples of rp . Therefater, if H  is a cofinal sequence 
(i.e., any normal subgroup of finite MDR-TB 
epidemiological endemic transmission-oriented 
explanatory indices that contain some rH ), then this 
completion would be canonical in the sense that the 
gerivatives would be isomorphic to the inverse limit of 
( )/ HG H , where H  varies over all normal subgroups of 
finite clinically-oriented indices. 

Importantly, in constructive mathematics, Cauchy 
sequences often must be given with a modulus of Cauchy 
convergence to be useful. Thus, if ( )1 2 3, , ,x x x   is a 
MDR-TB related time-series Cauchy sequence in the set 
X , then a modulus of Cauchy convergence for the 

sequence would be a function α  from the set of 
explanatory endemic trasnmission, oriented covariate 
coefficient values to itself, such that 

( ), , 1 .m nk m n k x x kα∀ ∀ > − <  Clearly, any sequence 
with a modulus of Cauchy convergence is a Cauchy 
sequence (Cressie 1993) . The converse (that every MDR-
TB-related Cauchy sequence has a modulus) follows from 
the well-ordering property of the natural numbers (let 
( )kα  be the smallest possible N  in the definition of 

Cauchy sequence, taking r  to be 1 k ). However, this 
well-ordering property may not hold in in th 
epidemiological risk model On the other hand, the 
converse in the risk model paramter estimators may 
follows directly from the principle of dependent choice 
which presently is accepted by constructive 
mathematicians. Thus, moduli of Cauchy convergence are 
needed directly only by MDR-TB experimeneters do not 
wish to use any form of choice.That said, using a modulus 
of Cauchy convergence for regressing an empirical 
sampled dataset of clinical MDR-tb clinical parameter 
estimaors can simplify both definitions and theorems in 
constructive analysis. Perhaps even more useful for time 
series epidemiological MDR-TB risk modelingh are 
regular Cauchy sequences, which as sequences with a 
given modulus of Cauchy convergence (e.g., ( )k kα =  or 

( ) 2kkα = ). Any Cauchy sequence with a modulus of 
Cauchy convergence is equivalent (in the sense used to 
form the completion of a metric space) to a regular 
Cauchy sequence; this can be proved without using any 
form of the axiom of choice(Griffith 2003) . Regular 
Cauchy sequences were used by Errett Bishop in his 
Foundations of Constructive Analysis, but they have also 
been used by Douglas Bridges in a non-constructive 
textbook .However, Bridges also works on mathematical 
constructivism; the concept has not spread far outside of 
that milieu. Furthermore, in a hyperreal continum , a real 
sequence of MDR-TB epidemiological endmeic 
trasnmission-orienetd explanatory clinical predictors 
would be reflected as a real sequence :nu n∈  which 

then would have a natural hyperreal extension, defined for 
hypernatural explanatory endemic trasnmission-orieted 
clinical time series sampled values H of the index n in 
addition to the usual natural n. The sequence is Cauchy if 
and only if for every infinite H and K, the values Hu  and 

Ku  are infinitely close, or adequal, i.e. ( ) 0H Kst u u− =  
where "st" is the standard part function(Cressie 1993) . 

Recently there have been attempts to capture 
unobserved error and space-time interactions using 
streaming algorithms for error detection of clustering 
clinical and/or environmental MDR-TB georeferenced 
district-level explanatory predictor covariate coefficient 
estimates within a spatial scan matrix. For example, 
Oeltmann et al. (2008) assessed clustering of cases 
employing differentially corrected global positioning 
system (DGPS) technology, to seasonally map TB patient 
households according to drug-susceptibility testing results, 
for evaluating an MDR-TB outbreak among US-bound 
Hmong Refugees in Thailand. The empirical-sampled 
clinical and/or environmental data were analyzed with a 
spatial scan error statistic that employed a varying-sized 
cylinder to encapsulate cases within the radius of the 
cylinders which was then used to tabulate a p-value and 
log-likelihood ratio for determining the statistical 
significance of the MDR-TB clusters detected. In the 
context of cluster analyses p-values seasonally quantitated 
may be relative to the null model (see Waller and Jacquez 
1995). Prevalence ratios and 95% confidence intervals for 
each exposure group was thereafter calculated. The 
cluster-error detection algorithm indicated an outbreak of 
MDR-TB in the population, specifically in areas in which 
TB rates were already elevated. The model also 
quantitated the extra-Poison variation in the sampled 
empirical datasets using a negative binomial regression 
with a gamma distributed non-homogenous mean. A common 
way to deal with overdispersion for cluster-based count 
data is to use a generalized linear model (GLM) framework, 
where the most common approach is a “quasi-likelihood,” 
with Poisson-like assumptions (i.e., quasi-Poisson) or a 
negative binomial model (see Jacob et al. 2010b).  

Additionally, the time-series residualized, uncertainty, 
diagnostic, clinically-oriented, explanatory, georeferencable, 
cluster-based tests provided evidence for the presence of 
these so-called secondary clusters, (i.e., MDR-TB 
georeferenced spatial clusters not overlapping with the 
most likely cluster but with significantly large likelihood 
ratio). These secondary clusters had an associated p -value 
but they were calculated ignoring the existence of the 
most likely cluster-based, hierarchical, explanatory, 
predictive, error variance in the residualized forecasts. The 
consequence of this in endemic mapping MDR-TB is that 
the p -values can be overly conservative in the model 
outputs leading to a loss in power of the explanatory 
observational predictor covariate error coefficient 
estimates. Further, the  p-values testing a second 
georeferenced MDR-TB cluster would have to 
alternatively be calculated conditionally based on the 
presence of the primary cluster–based, explanatory, 
georeferenced, uncertainty, residualized, parameter 
estimators as their values could be smaller than those 
delivered by the predictive regression-oriented equation. 
This would then lead to an overall misspecified MDR-TB 
model. 
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In many instances MDR-TB researchers choose not to 
quantitate explanatory, residualized, hierarchical, cluster-
based,georeferenced, observational, explanatory, predictor, 
covariate error coefficient estimates. Ignoring within 
cluster-based error in sampled clinical and environmental 
MDR-TB explanatory covariate coefficient estimates, 
however, would lead to sign reversals of the factor 
covariances, inflation of factor variances, and other 
misspecifications which could hamper the ability of a 
model to make accurate predictions of high risk 
populations. Spatial autocorrelation is the correlation 
among values of a single variable strictly attributable to 
their relatively close locational positions on a two-
dimensional surface, introducing a deviation from the 
independent observations assumption of classical statistics 
(Griffith 2003). Spatial autocorrelation leads to biased 
standard errors and/or biased parameter estimates, as well 
as artificially inflated degrees of freedom in sampled 
hierarchical residual cluster-based predictor covariate 
coefficient estimates (Wakefield, 2003). 

The Durbin Watson (DW) test is a well-known formal 
method of testing if intra-cluster serial error correlation is 
a serious problem undermining a model’s inferential 
suitability (e.g., assessing the confidence in the predicted 
value of a dependent variable in a hierarchical residual 
cluster-based model). The Durbin-Watson test can be used 

to test the hypothesis ( )s
0 1H : s  H : s ρ ρ ρ= =  where 

( )sρ  is any ρs such that 0  | s |   1ρ< <  (Cressie, 1993). 
The DW tests can test for serial error autocorrelation in an 
endemic transmission-oriented MDR-TB model by 
assuming that epsilon ( )ε  is stationary and normally 
distributed with mean zero. This statistic then tests the 
null hypothesis oH  that the georeferenced hierarchical 
residual cluster-based errors are uncorrelated against the 
alternative hypothesis 1H  that the errors are first order 
autoregressive [AR(1)]. Therefore, if ρ  are the 
autocorrelation error coefficients in a spatiotemporal 
hierarchical residual cluster-based endemic transmission-
oriented MDR-TB model, then w : : s soH ρ ρ=  for 
some non-zero ρ  with    1ρ <  could be used to 
quantitate the explanatory georeferenced predictor 
covariate error coefficient estimates in the sampled 
clinical and environmental parameters. 

Recent years have seen a virtual explosion in the 
application of cross-sectional spatial growth regression 
models for TB-related predictive, spatiotemporal, 
epidemiological risk modeling. While undoubtedly 
considerable progress has been made, most applications 
ignore risk model uncertainty. Model uncertainty arises 
from two sources: (i) the spatial weight or connectivity 
structure assigned to regions that form the observational 
basis of spatial data samples (e.g., an empirical dataset of 
MDR-TB related predictive clinical risk model parameter 
estimators) , and (ii) specific explanatory variables 
included. The first source of time series MDR-TB 
epidemiological risk-related model uncertainty is unique 
to spatial regression predictive modeling since 
conventional regression models assume independence 
between sample observations (regions). The hallmark of 
spatial growth time series explanatory MDR-TB-related 
regression models is the spatial weight matrix that 

distinguishes these from non-spatial growth regressions. 
The specification of this matrix would be typically 
constructed by means of geographic criteria, such as 
contiguity (sharing a common border) or distance, 
including nearest neighbor distance. Uncertainty regarding 
a time series TB-related spatial weight matrix has long 
been recognized by experimenters who typically check 
whether clinical estimates and inferences are similar when 
alternative spatial weight structures are employed. 

The second source of uncertainty in a time series MDR-
TB epidemiological explanatory endemic trasmission-
oriented risk model arises in conventional as well as 
spatial growth regression models since growth theories are 
not sufficiently explicit about which specific factors 
underlie the data-generating process for growth 
regressions. Hence, experimenters are faced with a 
dilemma regarding the large number of potentialtime 
series explanatory MDR-TB –related regressors.There is a 
trade-of between arbitrary selection of a small subset of 
sampled clinical variables which may give rise to omitted 
variables bias, and the introduction of a large set of 
variables that may increase the dispersion of the estimated 
coefficients, making it difficult to identify important 
factors.Spatial growth MDR-TB time series explanatory 
regression models produce estimates and inferences that 
are conditional on both the particular spatial weight matrix 
used to specify which observational units (regions) are 
linked and the set of explanatory variables employed. 
Selection of an appropriate MDR-TB-related spatial 
weight matrix and explanatory variables are central to a 
time series risk-related epidemiological analysis (Jacob et 
al. 2010b).  

Spatial quantile regression can provide much more 
information on spatial data than the conditional mean 
regression analysis.Thus in a seasonal MDR-tb-related 
epidemiological risk model an experimeneter may develop 
a structure of spatial quantile regression allowing 
functional coefficients, under a robust semiparametric 
framework Firstly, w treat data as observed over a space 
of general dimension N. Denote the set of integer lattice 
points in N-dimensional Euclidean spaceby ZN, where 
N 1≥  and Z {0, }1, }2,  . . .}= . A point 
i  (i1,  . . . ,  iN)=  in ZN is referred to as a site. Spatial 
data are modeled as finite realizations of vector stochastic 
processes indexed by i ZN∈ , that is, random fields. We 
will consider strictly stationary (d k 1)+ + -dimensional 
random fields of the form {(Yi,Xi, Ui) :  i ZN}∈ , where 
Yi, with values in R, Xi, with values in Rd, and Ui, with 
values in Rk, are defined over a probability space (,F,P). 
Secondly, we treat spatial quantile regression in a general 
context of robust spatial regression. In a number of 
applications, a crucial problem consists in describing and 
analyzing the influence of the covariates (Ui,Xi) on the 
real-valued response Yi. In spatial context, this study is 
particularly difficult due to the possibly highly complex 
spatial dependence among the various sites. The 
traditional approach to this problem consists in assuming 
that Yi has finite expectation, so that spatial conditional 
mean regression function g :  (x,  u)7 g(x,  u) :→ =  
E[Yi | Xi x, Ui u]= =  may be well defined and clearly 
carries relevant information on the dependence of Y on X 
and U (cf., [14,25,26]). Differently, Hallin et al. [15] 
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proposed spatial conditional quantile regression, defined 
by q :  (x,  u)7 q (x,  u) : Q[Yi | Xi x, Ui u]τ τ→ = = = , 
(1.1) which provides more comprehensive information on 
the dependence of Y on X and Uthrough different 
0   1τ< <  (see [23] and [41]), where qτ (x, u) satisfies 
P[Yi  q (x,  u) | Xi x, Ui u] τ τ< = = =  ; see also the 
robust spatial conditional regression in [24]. As is well 
known 

in the nonparametric literature, when d k 3+ > , both 
spatial regression functions g(x,  u)  and  q (x,  u)τ  can not 
be well estimated nonparametrically with reasonable 
accuracy owing to the curse of dimensionality. Because of 
complex spatial interaction, this issue on how to avoid the 
curse of dimensionality becomes particularly important, 
which has been addressed by Gao et al. [9] and Lu et al. 
[27] for spatial conditional mean regression g(x,  u)  under 
least squares partially linear and additive approximation 
structures, respectively. 

A MDR-TB experimenter particularly may be 
concerned with avoiding the curse of dimensionality for 
spatial quantile regression analysis, and, for generality, 
consider a general spatial regression that takes conditional 
quantile regression Q(Yi | Ui,Xi)  as a special case, to be 
approximated by a popular linear structureallowing for 
functional coefficients in the form 
(Ui,Xi) Xi1 1(Ui) Xid d(Ui)β β= + +・・・ , (1.2) with the 
functional coefficients j( ) ' sβ ⋅  defined by minimizing 
E (Yi (Ui,Xi)) E (Yi Xi1 1(Ui) Xid d(Ui))ρ ρ β β− = − − −・・・

, (1.3)associated with ρ(y) by which we denote hereafter 
for a general loss function [see Section2], over a class of 
functional coefficient linear functions of the form 
(Ui,Xi)  in (1.2). In the subsequent, when considering τ th 
quantile regression, we will denote by 

(z) | z |  (2 1)zρτ τ= + −  with 0   1τ< < , instead of ( )ρ ・ , 
for the loss function, under which the resulting (Ui,Xi)  in 
(1.2) is the spatial quantile regression with functional 
coefficientsthat we are mainly concerned with in this 
paper. Let Xi  (Xi1,  . . . ,Xid)T=  . As intraditional 
linear regression when a baseline effect is desired, we set 
Xi1 1≡ . The regimeUi is a vector ofexplanatory variables, 
and 1(u),. . ., d(u)β β  are unknown smooth functionsof u 
to be estimated, with the dimension k of Ui usually small, 
say k = 1 or 2. 

Competing specifications are usually non-nested 
alternatives so that conventional statistical procedures 
such as likelihood ratio tests are inappropriate (LeSage 
and Fischer 2008).Model averaging provides a formal 
approach that can be used to incorporate model 
uncertainty in spatial MDR-TB related endemic 
transmission-oriented explanatory regression models 
which arises from selecting both the spatial weight matrix 
and the clinic explanatory variables when making 
inferences about model parameters. Instead of selecting a 
single model, this approach proposes toaverage estimates 
across different models. Bayesian model averaging 
represents one powerful approach to making parameter 
inference unconditional on model specification issues.  

A Bayesian treatment also has the ability to properly 
account for high variance of estimates in geographic areas 
and clarify overall spatial trends and patterns, regardless 

of distribution of data (Hastie and Tibshirani, 1990). There 
is a great deal of literature on Bayesian model averaging 
for non-spatial regression models.  

For example, work by Fernandez et al. (2001a) 
considers cases where the number of possible models is 
sufficiently large so that calculation of posterior 
probabilities for all models is difficult or infeasible. A 
Markov chain Monte Carlo model comparison 
methodology proposed by Madigan and York (1995) has 
gained popularity in the mathematical statistics and 
econometrics literature. An extension to spatial 
autoregressive regression models is provided by LeSage 
and Parent (2007). LeSage and Fischer (2008) include 
simultaneous comparison of models based on both 
alternative explanatory variables and spatial weight 
matrices, albeit concentrating on the class of k-nearest 
neighbor spatial weight matrices. From a technical point 
of view, using numerical integration techniques from these 
models may help obtain posterior model probabilities for 
MDR-TB-related specifications with different k-nearest 
spatial weight matrices which may then be used to obtain 
Bayesian model averaged estimates. The computational 
costs of this procedure, however, makes it an impractical 
choice for a large set of alternative spatial weight MDR-
TB-related time series matrices. A methodology may 
improve on LeSage and Fischer (2008) by adopting 
Bayesian information criterion (BIC) posterior model 
weights to overcome such computational costs, and thus 
allowing for the consideration of a wide range of weight 
matrices as potential spatial structures underlying the 
spillovers in the sampled MDR-TB-related data. 

Many Bayesian approaches for analyzing spatial 
disease patterns focus on mapping spatially smoothed 
disease rates (Clayton and Kaldor, 1987). Mapping 
parameters in a spatial Bayesian probabilistic regression 
matrix can produce stable estimates for the cell-specific 
disease rates by shrinkage to the overall rate or by 
averaging over neighboring cells. A Bayesainistic 
description can be provided using a simple exact 
uncertainty spatially-dependent cluster-based detection 
algorithm in an ArcGIS cyberenvironment for quantitating 
large spatial regions in a highly MDR-infected study area. 
For example, Jacob et al. (2013) employed an 
eigenfunction decomposition algorithm associated with a 
Moran’s coefficient to investigate district-level non-
linearity in an empirical dataset of spatiotemporal-sampled 
MDR-TB parameter estimators sampled in San Juan de 
Lurigancho (SJL) Lima, Peru. The non-parametric 
technique attempted to remove the inherent 
autocorrelation in the model by introducing appropriate 
synthetic surrogate variants. The authors then constructed 
a robust Bayesian probabilistic Poisson model to generate 
unbiased estimators for qualitatively assessing resistance 
to four commonly used drugs in TB treatment: isoniazid, 
rifampin, ethambutol, and streptomycin. Initially, data of 
residential addresses and of individual patients with 
smear-positive MDR-TB were geocoded in ArcGIS. Next, 
the sampled data were matched interactively within the 
geodatabase. The MDR-TB attributes were then calculated 
and digitally overlaid onto sub-meter resolution satellite 
data within a 1 km buffer of 31 georeferenced health 
centers using a 10 m2 grid-based algorithm. Global 
autocorrelation statistics were then generated by 
decomposing the sampled data into positive and negative 
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spatial filter eigenvectors using the eigenfunction 
decomposition algorithm. Bayesian Poisson projections 
were then derived employing normal priors for each of the 
sampled resistant strains. A Residual Moran’s coefficient 
(MC) minimization criterion was then applied to the 
clinical coefficients spatially quantitated from the 
decomposition algorithm to detect any unaccounted latent 
autocorrelation error in the estimators. The model 
accounted for approximately 14% pseudo-replicated 
information and exhibited positive residual autocorrelation. 

Bayesian methods may also provide some shrinkage 
and spatial smoothing of raw standardized MDR-TB 
hierarchical explanatory residual intra-cluster-based error 
estimates, which are strongly influenced by sampled 
clinical and environmental population size. x , a data 
point in general. This may in fact be a vector of values. θ , 
the parameter of the data point's distribution, i.e., 

( )x p x θ . This may in fact be a vector of parameters., 

α , the hyperparameter of the parameter, i.e., ( )pθ θ α . 
This may in fact be a vector of hyperparameters. X , a set 
of n observed data points, i.e., 1, , nx x . x , a new data 
point whose distribution is to be predicted. Bayesian 
inference for MDR-TB epidemiological risk model. The 
prior distribution is the distribution of the parameter(s) 
before any data is observed, i.e. ( )p θ α . The prior 
distribution might not be easily determined. In this case, 
we can use the Jeffreys prior to obtain the posterior 
distribution before updating them with newer observations. 
The sampling distribution is the distribution of the 
observed data conditional on its parameters, i.e. ( )p X θ . 
This is also termed the likelihood, especially when viewed 
as a function of the parameter(s), sometimes written 
( ) ( );L X p Xθ θ= . The marginal likelihood (sometimes 

also termed the evidence) is the distribution of the 
observed data marginalized over the parameter(s), i.e. 
( ) ( ) ( )p X p X p d

θ
α θ θ α θ= ∫ . The posterior 

distribution is the distribution of the parameter(s) after 
taking into account the observed data. This is determined 
by Bayes' rule, which forms the heart of Bayesian inference: 

( ) ( ) ( )
( ) ( ) ( ),

p X p
p X p X p

p X
θ θ α

θ α θ θ α
α

∝= . Note 

that this is expressed in words as "posterior is proportional 
to likelihood times prior", or sometimes as "posterior = 
likelihood times prior, over evidence". The posterior 
predictive distribution is the distribution of a new data 
point, marginalized over the posterior: 
( ) ( ) ( ), ,p x X p x p X d

θ
α θ θ α θ= ∫  . The prior 

predictive distribution is the distribution of a new data 
point, marginalized over the prior: 
( ) ( ) ( ) .p x p x p d

θ
α θ θ α θ= ∫   

Bayesian theory calls for the use of the posterior 
predictive distribution to do predictive inference, i.e., to 
predict the distribution of a new, unobserved data point. 
That is, instead of a fixed point as a prediction, a 
distribution over possible points is returned. Only this way 
is the entire posterior distribution of the parameter(s) used. 
By comparison, prediction in frequentist statistics often 

involves finding an optimum point estimate of the 
parameter(s)—e.g., by maximum likelihood or maximum 
a posteriori estimation (MAP)—and then plugging this 
estimate into the formula for the distribution of a data 
point. This has the disadvantage that it does not account 
for any uncertainty in the value of the parameter, and 
hence will underestimate the variance of the predictive 
distribution. 

(In some instances, frequentist statistics can work 
around this problem. For example, confidence intervals 
and prediction intervals in frequentist statistics when 
constructed from a normal distribution with unknown 
mean and variance are constructed using a Student's t-
distribution. This correctly estimates the variance, due to 
the fact that (1) the average of normally distributed 
random variables is also normally distributed; (2) the 
predictive distribution of a normally distributed data point 
with unknown mean and variance, using conjugate or 
uninformative priors, has a student's t-distribution. In 
Bayesian statistics, however, the posterior predictive 
distribution can always be determined exactly—or at least, 
to an arbitrary level of precision, when numerical methods 
are used.) 

Note that both types of predictive distributions have the 
form of a compound probability distribution (as does the 
marginal likelihood). In fact, if the prior distribution is a 
conjugate prior, and hence the prior and posterior 
distributions come from the same family, it can easily be 
seen that both prior and posterior predictive distributions 
also come from the same family of compound 
distributions. The only difference is that the posterior 
predictive distribution uses the updated values of the 
hyperparameters (applying the Bayesian update rules 
given in the conjugate prior article), while the prior 
predictive distribution uses the values of the 
hyperparameters that appear in the prior distribution. 

Suppose a process is generating independent and 
identically distributed events nE , but the probability 
distribution is unknown. Let the event space Ω  represent 
the current state of belief for this process. Each model is 
represented by event mM . The conditional probabilities 

( )n mP E M  are specified to define the models. ( )mP M  

is the degree of belief in mM . Before the first inference 

step, ( ){ }mP M  is a set of initial prior probabilities. 
These must sum to 1, but are otherwise arbitrary.Suppose 
that the process is observed to generate { }nE E∈ . For 

each { }mM M∈ , the prior ( )P M is updated to the 

posterior ( )P M E . From Bayes' theorem: [4] 

( ) ( )
( ) ( )

( )
m mm

P E M
P M E P M

P E M P M
=
∑



Upon observation 

of further evidence, this procedure may be repeated. For a 
set of independent and identically distributed observations 

{ }1, , nE e e=  , it may be shown that repeated application 
of the above is equivalent to 

( ) ( )
( ) ( )

( )
m mm

P E M
P M E P M

P E M P M
=
∑



 Where 

( ) ( ).k
k

P E M P e M=∏  This may be used to optimize 
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practical calculations. By parametrizing the space of 
models, the belief in all models may be updated in a single 
step. The distribution of belief over the model space may 
then be thought of as a distribution of belief over the 
parameter space. The distributions in this section are 
expressed as continuous, represented by probability 
densities, as this is the usual situation. The technique is 
however equally applicable to discrete distributions. Let 
the vector θ  span the parameter space. Let the initial prior 
distribution over θ  be ( )p θ α , where α  is a set of 
parameters to the prior itself, or hyperparameters. Let 

{ }1, , nE e e=   be a set of independent and identically 
distributed event observations, where all ie  are distributed 

as ( )p e θ  for some θ . Bayes' theorem is applied to find 
the posterior distribution over θ :  

 
( ) ( )

( ) ( )

( )
( ) ( ) ( )

,
,

,

,

p E
p E p

p E

p E
p

p E p d
θ

θ α
θ α θ α

α

θ α
θ α

θ α θ α θ

=

=
∫





 

where ( ) ( ), .k
k

p E p eθ α θ=∏  

Bayesian approaches would be very useful for 
capturing gradual, regional changes in the sampled MDR-
TB parameters, and may be useful in detecting abrupt, 
localized changes indicative of ‘hot spot’ clustering. In 
recent years, models including both spatially structured 
random effects (SSRE) and spatially unstructured random 
effects (SURE) have been very popular in Bayesian 
infectious disease hierarchical cluster-based regression 
models. For example, the model proposed by Besag et al., 
(1991) incorporated both SSRE and SURE in a single 
Bayesian model which Ghosh et al., (1999) used to 
analyze leukemia data. Waller and Zelterman, (1997) 
extended this model to incorporate spatiotemporal effects 
for county level lung cancer rates in Ohio. Besag et al., 
(1995) have suggested a prior specification for the SSRE 
more suitable for detection of spatial clusters. As noted by 
Ferreira et al. (2002), Bayesian frameworks can easily 
define a prior for the clusters as well as incorporate 
predictor covariate error coefficient estimates and extra-
Poisson variation. Bayesian methods which may thus 
model the random and true variation in a spatiotemporal-
sampled endemic transmission—oriented MDR-TB 
clinical dataset of georeferenced clinical explanatory 
observational covariate coefficients 

In this paper we propose a first-order autocorrelation 
and a Bayesian model in which we compute probabilities 
of potential georefernced MDR-TB clusters using multiple 
clinical and environmental parameters sampled in SJL a 
district in Lima, Peru. A statistical framework is presented 
for the analysis using the sampled data generated from 
community-based surveys conducted in the SJL study site. 
Our models partitioned the sources of infection into those 
from within the household and those from the community 
at large. The observational predictor covariate coefficient 
estimates reflecting these sources of infection were then 
quantitated as functions of the risk factors. Instead of 
focusing on populations of carriers and susceptibles, 

solely, as in previous cluster-based MDR-TB research, 
emphasis instead was placed on identifying the residual-
based error coefficients and their primary influences, thus 
directing the research as a spatial autoregressive process. 
This was done by dividing the study area into small-area 
units in ArcGIS, and by assigning the risk of obtaining 
MDR-TB to each sampled unit, based on clinical, 
socioeconomic and demographic characteristics of the 
population. 

 Initially, we generated a dataset of Durbin Watson test 
statistics. A non-parametric eigenvector filtering technique 
was then used to remove inherent spatial autocorrelation 
from a generalized linear regression (GLM) model 
generated using the sampled clinical and environmental 
MDR-TB predictor variables by treating it as a missing 
variable (i.e., first order) effect (Getis and Griffith, 2002; 
Griffith, 2000). To expand the inferential basis with a 
random effect, a generalized linear mixed model (GLMM) 
was then constructed in SAS/GIS to account for latent 
cluster-based error autocorrelation components in the 
model. We specified a likelihood function for the sampled 
data and a prior distribution for the parameter estimates. 
The response variable prior distribution included the 
model statement and the error variance prior distribution 
which in this research was the gamma distribution. 
Markov models were then used to incorporate the residual 
within intra- cluster-based explanatory georeferenced 
predictor covariate coefficient estimates to derive 
transition probabilities, formulate the likelihood function, 
and calculate the ML estimates. In probability theory, a 
Markov model is a stochastic model that assumes the 
Markov property. Generally, this assumption enables 
reasoning and computation with the model that would 
otherwise be intractable. A stochastic process has the 
Markov property if the conditional probability distribution 
of future states of the process depends only upon the 
present state, not on the sequence of events that preceded 
it Given valid assumptions about the nature of variance 
autocorrelation uncertainty in Bayesian applications, we 
assumed the serial correlation consistent standard error 
estimators generated from a spatially weighted distance 
function error matrix model, may develop and implement 
MDR-TB control strategies in the SJL study site by 
determining residual explanatory georeferenced covariate 
coefficient estimates associated to prolific clusters based 
on clinical and environmental-sampled data. Since, the 
possible existence of non-normal error probabilities in 
residual forecasts is a major concern in the application of 
linear and non-linear regression analysis using 
spatiotemporal-sampled MDR-TB data including the 
analysis of variance, as the presence of these error 
coefficients can invalidate residual intra-cluster-based 
tests of significance that assume the effect and residual 
error variances are uncorrelated and normally distributed. 
Therefore, our objectives in this research were to: (1) 
generate a stepwise regression model using multiple 
predictor variables (2) filter all latent autocorrelation in 
residual estimates using a stepwise negative binomial 
regression with a gamma distributed mean; and, (3) 
construct Bayesian random-effects hierarchical 
generalized linear model (HGLM) specifications for 
adjusting the SSRE and SURE in a cluster-based model to 
identify high risk populations of MDR-TB for 
implementing control strategies in SJL. 
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Figure 1. San Juan de Lurancho study site 

2. Material and Methodology 
Study Site: San Juan de Lurigancho (SJL) is the largest 

district in Lima, located in the Northeast of the province 
of Lima. (Figure 1). With a current population exceeding 
one million people and a total surface area of 131.3 km2, 
constituting 4.91% of the total area of the province of 
Lima, it is the country's most populous district. SJL is 
bordered by the districts of Carabayllo and San Antonio in 
the Huarochirí Province to the north, by the Comas, 
Independencia and Rímac districts to the west and by 
Lurigancho to the east. The Rímac River marks the 
district's border with downtown Lima and El Augustino to 
the south. The most important urban areas in the district 
are Mangomarca, Zárate, Las Flores, Canto Grande and 
Bayovar. One of the first urban areas in SJL is Caja de 
Agua, which is located at the entrance of the district. Caja 
de Agua is surrounded by the San Cristobal and Santa 
Rosa hills from south to west. The altitude of SJL ranges 
from 2,240 meters (m) above mean sea level (AMSL.) at 
the peaks of Cerro Colorado Norte to 200 m AMSL at the 
level of the Rimac River. Urban areas have been 
developed in a longitudinal direction from the river border 
up to 350 m AMSL. Lima has a mild climate, although it 
is situated in the tropics. The weather in Lima is 
influenced by the cold offshore Humboldt Current, which 
ensures that summer temperatures hover in between 16-
18°C and only a few degrees lower in June and July.  

Subjects and setting: This research used data acquired 
from a retrospective study of a cohort of patients 
diagnosed with pulmonary TB and MDR-TB enrolled 
over an 18 month period. All patients underwent a 

complete evaluation, including drug susceptibility for first 
line drugs. This was a prospective multi-center 
observational study comparing the use of several 
investigational techniques with standard methods to assess 
the in vitro antimicrobial susceptibility of M. tuberculosis, 
either directly from patient specimens or from culture 
isolates. One thousand two hundred and fifty adults with 
pulmonary tuberculosis cultures were confirmed. After 
collection of baseline samples and completion of initial 
measurements, including susceptibility testing by 
conventional and research methods, all subjects started 
anti-TB chemotherapy as dictated by the standard of care 
at the site of enrollment. Subjects were recruited, among 
patients presenting smear positive pulmonary tuberculosis, 
to diagnostic and treatment sites in the following Health 
Centers: San Fernando, La Huayrona, Canto Grande, Jose 
Carlos Mariátegui, Huáscar XV, Huáscar II, Ganímedes, 
Cruz de Motupe, Piedra Liza, Bayóvar, Jaime Zubieta, 
San Juan, San Benito, Mangomarca, San Hilarion, 
Campoy, 15 de Enero, La Libertad, Juan Pablo II, 
Ascarruz Alto, 10 de Octubre, Sta. Fe de Totoritas, 
Proyectos Especiales, Santa Rosa, Ayacucho, Zarate, 
Medalla Milagrosa, Campoy Alto, Montenegro, Santa 
Maria, Tupac Amaru II and Caja de Agua. 

Geographic mapping: Field sampling was conducted 
from July 2005 to July 2007. Thirty-one health centers in 
the SJL study site were mapped and classified using a 
CSI-Wireless differentially corrected global positioning 
systems (DGPS) Max receiver. This remote technology 
relies on the OmniStar L-Band satellite signal yielding a 
positional error of. 179 m (+/-. 392 m) (Jacob et al., 2007). 
Individual health centers and their associated land cover 
attributes were identified from the satellite imagery and 
entered into a VCMS relational database software product. 
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Data from the characterization of each health center was 
recorded on a Mobile Vector Control Management System 
(VCMS™) electronic data recording device. The field 
sampling was extended to a 1 km distance from the 
external boundary of a health center study site.  

Remote sensing data: QuickBird (www.digitalglobe.com) 
images were acquired in March 11th 2008, for the SJL 
study site. QuickBird multispectral products provided four 
discrete non-overlapping spectral bands covering a range 
from 0.45 micrometer (µm) to 0.72 µm, with an 11-bit 
collected information depth with a spatial resolution of 
0.61 m. QuickBird imagery was classified using the 
Iterative Self-Organizing Data Analysis Technique 
(ISODATA) unsupervised routine in ERDAS Imagine 
V.8.7™. The images were co-registered manually, using 
ground control points and georectified images from the 
QuickBird data. The satellite images were co-registered by 
applying a first order polynomial algorithm with a nearest 
neighbor resampling method. The Universal Transverse 
Mercator (UTM) Zone 37S datum WGS-84 projection 
was used for all of the spatial datasets. 

Environmental parameters: Variables recorded included, 
MDR-TB prevalence rates, distance between individual 
Health Centers, population data, and aspects of land-surface 
in the SJL study site such as elevation and slope per 
sampled site. Distance measures were recorded in ArcGIS 
9.2® with QuickBird data and by field sampling. The distance 
between health centers was categorized into numerous 
classes (e.g., 1: 0–5 km, 2: 5–10 km, and so on). The number 
of individuals cases of MDR-TB at each georeferenced 
individual health center was calculated and recorded. All 
variables used in this research are listed in Table 1. 

Table 1. Clinical and environmental MDR-TB data sampled in the 
SJL study site 
Variable in Database Description of variable 

ESTAB Health care center 

FENAC Birth date 

EdadA Age  

SEXO Sex 

TIPOVIV Home 

NUMHAB Number of bedrooms 

MATVIV Building material 

NUMPER Number of persons living in the house 

ELECTRIC Electricity supply at home 

AGUAPOT Home access to potable water 

DESAGUE Wastepipe connected to the public network 

ECIVIL Marital status 

OCUPA Ocupation 

TRAESTS Do you work in any health care center? 

TIEMTRA Time of employment 

INGMEN Salary/Income per month 

LJINH Sensitivity test to isoniazid in LJ medium 

LJIRIF Sensitivity test to rifampin in LJ medium 

LJIETB Sensitivity test to ethambutol in LJ medium 

LJISTM Sensitivity test to streptomycin in LJ medium 

MDR Multidrug resistant 

Description of Study Area: Quality of living 
conditions, employment status, dwelling characteristics, 

overcrowding status, and sensitivity to different TB drugs 
were analyzed and correlated. For the correlation analysis, 
21 records were removed from the data set due to missing 
field information, leaving 764 records available. Some 
records had multiple attributes missing making the total 
number of records removed less than the number of 
affected records. All statistical results were calculated 
using R statistical software version 2.15.2. Table 2 
summarizes the number of records with missing data from 
particular fields: 

Table 2. Reason for record removal from study set 
Field with missing data Number of records affected 

Address Type 6 

Number of people in home 6 

Profession 3 

Waste connected to public network 3 

Number of bedrooms in house 2 

Access to electricity 1 

Home type 1 

Building material 1 
Multi-drug resistance and sensitivity to 
rifampin/ethambutol/streptomycin 1 

Grid-based algorithm: A 10 m x 10 m grid-based 
algorithm was overlaid on the base maps of the study site, 
in ArcGIS 9.2®, to generate spatial sampling units. A 1 km 
buffer was placed around each health center. A unique 
identifier was placed in each gridded buffer. Each spatial 
cluster was then stratified by MDR-TB prevalence rates 
(Figure 1).  

Hierarchical agglomerative polythetic cluster model: 
Initially, a 1 km buffer was placed around each health 
center using the QuickBird data in ArcGIS 9.2®. 
FLEXIBLE|FLE in SAS 9.2® (Carey, North Carolina) was 
then used to request the flexible-beta method. The PROC 
CLUSTER statement then started the procedure, which 
specified a clustering method and optionally specified 
details for data processing. This technique resulted in the 
narrowest distance range for the clinical and 
environmental- sampled MDR-TB predictor covariate 
coefficient estimates. The flexible-beta method began by 
specifying METHOD=FLEXIBLE in SAS. By default, b 
was the value of the Beta. In this research Beta was set at 
−100. PROC CLUSTER then displayed the clustering 
process, showing statistics useful for estimating the 
number of clusters in the sampled datasets. PROC 
CLUSTER created an output dataset that revealed a 
cluster hierarchy of the health centers in the SJL study site 
based on the covariate coefficient indicator measurement 
values. Since in this research the georeferenced 
parameters were deemed to be equally important, we used 
the STD option in PROC CLUSTER to standardize the 
cluster-based covariate coefficient estimates to mean 0 
and standard deviation 1. Explanatory predictor covariate 
coefficient estimates with large variances tend to have 
more effect on the resulting geographic clusters than 
variables with small variances but if all georeferenced 
observations are considered equally important, the STD 
option in PROC CLUSTER can standardize the sampled 
data (www.sas.com). In this research the STDIZE 
procedure standardized the spatiotemporal-sampled 
predictor covariate coefficient estimates in the SAS 
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dataset by subtracting the georeferenced location measures 
and dividing them by a scale measure. Finally, a unique 
identifier was incorporated for each cluster representing 
the data. In order to compute meaningful standardized 
rates, the individual sampled data was then aggregated 
geographically into high-low stratified clusters using the 
QuickBird data based on sampled MDR-TB prevalence 
rates (Figure 1). 

The SJL study site was then examined extensively 
using longitude, latitude and altitude data. These criteria 
involved the centrographic measures of spatial mean, 
distance between the sampled georeferenced MDR-TB 
data and the distance from sample site to the nearest 
human habitation (Figure 2 ). Cumulative overcrowding 
distribution by people in household  and bedrooms in 
house  was then determined (Figure 3). The data was also 
comprised of individual observations of the sampled data 
together with a battery of categorical predictor covariate 
attribute measures which were expanded into multiple 
indicator variables. Histograms for these groups were 
generated using the sampled data (Figure 4). 

 
Figure 2. The distribution of the health centers, and the allocation of 
infected individuals to centers 

*Red lines denote allocation to the nearest center.  
*Graduated green-blue-purple denote the actual allocation of individuals 
to centers. 

Regression analyses: Initially, a Poisson regression 
with statistical significance was calculated by a 95% 
confidence in SAS GEN MOD. The Poisson process in 

our analyses was provided by the limit of a binomial 
distribution of the sampled district-level explanatory 
MDR-TB covariate coefficient estimates using 
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We viewed the distribution as a function of the 
expected number of count variables using the sample size 
N for quantifying the fixed p in equation (2.1), which was 
then transformed into the linear equation: 
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The GENMOD procedure then fit a generalized linear 
model (GLM) to the sampled MDR-TB data by maximum 
likelihood estimation of the parameter vector β. In this 
research the GENMOD procedure estimated the seasonal-
sampled parameters of each model numerically through an 
iterative fitting process. The dispersion parameter was 
then estimated by the residual deviance and by Pearson’s 
chi-square divided by the degrees of freedom (d.f.). 
Covariances, standard errors, and p-values were then 
computed for the sampled covariate coefficients based on 
the asymptotic normality derived from the maximum 
likelihood estimation.  

Note, that the sample size N completely dropped out of 
the probability function, which in this research had the 
same functional form for all the sampled district-level 
MDR-TB parameter estimator indicator values (i.e., ν). As 
expected, the Poisson distribution was normalized so that 
the sum of probabilities equaled 1. The ratio of 
probabilities was then determined by 
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The Poisson distribution revealed that the explanatory 
covariate coefficients reached a maximum when 

( ) ( )ln
0,

!

v
nv e n H vdP n
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= =  where γ  was the 

Euler-Mascheroni constant and nH  was a harmonic 
number, leading to the transcendental equation 

ln 0nH vγ − + = . The regression model also revealed that 
the Euler-Mascheroni constant arose in the integrals as  
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Commonly, integrals that render γ  in combination with 
temporal sampled constants include 
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In this research an interesting analog of equation (2.2) 
in the regression-based model was then calculated as 
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n

n
n n

x dxdy
xy xy

π

γ

∞
−

=

+   = − −      

−
= =

+

∑

∫ ∫ 

. This solution 

was also provided by incorporating Mertens theorem [i.e., 

1

1 1lim
1ln 1

n

n n i
i

e
p

p

γ
→∞ =

=
−

∏  where the product was 

aggregated over the district-level sampled values found in 
the empirical ecological datasets. IMertens' 3rd theorem: 

1lim ln 1
n p n

n e
p

γ−
→∞ ≤

 
− = 

 
∏  is related to the density of 

prime numbers where γ  is the Euler–Mascheroni 
constant[(Hosmer and Lemeshew 2000].By taking the 
logarithm of both sides in the MDR-TB model, an explicit 
formula for γ  was then derived employing 

1lim ln ln ln .
11x p x

x
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  
  
  = −
  −    

∑  This expression was 

also rendered coincidently by quantifying the data series 
employing Euler, and equation (2.2) by first replacing 

( )ln ln 1bn n + , in the equation 
1

1 1ln 1
k k k

γ
∞

=

  = − +    
∑  

and then generating 

( ) 1lim ln 1 ln lim 1 0
n n

n n
n→∞ →∞

 + − = + =      
. We then 

substituted the telescoping sum 

( )
1

1ln 1 ln 1
k

for n
k

∞

=

 + + 
 

∑  which then generated 

( )1ln 1 ln 1 lnk k
k

 + = + − 
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. Thereafter, our product was 
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Additionally, other series in our spatiotemporal MDR-
TB regression model included the equation ( )◇  where 

( ) ( ) ( ) ( )
( )

1

2 1

1 141 ln
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n
n

n
n n

n n
n n

ζ ζ
γ
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  +

∑ ∑  and 

(z)ζ  was ( ) [ ]lg
1

1

nn
nn

γ
∞

= −∑
=

 plus the Riemann zeta 

function. The Riemann zeta function ( )sζ  is a function of 
a complex variables that analytically continues the sum of 

the infinite series 
1

1
s

n n

∞

=
∑  which converges when the real 

part of s is greater than 1 where lg is the logarithm to base 
2 and the [x] is the floor function (Hastie, and Tibshirani 
1990). Jacob et al. (2012) earlier provided a series 

equivalent to 
( )( )

2 1

11 2

1
2 1 2 2

n

nn k

n
k k

γ
∞ −

−= =

= −
+ +∑ ∑  and, 

thereafter 
( )( )

1 1 1
2 1 2 2 2 1 2 2k k k k

= −
+ + + +

 which was 

then added to 1 1 1 10
2 4 8 16

= − + + + +  to render Vacca's 

formula in a district-level malaria-related model. The 
authors then used used the sums 

( ) 111 1 2
121 1 02

k k jk j
kk jnn k jk

γ
−−∞ ∞ ∞ −  − += =  ∑ ∑ ∑ ∑  += = =  =

 

with k-j by replacing the undefined I and then rewrote the 
equation as a double series for applying the Euler's series 
transformation to each of the sampled time-series 
dependent explanatory covariate coefficient estimates.  

In this research n
k

 was used as a binomial coefficient, 

rearranged to achieve conditionally convergent series in 
our spatiotemporal MDR-TB linear model. The plus and 
minus terms were first grouped in pairs of the sampled 
covariate coefficient estimates employing the resulting 
series based on the actual observational covariate 
coefficient indicator values. The double series was thereby 

equivalent to Catalan's integral: 
1 2 1
0

1

1
1

n

n
x dx

x
γ

∞
−

=
=

+ ∑∫ . 

Catalan's integrals are a special case of general formulas 

due to ( )2 2 cos
0 0

1 cos sinvJ z y e z d
π θ θ θ

π
 − = 
  ∫  where 

( )0J z  is a Bessel function of the first kind [3]. The 

Bessel function is a function ( )nZ x  defined in a robust 
regression model by using the recurrence relations 

1 1 1 1
2 2 n

n n n n n
dZnZ Z Z and Z Z

x dx+ − + −+ = + = −  [2] which 

more recently has been defined as solutions in linear 
models using the differential equation 

( )
2

2 2 2
2 0d y dyx x x n y

dxdx
+ + − =  [6]. 

In this research the Bessel function ( )nJ z  was defined 

by the contour integral ( ) ( )( )2 1 11
2

z t t n
nJ z e t dt

iπ
− − −= ∫  

where the contour enclosed the origin and was traversed in 
a counter-clockwise direction. This function generated: 
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( ) ( ) ( )1 cos
0 0

12 cos 1 sinzJ i z e z d
π θ θ θ

π
+= −  ∫  

1z z′≡ −  1 .and y z′= +  In mathematics, Bessel functions 
are canonical solutions y(x) of Bessel's differential 

equation: ( )
2

2 2 2
2 0d y dyx x x y

dxdx
α+ + − =  for an arbitrary 

real or complex number α  (i.e., the order of the Bessel 
function); the most common and important cases are for 
α  an integer or half-integer (Hosmer and Lemeshew 
2000). Thereafter, to quantify the equivalence in the 
spatiotemporal malarial regression-based parameter 
estimators, we expanded ( )1/ 1 x+  in a geometric series 
and multiplied the district-level sampled MDR-TB data 

feature attributes by 2 1n
x − , and integrated the term wise 

as in Sondow and Zudilin [6]. Other series for γ  then 

included ( ) ( )
2

3 1ln 2 1 1
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m m
m
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∞
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−
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∑ ∑ . A 

rapidly converging limit for γ  was then provided by 
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 where kB  was 

a Bernoulli number. Another limit formula was then provided 

by the equation 
( ) 1 1

2
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In mathematics, the Bernoulli numbers Bn are a 
sequence of rational numbers with deep connections to 
number theory, whereby, values of the first few Bernoulli 
numbers are B0 = 1, B1 = ±1⁄2, B2 = 1⁄6, B3 = 0, B4 = 
−1⁄30, B5 = 0, B6 = 1⁄42, B7 = 0, B8 = −1⁄30 [(Hastie, and 
Tibshirani 1990).]. Jacob et al. [1] found if m and n are 
sampled values and f(x) is a smooth sufficiently 
differentiable function in a seasonal malarial-related 
regression model which is defined for all the values of x in 

the interval [m,n] then the integral ( )n
m

I f x dx= ∫  can be 

approximated by the sum (or vice versa) 

( ) ( ) ( ) ( )1 11 1
2 2

S f m f m f n f n= + + + + − + . The 

Euler–Maclaurin formula then provided expressions for 
the difference between the sum and the integral in terms of 
the higher derivatives ( )ƒ k  at the end points of the 
interval m and n. The Euler–Maclaurin formula provides a 
powerful connection between integrals and sums which 
can be used to approximate integrals by finite sums, or 
conversely to evaluate finite sums and infinite series using 
integrals and the machinery of calculus [Hosmer and 
Lemeshew 2000]. Thereafter, for the district-level 
MDR_TB -sampled values, p, we had 

( ) ( ) ( ) ( )1 1
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p
k kk
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B
S I f n f m R

k
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 
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∑  where B1 = 

−1/2, B2 = 1/6, B3 = 0, B4 = −1/30, B5 = 0, B6 = 1/42, 
B7 = 0, B8 = −1/30, and R which was an error term. Note 

in this research ( ) ( )( ) ( ) ( )( )1
1 .
2

B f n f m f n f m− + = +  

Hence, we re-wrote the regression-based MDR-TB formula as 

follows: 
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∑
. We 

then rewrote the equation more elegantly as 
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with the convention of ( ) ( ) ( )1f x f x dx
′− = ∫  (i.e. the -1th 

derivation of f is the integral of the function). Limits to the 
district-level MDR-TB regression model was then 

rendered by ( )( ) 4lim 2 1
3

x
x

zγ ζ ζ
→∞

 = − + + 
 

 where ( )zζ  

was the Riemann zeta function. The Bernoulli numbers 
appear in the Taylor series expansions of the tangent and 
hyperbolic tangent functions, in formulas for the sum of 
powers of the first positive integers, in the Euler–
Maclaurin formula and in expressions for certain values of 
the Riemann zeta function [(Hastie, and Tibshirani 1990).  

Another connection with the primes was provided by 
( ) ( )0d n nσ=  for the sampled time series MDR-TB 

numerical values from 1 to n in the spatiotemporal 
sampled dataset which in this research was found to be 

asymptotic to 
( )1 ln 2 1

n
k d k

n
n

γ= + −
∑

 . De 

laValléePoussin proved that if a large number n is divided 
by all primes n≤ , then the average amount by which the 
quotient is less than the next whole number is g [Hosmer 
and Lemeshew 2000]. An identity for g in our malaria 
regression-based model was then provided by 
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I z
γ

−  = −  
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 where ( )0I z  was a 

modified Bessel function of the first kind, ( )0K z  was a 
modified Bessel function of the second kind, and 
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( )

2

0 2
0

1
2

!

k

k

K

z H
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∞

=

 
 
 ≡ ∑  where nH  was a harmonic 

number. For non-integer α , ( )Y xα  is related to ( )J xα  

by: ( ) ( ) ( ) ( )
( )

cos
.

sin
J x J x

Y x α α
α

απ
απ

−−
=  In the case of 

integer order n, the function is defined by taking the limit 
as a non-integer α  tends to n: ( ) ( )lim .n

n
Y x Y xα

α→
=  

(Hastie, and Tibshirani1990). In this research, the Bessel 
functions of the second kind, were denoted by ( )Y xα , 

and by ( )N xα , which were actually solutions of the 
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Bessel differential equation employing a singularity at the 
origin (x = 0).This provided an efficient iterative 
algorithm for g by computing 

2 2
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1k k
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 and 
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Reformulating this identity rendered the limit 

2

2
0

0

!
lim ln

!

k

k

n kk
k

n H
k

n
n
k

γ
∞

→∞ = ∞
=

 
  
  − =

 
  
 

∑
∑

. Infinite products 

involving g also arose from the Barnes G-function using 
the positive integer n. In mathematics, the Barnes G-
function G(z) is a function that is an extension of 
superfactorials to the complex numbers which is related to 
the Gamma function[(Hastie, and Tibshirani 1990).]. In 
this research, this function provided 
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∏  and also the equation 
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∏ . The Barnes G-function was 

then linearly defined in our time-series dependent MDR-
TB regression-based model which then generated 
( ) ( ) ( )( )( )

( )( )

2 2

2

1

1 2 exp 1 2
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∏
 where γ  was 

the Euler–Mascheroni constant, exp(x) = ex, and ∏ was 
capital pi notation. The Euler-Mascheroni constant was 
then rendered by the expressions ( ) ( )01 1γ ψ′= −Γ = −  

where ( )0 xψ  was the digamma function 

( )
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1s

s
s

γ ζ
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 and the asymmetric limit form of 
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In mathematics, the digamma function is defined as the 
logarithmic derivative of the gamma function: 

( ) ( ) ( )
( )

ln
xdx x

dx x
ψ

′Γ
= Γ =

Γ
 where it is the first of the 

polygamma functions. In our model the digamma function, 
( )0 xψ  was then related to the harmonic numbers in that 

( ) 1nn Hψ γ−= −  where Hn was the nth harmonic number, 
and γ  was the Euler-Mascheroni constant ((Hastie, and 
Tibshirani 1990). In mathematics, the n-th harmonic 
number is the sum of the reciprocals of the first n natural 
number s [Hosmer and Lemeshew 2000]. The difference 
between the nth convergent in equation ( )◇  and γ  in our 
district-level MDR-TB regression-based model was then 

calculated by 2
1

1 ln
n

n
k

x x
n dx

k x
γ

∞

=

−
− − =∑ ∫  where [x] was 

the floor function which satisfied the inequality 

2
1

1 ln
n

n
k

x x
n dx

k x
γ

∞

=

−
− − =∑ ∫ . The symbol g was then 

1.781072eγγ ′ ≡ ≈ . This led to the radical representation 
of the sampled explanatory MDR-TB covariate 
coefficients as  
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which was related to the double series 
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1
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11 1 ln 1
n

k
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n n
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+

= =
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= − +   

   
∑ ∑  a binomial 

coefficient. Thereafter, another proof of product in the our 
spatiotemporal district-level MDR-TB regression model 
was provided by the equation 

1 3 1 8 161 2 2 3 4 4
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2 2 2 4 2 4
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. The solution 

was then made even clearer by changing 1n n→ + . In 
this research, both these regression-based formulas were 
also analogous to the product for e which was then 
rendered by calculating 
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The outputs revealed that the linear MDR-TB models 
contained a constant term. As such, it was necessary to 

assume that ( ) ( ) 1i iE e Eτ τ= =  in order to identify the 

mean of the MDR-TB linearized distributions. We 
assumed that iτ  followed a gamma ( ),θ θ  distribution in 

the models with ( ) 1iE τ =  and ( ) 1iV τ θ= : 

( ) ( ) ( )1 expi i ig
θ

θθτ τ θτ
θ

−= −
Γ

 where 

( ) ( )1
0

expxx d
∞ −Γ = −∫ z z z  was the gamma function and  

was a positive parameter. Thus, the density of iy  in the 
models was Xi which in this research was  
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f f

 (2.4) 

Unfortunately, extra-Poisson variation was detected in 
the residual variance estimates in our MDR-TB models. 
As such, we constructed negative binomial regression 
models in PROC REG with non-homogenous means by 

incorporating ( )1= 0α α
θ

>  in equation 2.1. The 

distribution was then rewritten as 
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f  

0,1, 2,iy =  . Thus, the negative binomial distribution 
was derived as a gamma mixture of Poisson random 
variables in the MDR-TB models. The conditional mean 

was then ( )
'XX ii i iE y e βµ= =  and conditional variance 

was ( ) [ ] ( )1X 1 1 Xi i i i i i i iV y E yµ µ µ αµ
θ

 = + = + >  
. 

To further estimate the MDR-TB models, we specified 
DIST=NEGBIN(p=1) in the MODEL statement in PROC 
REG. The negative binomial model NEGBIN1, set p=1, 
had the variance function ( )Xi i i iV y µ αµ= + , which 
was linear in the mean in the model. The log-likelihood 
function of the NEGBIN1 regression model was then 

given by ( ) ( )
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gradient for each MDR-TB model was then 
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In this research, the negative binomial regression MDR-
TB models with variance function ( ) 2Xi i i iV y µ αµ= + , 
were referred to as the NEGBIN2 model. To estimate this 
model, we specified DIST=NEGBIN ( )2p =  in the 
MODEL statements. A test of the Poisson distribution was 
then performed by examining the hypothesis that 

1 0.
i

α
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= =  A Wald test of this hypothesis was also provided 

which were the reported t statistics for the estimates in the 
negative binomial regression models. The log-likelihood 
function of the models (NEGBIN2) was then generated by 

the equation: ( ) ( )
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was an integer when the gradient was 
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y µ
β αµ=

−∂
=

∂ +∑L  

and the residual variance estimates were 

( )
( ) ( )

1
2

1
0

1 2

1

.

ln 1
1

yi

N j

i i i
i

i

j

y

α
α

α µ
α αµ

α αµ

−
−

−
=

= −

 
− 
 +∂  =  

∂  −
− + − +  

∑
∑L  

First-order serial autocorrelation analyses: We then 
constructed multiple MDR-TB risk-based spatially 
dependent models using an AR(1) framework.. In this 
research the AR(1) MDR-TB models were constructed 
using the clinical and environmental explanatory predictor 
covariate coefficients estimates sampled at the SJL study 

site. The models were defined as 1 1
1

p

t t t
i

X c Xϕ ε−
=

= + +∑  

where 1 p, ,ϕ ϕ…  were the sampled predictor variables, c  

was a constant and tε  was white noise. The MDR-TB 
models revealed that continuous time random process 
( )w t  where t∈  was a white noise process if, and only 

if, its mean function and autocorrelation function satisfied 
the following: ( ) ( ){ } 0t w twµ = Ε =  and 

( ) ( ) ( ){ } ( ) ( ), / 2 .1 2 1 2 0 1 2R t t w t w t N t tww δ= Ε = −  (i.e., 

it is a zero mean process for all time and has infinite 
power at zero time shift) since its autocorrelation function 
was the Dirac delta function. The Dirac delta function is a 
generalized function depending on a real parameter such 
that it is zero for all values of the parameter except when 
the parameter is zero, and its integral over the parameter 
from −∞  to ∞  is equal to one (Cressie 1993). In this 
research the AR(1)-process was given by: 

1t t tX c Xϕ ε−= + +  where tε  was a white noise process 

with zero mean and variance 2
εσ . 

Thereafter, we used different classifications, whereby, 
the autoregressive parameters in the MDR-TB models 
processes were defined as wide-sense stationary, if | | 1ϕ <  
which was obtained as the output of stable filters whose 
input was white noise. On the other hand, in the models, if 

1ϕ = , then tX  had infinite variance and, therefore, was 
not wide-sense stationary. In mathematical sciences, a 
stationary process is a stochastic process whose joint 
probability distribution does not change when shifted in 
time or space (Cressie 1993), thus, statistics such as the 
mean and variance in predictive autoregressive 
distribution models do not change over time or position. 
Consequently, in this research we assumed | | 1ϕ < , where 
the mean ( )E tX  was identical for all the sampled cluster 
based MDR-TB covariate coefficient values of t . 

In this research the mean of the sampled clinical and 
environmental MDR-TB data were denoted by µ , thus it 
followed ( ) ( ) ( ) ( )1 ,t t tX c Xϕ ε−Ε = Ε + Ε +Ε  such that 

0,cµ ϕµ= + +  and hence
1

cµ
ϕ

=
−

. The variance in the 

residual forecasts were then delineated by 

( ) ( )
2

2 2
2var ,

1
t tX X εσµ

ϕ
= Ε − =

−
 where εσ  was the 

standard deviation of tε . This was revealed by noting that 

( ) ( )2 2
1var var ,t tX Xϕ σ−= +  and that the quantity 

rendered from the equation was a stable fixed point of this 
relation in each model. Additionally, for 

( )
2

2
2 ,

1
n

n t n tB X X εσµ ϕ
ϕ

+= Ε − =
−

 the autocovariance 
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function decayed with time (i.e., time constant) of 
( )1/ lnτ ϕ= −  in both models. In order to further define 

the autocovariate function we wrote | |n
nB Kϕ=  where K 

was independent of n. Then we noted that  ln| | nn e ϕϕ =  

and matched this to the exponential decay law /  ne τ− . We 
also noticed that the spectral density function was the 
Fourier transform of the autocovariance function in the 
MDR-TB models. The Fourier transform is a 
mathematical operation that decomposes a signal into its 
constituent frequencies (Cressei 1993). In this research, 
the discrete-time Fourier transform in both models was 
expressed as 

( )
( )

2

2
1 1 .
2 2 1 2 cos

i n
n

n
B e ω εσω

π π ϕ ϕ ω

∞
−

=−∞

 
 Φ = =
 + − 

∑  

This expression was periodic due to the discrete nature of 
the jX , which was manifested as the cosine term in the 
denominator. We assumed that the sampling time 
( ) 1t∆ =  was much smaller than the decay time ( )τ . By 
doing so we were able to successfully apply a continuum 

approximation to ( )
2

2:
1

t
nB B t εσ ϕ

ϕ
≈

−
 which yielded a 

Lorentzian profile for the spectral density 

( ) ( )
2

2 2 2
1
2 1

εσ γω
π ϕ π γ ω

Φ =
− +

 where   1 /γ τ=  was 

the angular frequency associated with τ in the MDR-TB 
models. In mathematics, Lorentz distribution is closely 
related to the Poisson kernel, which is the fundamental 
solution for the Laplace equation in the upper half-plane 
(see Haight 1967). In this research the Lorentz distribution 
had the probability density function 

( )
( )

0 2 20 0

1 1; ,
1

f x x
x x x x

γγ
π γπγ

γ

 
 = =

   −  − + +  
  

 

where 0x  was the sampled MDR-TB parameter, 
specifying the location of the peak of the distribution of 
the georeferenced data sampled and γ  was the scale 
parameter estimate which specified the half-width at half-
maximum. In our Lorentz distribution γ  was also equal to 
half the interquartile range (i.e., the probable error in the 
models). 

Thereafter, an alternative expression for tX  was 
derived by first substituting 2 1t tc Xϕ ε− −+ +  for 1  tX −  in 
the defining equations. Continuing this process n  times 

yielded 
1 1

0 0
.

N N
k N k

t t N t k
k k

X c Xϕ ϕ ϕ ε
− −

− −
= =

= + +∑ ∑  We 

noticed that for n approaching infinity, Nϕ  our models' 
residual estimates approached zero and 

0
.

1
k

t t k
k

cX ϕ ε
ϕ

∞

−
=

= +
− ∑  The residual estimates also 

revealed that tX  was white noise convolved with the kϕ  
kernel plus the constant mean. If the white noise tε  is a 

Gaussian process then tX  is also a Gaussian process 
(Cressie 1993). The regression residuals revealed that 

tX was normally distributed when ϕ  was close to one in 
both models. 

The DW statistic was then generated to detect the 
presence of first-order autocorrelation error coefficients in 
the regression residuals. We generated the DW statistic to 
test for first-order serial correlation in the MDR-TB 
models. We used the DWPROB option in SAS to print the 
significance level (i.e. p-values) for the Durbin-Watson 
tests. The DW statistic was used to test the null hypothesis 

1: 0oH ϕ =  against 1 1: 0H ϕ− > . The following 
procedure statements performed the Durbin-Watson test 
for autocorrelation in the ordinary least squares (OLS) 
residuals for orders 1 through 4 in both models. 

In this research, the generalized DW statistic was 

written as: 
 

 

1 '

1
j j

j
u A A u

DW
u u

=  where u  was a vector of 

OLS residuals and jA  was a ( )T j T− ×  matrix. The 

generalized DW statistic jDW  was then rewritten as: 

( )' '' 1 1''
' '

j jj j
j

Q A A QY MA A MY
DW

Y MY

η η

η η
= =  where 

'
1 1 T kQ Q I −= , '

1 0Q X = , and '
1Q uη = . The marginal 

probability for the DW statistic was: 

( ) ( )Pr Pr 0jDW c h< = < where ( )' '
1 1' j jh Q A A Qη η= . 

The p-value, or the marginal probability for the 
generalized DW statistic was then computed by numerical 
inversion of the characteristic function ( )uφ  of the quadratic 

form ( )' '
1 1' j jh Q A A Q cIη η= − . In the models the trapezoidal 

rule approximation to the marginal probability Pr(h<0) was 

( ) ( ) ( )
0

1
21Pr h 0
12
2

K

I T
k

lm k
E E K

k

φ

π=

   + ∆      < = − + ∆ +
 + 
 

∑  

where ( )lm φ ⋅    was part of the characteristic function 

and ( )IE ∆  and ( )TE K  were integration and truncation 
errors, respectively. The trapezoidal rule is a way to 
calculate the definite integral (Cressie 1993). 

A numerically efficient algorithm was then used to 
quantify the dependent error components in our first-order 
autocorrelation MDR-TB models, which required O(N) 
operations for evaluation of the characteristic function 
( )uφ . In this research the characteristic function in the 

sampled predictors covariate coefficients estimates were 

denoted as: 
( ) ( )

1
' ' 2
1 1

11 1
1 22 2

2

' '

j j N ku I iu Q A A Q cI

v x v x x x

φ
−

−

−− −−

− −
 where 

( ) '1 2 2 j jv iuc I iucA A= + −  and 1i = − . By applying the 
Cholesky decomposition to the complex matrix V, we 
obtained the lower triangular matrix G which satisfied V= 
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GG’. Cholesky decomposition is a decomposition of a 
symmetric, positive-definite matrix into the product of a 
lower triangular matrix and its conjugate transpose 
(Cressie 1993). This generated n n×  complex matrices 

(i.e., A) which were positive definite if 4 0R x Ax  >   for 

all nonzero complex vectors nx C∈ , where X4 denoted 
the conjugate transpose of the vector X. The conjugate 
transpose of an m x n matrix A in this research was the n x 

m matrix defined by 
THA A≡  where TA  denoted the 

transpose of the matrix A and A  denoted the conjugate 
matrix in both MDR-TB models. If A is a complex matrix, 
then the conjugate transpose *A  is the matrix TA A∗ = , 
where _A A  is the complex conjugate of A, and TA is the 
transpose of A (Cressie 1993). The conjugate transpose of 
a matrix A in this research was implemented in 
Mathematica as ConjugateTranspose [A]. The conjugate 
transpose is also known as the adjoint matrix, adjugate 
matrix, Hermitian adjoint, or Hermitian transpose (Strang 
1988). If a matrix is equal to its own conjugate transpose, 
it is said to be self-adjoint and is called a Hermitian 
(Cressie 1993). In this research the conjugate transpose of 
the matrix product in both MDR-TB models was given by 

( )( ) TH
ij

ij
ab ab =   

. Using the identity for the product of 

transpose rendered ( )T Tb a , T Tb aik kj , T Tb a
ik kj

   
   
   

, 

H H
ik kjb a , ( )H H

ij
b a  where Einstein summations were then 

used here to sum over repeated indices. 
The Einstein summation convention implies that when 

an index occurs more than once in the same expression, 
the expression is implicitly summed over all possible 
values for that index (Cressie 1993). Therefore, in order to 
use the summation in this research it had to be clear from 
the context over what sampled MDR-TB range indices 
had to be summed. The Einstein summation convention 
was performed by letting {ei}ni=1 be an orthogonal basis 
in  n in both models. In mathematics, particularly linear 
algebra, an orthonormal basis for inner product space V 
with finite dimension is a basis for V whose vectors are 
orthonormal (Strang 2006). For example, the standard 
basis for a Euclidean space Rn is an orthonormal basis, 
where the relevant inner product is the dot product of 
vectors (Cressie 1993). The image of the standard basis 
under a rotation or reflection (or any orthogonal 
transformation) is also orthonormal, and every 
orthonormal basis for Rn arises in this fashion. In 
functional analysis, the concept of an orthonormal basis 
can also be generalized to arbitrary (infinite-dimensional) 
inner product spaces (or pre-Hilbert spaces) (Lay 2006). 
In this research the inner product of the vectors generated 
from the sampled MDR-TB data was 

1( )niu uiei uiei== = ∑  and 1( )niv viei viei== = ∑ , 
where .  .u v uivjei ej ijuivjδ= = . For a general inner 
product space V, an orthonormal basis can be used to 
define normalized orthogonal coordinates on V. Under 
these coordinates, the inner product becomes dot product 
of vectors. Thus the presence of an orthonormality in our 

models reduces the study of a finite-dimensional inner 
product space to the study of Rn  under dot product. We 
let V be a vector space with basis { } 1ei ni =  and a dual 
basis { } 1ei ni = . Then, for a vector v viei=  and dual 
vectors ieiα α=  and ieiβ β= , we had 

( )( ) ( )v ivi jvj i i viα β α β α β+ = + = + . A vector space is 
a mathematical structure formed by a collection of vectors: 
objects that may be added together and multiplied 
("scaled") by numbers, called scalars in this context 
(Cressie 1993). This revealed that the summation 
convention in both models "distributive'' occurred in a 
natural way. We then let 

: , ( 1,  , )F m n x F Fn→ → …  , and 

( ) ( ): , ( 1 , , )G n p y G y Gp y→ → …   be smooth 
functions. Then 

( ) ( ) ( )( o ) ( )xj Gi yk xjG F i x F x Fk x∂ ∂ = ∂ ∂ ∂ ∂ , where the 

right hand side was summed over 1,  ,k n= … . An index 
which is summed is called a dummy index or dummy 
variable (Cressie 1993). In this research, i was a dummy 
index in viei. In our models the expression did not depend 
on a dummy index, (i.e., viei vjej= ). This greatly 
simplified and shortened the equations For example, in 
this research using Einstein summation the MDR-TB 
models rendered, i i i i

i
a a a a≡ ∑  and ik ij ik ij

i
a a a a= ∑ . 

Thereafter it followed that ( )H H HAB B A= . 
In this research the linear system of equations generated 

from the MDR-TB parameters with a positive definite 
matrix was efficiently solved using the Cholesky 
decomposition. The positive definite matrices had at least 
one matrix square root in each model. Furthermore, 
exactly one of its matrix square roots was itself positive 
definite in each model residual estimate. In this research, 
the MDR-TB matrices were said to be positive definite 

when HA  of the Hermitian part ( )1
2

H
HA A A≡ +  

denoted the conjugate transpose. The complex matrices 
were then was broken into a Hermitian part 

( )1
2

H
HA A A≡ +  (i.e., HA  was a Hermitian matrix) and 

an antihermitian part ( )1
2

H
AHA A A≡ −  (i.e., AHA  is an 

antihermitian matrix). In our research, HA denoted the 
adjoint. This meant that a real matrix A was positive 
definite in the models only if the symmetric part 

( )1
2

T
SA A A≡ +  where TA  was the transpose, was 

positive definite. Furthermore, our square MDR-TB 
matrices A were antihermitian if they satisfied ,HA A= −  

where HA  was the adjoint. Our models revealed matrices 

where 
1 2

1 5 3
2 3 0

i i i
i i

i

+ 
 − + 
 − 

 which were antihermitian matrices. 

In this research, the marginal probability for dj given c0 
in the MDR-TB models was 
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( )
2

1Pr Pr 002
1

n
jl lIob c ob q jn
ll

λ ξ

ξ

 ∑ = < = < 
 ∑ = 

 where 

( ) 2
0

1

n

j jl l
l

q cλ ξ
=

= −∑ . Additionally, when the null 

hypothesis 1: 0oH ϕ =  held, the quadratic form qj  had 
the characteristic function 

( ) ( )( )
1
21 2 0

1

n
t c itj jl

l
φ λ

−
= − −∏

=
 in the residual 

predictor covariate coefficients estimates. The distribution 
function was then uniquely determined by this 
characteristic function: 

( )
( ) ( )1 1

02 2

itx itxe t e tj jF x dt
it

φ φ

π

−− −
∞= + ∫  in both 

models. We then tested 4: 0oH ϕ = given 

1 2 3 0ϕ ϕ ϕ= = = against 4: 0oH ϕ− > , in each 
modelusing the marginal probability (p-value) and: 

( )
( ) ( )( )4 4

0
1 10
2 2

t t
F dt

it
ϕ ϕ

π
∞ − −

= + ∫  where 

( ) ( )( )
1

1 2 24 4 4
1

n
t d itl

l
ϕ λ

−
= − −∏

=
 and 4d  was the 

calculated value of the fourth-order DW statistic. 
In AUTOREG, two alternative statistics (i.e., Durbin h 

and t) were also used to test for time varying residuals that 
were asymptotically equivalent). In this research, we used 

the h statistic, which was written as: 

1
Nh p
NV

=
−

 

where 




1
22

1

N V V llp
Nl V ll

−
= ∑

= ∑ =

, and V  was the least squares 

variance estimatefor the coefficient of the lagged 
dependent variables in the MDR-TB models. Durbin’s t 
test consists of regressing the OLS residuals  lV  on 

predictor variables and  1lV −  for testing the significance of 

the estimate for coefficient of  1lV −  (Cressie 1993). 
In PROC AUTOREG, an estimation method was used 

to generate autoregressive error models using the Yule-
Walker (YW) method. The YW method can be considered 
as generalizedleast squares using the OLS residuals to 
estimate the covariances (Cressie 1993).  

The YW equations we used included 

2 ,,0
1

p
m k m k m

k
γ ϕ γ σ δε= +∑ −

=
 where m  0,...,  p,=  

yielded p  1+  equations; where γ m was the 
autocorrelation function of X in the MDR-TB models, εσ  
was the standard deviation of the input noise process; and, 

m,0δ  was the Kronecker delta function. The Kronecker's 
delta, is a function of two variables, usually integers, 
which is 1 if, they are equal and 0 otherwise (Hosmer and 
Leneshew 2000). The equations were solved by 
representing the sampled clinical and environmental 
MDR-TB predictors as a matrix form  0> , thus, 

rendering equation 

0 1 2
1 1

1 0 1
2 2

2 1 0
3 3

γ γ γ
γ ϕ

γ γ γ
γ ϕ

γ γ γ
γ ϕ

− −

−

   
    
    
    =
    
    
       







   

 

 

solving all ϕ . For m = 0 we had 2
0

1

p

k k
k

εγ ϕ γ σ−
=

= +∑  in 

both model’s residual estimates which allowed us to solve 
2
εσ . The full auto-correlation function was then derived 

by recursively calculating ( ) ( )
1

p

k
k

kρ τ α ρ τ
=

= −∑  in the 

estimates. In this research, the YW equations were 
1 1 0 2 1γ ϕ γ ϕ γ−= +  and 2 1 1 2 0γ ϕ γ ϕ γ= +  where 
  k  kγ γ− = . The equations then yielded 

1
1 1 0

2
/

1
ϕ

ρ γ γ
ϕ

= =
−

 and the recursion formula which 

then yielded 
2 2
1 2 1

1 1 0
2

/
1

ϕ ϕ ϕ
ρ γ γ

ϕ
− +

= =
−

 in both model 

estimates.  
The equation defining the AR processes in the MDR-TB 

models was then 
1

.
p

t i t i t
i

X Xϕ ε−
=

= +∑  Thereafter, we 

multiplied both sides by Xt − m and imputed the expected 
values which yielded 

1
E[ ] E E[ ].

p

t t m i t i t m t t m
i

X X X X Xϕ ε− − − −
=

 
= + 

  
∑  In this 

research  E[ ]t t m mX X γ− =  was the autocorrelation 
function in the models. The values of the noise function 
were independent on each other, and Xt − m was 
independent of tε  where m was greater than zero. The 
residual estimates revealed form  0> , [ ]E tXt  m 0ε − = . 

For m  0= , 1

2 2

1

E[ ] E

E[ ] E[ ] 0 ,

p

t t t i t i t
i

p

i t t i t
i

X X

X ε

ε ε ϕ ε

ϕ ε ε σ

−
=

−
=

  
 = +     

= + = +

∑

∑
. This 

rendered 2

1
E .

p

m i t i t m m
i

X X εγ ϕ σ δ− −
=

 
= + 

  
∑  when m ≥ 0 

in the MDR-TB models. Furthermore, we used 

1 1 1
E E[ ] ,

p p p

i t i t m i t t m i i m i
i i i

X X X Xϕ ϕ ϕ γ− − − + −
= = =

 
= = 

  
∑ ∑ ∑  

which yielded th equation 2

1
.

p

m i m i m
i

εγ ϕ γ σ δ−
=

= +∑  and 

2
| |

1
.

p

m m i m i m
i

εγ γ ϕ γ σ δ− −
=

= = +∑  for m < 0. 

In this research, we let ϕ  represent the vector of the 
autoregressive parameters, ( )1 2, ,..., 'mϕ ϕ ϕ ϕ= , and we 
let the variance matrix of the error vector be 
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( )1,..., 'Nv v v= ( ),  E vv 2vσΣ Σ = . If the vector of 
autoregressive parameters ϕ  is known, the matrix v can 
be computed from the autoregressive parameters; Σ  is 
then 2vσ  (Cressie 1993). Given Σ  the efficient estimates 
of regression parameters β  were computed using 
generalized least squares (GLS) for both models. The GLS 
estimates then yielded the unbiased estimate of the 
variance 2σ  in the models. 

Shapiro–Wilk diagnostic test: The Shapiro–Wilk test 
was then used to test the null hypothesis that the 
spatiotemporal-sampled clinical and environmental MDR-
TB predictor covariate coefficient estimates 1,..., nx x  
came from a normally distributed population. In SAS, the 
primary test statistics for detecting the presence of non-
normality is the Shapiro-Wilk (www.sas.com). Shapiro-
Wilk test checks the normal assumption by constructing 
W statistic, which is the ratio of the best estimator of the 
variance based on the square of a linear combination of 
the order statistics to the usual corrected sum of squares 
estimator of the variance (Cressie 1993). In this research, 
to perform the test, the W statistic was constructed by 
considering the regression of the ordered sampled 
parameter estimates on corresponding expected normal 
order statistics, which was linear in both MDR-TB models. 
W isa measure of the straightness of the normal 
probability plot, and small values indicate departures from 
normality (Cressie 1993). We used the test statistic: 

2

( )
1

2

1
( )

n

i i
i
n

i
i

a x

W
x x

=

=

 
  
 =

−

∑

∑
 where ( )ix  (with parentheses enclosing 

the subscript index i) was the ith order statistic, (i.e., the 
ith-smallest numbering the sampled clinical and 
environmental MDR-TB sampled datasets), where 

( )1x  ... /nx x n= + +  was the sample mean; the 
constants ia  were given by 

1

1 1 1 1/2( , , )
( )

n
m Va a

m V V m

−

− −
… =




 where 1( , , )nm m m= …   

and 1,..., nm m  were the expected values of the order 
statistics of independently and identically distributed 
distributed(i.d.d). random variables sampled from the 
standard normal distribution; and, V was the covariance 
matrix of those order statistics. In probability theory and 
statistics, a sequence or other collection of random 
variables is independent and identically distributed (i.i.d.) 
if each random variable has the same probability 
distribution as the others and all are mutually independent 
(Cressie 1993).We also computed 2 2( 1)S n s= −  where 

2s  was the sample variance using the parameters sampled 
at the SJL study site.  

In this research, the marginal probability for dj given 
0c  in the MDR-TB models was 

( )
2

1
02

1

Pr Pr 0
n

jl lI
jn

ll

ob c ob q
λ ξ

ξ
=

=

 
 < = <
 
 

∑
∑

 where 

( ) 2
0

1

n

j jl l
l

q cλ ξ
=

= −∑ . Additionally, when the null 

hypothesis 1: 0oH ϕ =  held, the quadratic form qj  had 
the characteristic function 

( ) ( )( )
1
20

1
1 2

n

j jl
l

t c itφ λ
−

=
= − −∏  in the residual predictor 

covariate coefficients estimates. The distribution function 
was then uniquely determined by this characteristic 

function: ( )
( ) ( )

0
1 1
2 2

itx itx
j je t e t

F x dt
it

φ φ

π

−
∞ − −

= + ∫  in 

both models. We then tested 4: 0oH ϕ = given 

1 2 3 0ϕ ϕ ϕ= = = against 4: 0oH ϕ− > , in each 
modelusing the marginal probability (p-value) and: 

( )
( ) ( )( )4 4

0
1 10
2 2

t t
F dt

it
ϕ ϕ

π
∞ − −

= + ∫  where 

( ) ( )( )
1
24 4 4

1
1 2

n

l
l

t d itϕ λ −

=
= − −∏  and 4d  was the 

calculated value of the fourth-order DW statistic. 
Bayesian analyses: In the Bayes formulation, the 

specification of the MDR-TB models was performed by 
assigning priors to all unknown parameters. We used our 
dataset of spatiotemporal-sampled clinical and 
environmental observations 1 , nX x x… =   ; whereby, each 

ix  for i 1 n= …  was assumed to be distributed according 
to some distribution ( )|ip x θ . The posterior probability 

( )Pr |M D  of the MDR-TB models (i.e., M) was given by 
the sampled clinical and environmental data (i.e., D) 
which was given by Bayes' theorem: 

( ) ( ) ( )
( )

Pr | Pr
Pr | .

Pr
D M M

M D
D

=  Given a model selection 

problem in which we have to choose between two models, 
on the basis of observed data D, the plausibility of the two 
different models M1 and M2, parameterized by model 
parameter vectors 1θ  and 2θ  which was assessed by the 
Bayes factor K given by  

 ( )
( )

( ) ( )
( ) ( )

1 1 1 1 1 1

2 2 2 2 2 2

Pr | Pr | Pr | ,
Pr | Pr | Pr | ,

D M M D M d
K

D M M D M d
θ θ θ
θ θ θ

∫
= =

∫
 

where Pr(D|Mi) was called the marginal likelihood for 
model i.  

In this research θ was a parameter that was unknown 
and thus had to be inferred from the sampled 
georeferenced data. Our Bayesian procedure began by 
assuming that θ was distributed according to some prior 
distribution ( )|p θ α , where the parameter α  was a 
hyperparameter. The joint probability was then generated 

using: 1
1

( | ) ( , , | ) ( | )
n

n i
i

p p x x p xθ θ θ
=

= … =∏X , whereby, 

the equations p(X | , ) p(X | )θ α θ=  and 

i ip(x | , ) p(x | )θ α θ=  were conditionally independent of 
the hyperparameter. We assumed that the two quantities 
are related by their conditional probability.  
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This conditional probability (i.e., likelihood function) 
was dependent on the modality in both models. The 
conditional probability of an event A assuming that B has 

occurred, denoted p(A|B), equals ( ) ( )
( )

|
P A B

P A B
P B
∩

= , 

which can be proven directly using 
( ) ( ) ( )|P A B P B P A B= ∩ which can be generalized to 

( ) ( ) ( ) ( )| |P A B C P A P B A P C A B∩ ∩ = ∩ . The 
estimate was computed as a function of the posterior 
density. 

In Bayesian statistics, the posterior probability of a 
random event or an uncertain proposition is the 
conditional probability that is assigned after the relevant 
evidence is taken into account. Similarly, the posterior 
probability distribution is the distribution of an unknown 
quantity, treated as a random variable, conditional on the 
evidence obtained from an experiment or survey (Cressie 
1993). In this reseach, the posterior probability is the 
probability of the sampled MDR-TB time series 
dependent parameters θ  provided the evidence 
C : p( | X)θ . 

This value contrastses with the likelihood function, 
which in our model was provided by the probability of the 
evidence given the MDR-TB parameters: p(X | )θ . In our 
model the probability distribution function was 
represented by p( )θ  and the sampled observations X with 
the likelihood p(X | )θ . Next, then the posterior 

probability was defined as ( ) ( ) ( )
( )

Pr Pr |
Pr | .

Pr
X

X
X

θ θ
θ =  

The posterior probability of the MDR-TB model was then 
written in the memorable form as 
Posterior probability Prior probability Likelihood∝ × . 
The posterior probability distribution of one sampled 
MDR-TB random variable gave the value of another can 
be calculated with Bayes' theorem by multiplying the prior 
probability distribution by the likelihood function, and 
then dividing by the normalizing constant, as follows: 

 

( )

( ) ( )

( ) ( )

X Y y

X X Y y

X X Y y

f x

f x L x

f x L x dx

=

=
∞

=−∞

=

∫

∣

∣

∣

 

which provided the posterior probability density function 
for a random variable X given the data Y y= , 
where: ( )Xf x  was the prior density of X, 

( ) ( )X Y y Y X xL x f y= ==  was the likelihood function as a 

function of x, ( ) ( )X X Y yf x L x dx
∞

=−∞∫  was the 

normalizing constant, and ( )X Y yf x=  was the posterior 

density of X as provided by the sampled MDR-TB data 
Y y= .  

The specification of a prior density in addition to the 
likelihood function Bayesian inference then determined 
the posterior distribution of the sampled MDR-TB 
parameters ( | , )p θ αX  using 
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In this research we defined the deviance as 
( ) 2 log( ( | ))D p y Cθ θ= − + , where y was the sampled 

MDR-TB data, p(y | )θ  was the likelihood function and C 

was a constant. The expectation [ ( )]D Dθ θ= E  was used 
a measure of how well the MDR-TB models fit the 
sampled data.  

The residual revealed that the larger the expectation 
value, the worse the fit. The effective number of 
parameters for both models was then computed as 

( )p D DD θ= − , where θ  was the expectation of θ . The 

DIC was calculated in both models as .DIC p DD= +  
We then used PROC MCMC for generating the 

multivariate density functions in the Bayesian estimation 
analysis. In PROC MCMC we used the logarithm of 
LOGMPDFWISHART for determining the Wishart 
distribution and the logarithm LOGMPDFIWISHART for 
the inverted-Wishart distribution. We let x be an n-
dimensional random vector with mean vector µ  and 
covariance matrix Σ . The density was 

( )
( ) ( )

( )

11exp
2, ,

2

T

n

x x
pdf x

µ µ
µ

π

− − − ∑ − 
 ∑ =

∑
 where 

| |Σ  was the determinant of the covariance matrix Σ . The 
density function from the Wishart distribution in the 
MDR-TB models was: 

( ) ( ) ( )
1 1

12 2
1 1, , exp

2

n

n
pdf x x tr x

C

µ
µ

µ

− −
− − − ∑ = ∑ − ∑ 

 
 with nµ > , and the trace of the square matrices A was: 
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Additionally, the 

density function from the inverse-Wishart distribution was 

( ) ( ) ( )
1
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1 1, , exp

2

n

n
pdf x x tr x

D

µ µ
µ
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− −
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for 2nµ > , and ( )
( )1

2 12
2

n

n n
nD

µ
µµ

− −
− − = Γ  

 
 for 

both models. 
The marginal and conditional distributions from the 

inverse Wishart-distributed matrix were then further 
quantified using ( )1~ ,mA W ψ− . We partitioned the 
matrices for determining if Ψ  was conformable with each 

other using: 11 22 11 22

21 22 21 22
,

A A
A

A A
Ψ Ψ   

= Ψ =   Ψ Ψ   
 where 

Aij  and ijΨ  were i jp p×  matrices. We then determined 

if 11A  was independent of 1
11 12A A−  and 22 1A ⋅ , when 

1
22 1 22 21 11 12A  A  A A A−
⋅ = −  was the Schur complement 

of A11 in ( )1
11 11 2~ ,A W m p− Ψ −  employing 

( ) ( ) ( )
( ) ( ) ( )( )

11 1 12 | 22 1 ~ 1 2

11 1 12, 22 1 11 1

A A A MN p xp

Aψ ψ ψ

↑
↓ ↓ ↓ ↓ ↓ ↓

↑ ↑
↓ ↓ ↓ ↓

− ⋅

− ⋅ ⊗ −
 when of 

pxqMN ( , )⋅ ⋅  was a matrix normal distribution generated 
from the spatiotemporal-sampled clinical and 
environmental parameters; and, 1

22 1 11A ~ W ( ,m)−
⋅ Ψ . In 

linear algebra and the theory of matrices, the Schur 
complement of a matrix block (i.e., a submatrix within a 
larger matrix) is commonly defined using p p× , p q× , 
q p×  and q q×  matrices, where D is invertible and 

A B
M

C D
 

=  
 

 so that M is a (p+q)×(p+q) matrix(Cressie 

1993).If the sampled clinical and environmental MDR-TB 
observations 1 nX x , , x= …  were independent p-variety 
Gaussian variables drawn from a distribution, then the 
conditional distribution had a 1W (A ,n m)− +Ψ +  

distribution, where TA XX=  is n times the sample 
covariance matrix. Because the prior and posterior 
distributions are the same family, the inverse Wishart 
distribution was the conjugate to the multivariate Gaussian 
generated from the sampled georeferenced MDR-TB 
explanatory predictor covariate coefficient estimates.  

Model data input was also conducted in WinBUGS® 
but the number of chains had to bespecified before 
compilation. WinBUGS® is statistical software used for 
Bayesian modeling which incorporates an iterative 
estimation algorithm that starts from arbitrary initial 
values that can be generated from priors based on 
frequentist estimates (Gilks 1996). A Markov chain was 
generated using a sequence of s 1 2 3, , ,...X X X  with the 
Markov property, namely that, given the present state, the 
future and past states were independent. The following 
definition appliesn n

 -valued stochastic process 
( : )tX X t I= ∈  on a probability space ( , , )Ω   is said 

to possess the Markov property if, for each ( )nA∈   
and s,t∈I,s<t ( | ) ( | ( )),t s t sX A X A Xσ∈ = ∈   where 

{ }t I∈  is the natural filtration and ( )n
  denotes the 

Borel sigma-algebra on n
 . 

In the case that the process takes discrete values and is 
indexed by a discrete time, this was reformulated as 

follows; 1 1 0 0

1 1

( | )
( | )
n n n n

n n n n

X x X x X x
X x X x

− −

− −

= = … =

= = =




 such that 

that ( : 0)tX X t= ≥  was a stochastic process on the 
probability space ( , , )Ω   with natural filtration 

0{ }t t≥ . Then X is said to have the strong Markov 
property if, for each stopping time τ, conditioned on the 
event { }τ < ∞ , the process ·Xτ +  (which maybe needs to 
be defined) is independent from 

: { : , 0}tA A tτ τ= ∈ ∩ ∈ ≥    and  tX Xτ τ+ −  has the 
same distribution as tX  for each t 0≥ . The strong 
Markov property is a stronger property than the ordinary 
Markov property, since by taking the stopping time  tτ = , 
the ordinary Markov property can be deduced. 

Alternatively, also the Markov property was formulated 
as follows; ( ) ( )| |t s t sf X F f X Xσ   Ε = Ε     for all 

t s 0≥ ≥  and : nf →   bounded and measurable. Both 
the spatiotemporal MDR-TB model residual estimates 

revealed 1 1 1 2 2

1

Pr( | , , , )
Pr( | ).

n n n

n n n

X x X x X x X x
X x X x
+

+

= = = … =

= = =
. In 

this research the probability of going from state i to state j 

in n time steps was ( ) ( )0Pr |n
nij

p X j X i= = =  and the 

single-step transition was ( )1 0Pr |ijp X j X i= = =  For 
quantifying the extermal values in the Markov chains we 

used ( ) ( )Pr |n
k n kij

p X j X i+= = =  and 

( )1Pr |ij k kp X j X i+= = = . The n-step transition 
probabilities satisfied the Chapman–Kolmogorov equation, 

that for any k such that 0 k n< < , ( ) ( ) ( )n k n k
ij rj rj

r S
p p p −

∈
= ∑ . 

When the stochastic process under consideration is 
Markovian, the Chapman–Kolmogorov equation is 
equivalent to an identity on transition densities 
(Spiegelhalter 2002). In our Markov models we assumed 
that 1 ... ni i< < . Then, because of the Markov property 
our MDR-TB models rendered, 

( )
( ) ( ) ( )

,..., 11

1 ; 2 1 ; 11 2 1 1

,...,

| ... |
i i nn

i i i i i n nn n

p f f

p f p f f p f f −−=
 where the 

conditional probability ( )i; j i jp f | f  was the transition 

probability between the times i j>  
In this research the Chapman–Kolmogorov equation took 

the form ( ) ( ) ( ); 3 1 ; 3 2 ; 2 1 23 1 3 2 2 1
| | |i i i i i ip f f p f f p f f df

∞

−∞
= ∫  

where S was the state space of the Markov chain in both 
modelse let ( ),..., 11 ,...,i i nnp f f  be the joint probability 
density function f the values of the random variables f1 to 
fn. Then, the Chapman–Kolmogorov equation generated 
by the sampled random variables was 

( ) ( ),..., 1 1 ,..., 1 11 1 1,..., ,...,i i n i i n nn np f f p f f df
∞

− −− −∞
= ∫  using 

a straightforward marginalization over the nuisance 
variables. Note, that we did not assume anything about the 
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temporal or any other ordering of the sampled clinical and 
environmental MDR-TB random variables in the equation, 
thus, the estimates were applied equally to the 
marginalization of any parameter. When the stochastic 
process under consideration was Markovian, the 
Chapman–Kolmogorov equation was equivalent to an 
identity on transition densities in the MDR-TB models. In 
the Markov chain setting, one assumed that 1 ... ni i< < . 
Then, because of the Markov property, 

( ) ( ) ( ) ( ),..., 1 1 ; 2 1 ; 11 1 2 1 1
,..., | ... |i i n i i i i i n nn n n

p f f p f p f f p f f −−
=

 the conditional probability ( )i; j i jp f | f  was the transition 

probability between the times i j>  in the MDR-TB 
models The Chapman–Kolmogorov equation generated 
using the sampled MDR-TB data then took the form 

( ) ( ) ( ); 3 1 ; 3 2 ; 2 1 23 1 3 2 2 1| | |i i i i i ip f f p f f p f f df
∞

−∞
= ∫ . Our 

models revealed that when the probability distribution on 
the state space of a Markov chain was discrete and the 
Markov chain was homogeneous, the Chapman–
Kolmogorov equations can be expressed in terms of 
(possibly infinite-dimensional) matrix multiplication, thus: 
( ) ( ) ( )P t s P t P s+ =  where ( )P t  was the transition 

matrix of jump t, (i.e., ( )P t  is the matrix such that entry 

( ),i j  contains the probability of the chain moving from 
state i to state j in t steps). Additionally it followed that to 
calculate the transition matrices of jump t, it was sufficient 
to raise the transition matrix of jump one to the power of t, 
that is ( ) tP t P=  in both MDR-TB models. The marginal 

distribution ( )Pr nX x=  was the distribution over states 
at time n in the residuals. The initial distribution was 

( )0Pr X x=  in both models. The evolution of the process 
through each step was then described by  
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( ) ( )
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Pr

Pr
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n

rj n
r S

n
prj

r S

X j

p X r

X r

−
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∈

=

= =

= =

∑

∑

 

Additionally, in this research we extended this analyses 
to show that that distance between the nth step transition 
probability and the invariant probability measure in the 
MDR-TB models was bounded by ( )p* a bg x+    for the 

constant a b 0> >  and p 1< . The invariant was then used 
to obtain convergence rates to quantify the transition 
probabilities for autoregressive processes in the models 
using a random walk on a half line. In this research a 
random walk with reflecting zone on the nonnegative 
integers generated from the sampled predictor covariate 
coefficients was a Markov chain whose transition 
probabilities ( )q x, y  were those of a random walk [i.e., 

( ) ( )q x, y p y x= − ] which was outside a finite set 

{ }0,1,2, ,K… . As such, the distribution ( ),q x ⋅  

stochastically dominated ( )p x⋅ −  for every 

{ }0,1,2, ,K .x∈ …  Under mild hypothesis, it is proved that 

when 0xxp∑ , the transition probabilities satisfy 

( )
3
2, ~n n

xyq x y C R n
−−  as n →∞ , and when 0xxp =∑ , 

( )
1
2, ~n

xyq x y C n
−

. We did so to extend and strengthen 
the MDR-TB models' residuals in countable state space. 
Inference for MCMC simulation techniques was then 
based on weighted OLS proposals and on latent utility 
representations of multi-categorical MDR-TB regression-
based models.  

We then let ijδ  denote the drug resistant indicator of 
drug j for subject ,  1 ,i i n= … , and 1,...4.j =  

We assumed that ijδ is determined by a latent variable 
zij. Specifically,

 ( ) ( ) ( )1 4 40 , ,..., ~ ,T
ij ij i i i iI z z z z N Iδ µ= > =

 
where I(A) 

is equal to 1 if A is true. The parameter 

( )1 2 3 4, , , T
i i i i iµ µ µ µ µ=  and I4 is a 4 by 4 identity matrix. 

We decompose ijµ
 
as spatial random effects ( ),i if x y  

and subject effect iη , i.e.,
 ( ),ij i i i if x yµ η= + , 

( )2
0~ ,i jf GP f σ κ , ( )2~ 0,i Nη σ  where ix and 

iy represent the latitude and the longitude. The spatial 
random effects if ’sare modeled using Gaussian Process. 
The prior distributions for the parameters are given below: 

( )2
0 0~ ,Inv Gamma a bσ − , ( )2

0 0~ ,j Inv Gamma a bσ −
, 

( )2
0 0~ 0,f GP σ κ  where ( ) ( ), exp /a b a bκ ρ= − −  and 

( )~ ,Uniform c dρ . We decompose 

( ) ( ) ( )
1

, l l l
l

a b a bκ λ φ φ
∞

=
= ∑  as ( ) ( )

1

L

l l l
l

a bλ φ φ
=
∑ , then we 

have a representation of if  for j 1, ,  4= … . We used 
Gibbs sampling to make inferences about the posterior 
distribution of key parameters and the irspatial effects.  

The estimations are carried out in the statistical 
software package R (Version 2.15.0). 

3. Results 
The data comprised of 785 individual observations of 

patients with tuberculosis, together with a battery of 25 
attribute measures some of which were categorical and 
expanded into multiple indicator variables. One of the 
explanatory variables was number of people in an 
individual’s home (NOP). Because the only population at 
risk count available was the NOP (i.e., no data were 
available for households with no members infected with 
tuberculosis), these figures were used to construct a 
standardized rate of infected individuals per 100. Some 
variable fell out of the model. (see Table 2) The 
correlation between quality of living indicators and 
employment status showed generally weak ( )r 0.09<  
correlations between employment variables and access to 
utilities as can be seen in Table 3. The only strong 
correlation was found to be between the availability of 
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potable water and home waste connected to the public 
network ( )r 0.77= . The correlation between these two 
variables and home access to electricity was weak 
( )r 0.37< . 

Table 3. Correlation between various quality of living and 
employment status characteristics (p-values) 

 Potable 
Water Waste Working 

Status1 
Health Center 

Worker 

Electricity 0.36 (2E-
16) 

0.29 
(1E-14) 0.02 (8E-1) -0.02 (2E-2) 

Potable 
Water  0.77 

(2E-16) 0.01 (8E-1) 0.04 (5E-5) 

Waste   -0.01 (8E-1) 0.05 (2E-7) 

Working 
Status    -0.08 (2E-2) 

1 Students, unemployed, and retired individuals were grouped together 
into the unemployed category. 

The correlation between the number of people living in 
a home and the number of bedrooms was found to be 0.51. 
It is generally accepted that the overcrowding standard is 
more than 2 people per bedroom (Blake, Kellerson, & 
Simic, 2007). The same report also states that although 

neither a house with 4 people and 2 bedrooms nor one 
with 8 people and 4 bedrooms would be considered 
crowded by definition, the latter house is considered more 
crowded. Table 4 shows the frequency of overcrowding 
by number of bedrooms per house. Of the total study 
population, 16.8% lives in overcrowded conditions 
compared to 2.7% in the U.S. in 2005(Blake et al., 2007). 
However, it should be noted that the most frequent form 
of overcrowding occurs when the number of people living 
in a house is one or two more than the threshold necessary 
to qualify living conditions as overcrowded. While an 
extra person living in a 1- or 2-bedroom house increases 
overcrowding significantly, the effect of an additional 
resident is minimized as the number of bedrooms in a 
house increases. Furthermore, as Table 5 shows, the 
frequency of overcrowded households decreases quickly 
as the number of rooms in a house increases due to the 
fact that there are very few households containing more 
than 9 individuals. Figure 3 shows the cumulative 
distribution of overcrowding by people and bedrooms per 
house. It can be seen that more than 50% of overcrowded 
conditions occur in houses that have 1 or 2 bedrooms 
while the same number of overcrowded conditions occur 
in houses that have 7 or less people. Therefore, 
overcrowding is largely a problem of smaller dwellings 
with slightly above overcrowding conditions rather than 
grossly overcrowded small dwellings or slightly 
overcrowded large houses. 

Table 4. Frequency of households with a number of people (across) living in a given number of bedrooms (down) 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 

1 21 8 18 12 9 4 6 0 0 0 0 1 0 0 0 0 0 0 0 

2 3 7 20 28 14 8 4 1 0 0 0 0 0 0 0 0 0 0 1 

3 0 9 15 19 25 11 10 6 1 2 1 1 0 1 1 0 0 0 0 

4 2 5 9 18 19 18 17 13 5 3 3 1 1 1 0 0 0 0 0 

5 2 3 9 18 17 17 12 9 5 2 5 1 2 0 0 0 0 0 1 

6 0 3 5 11 18 21 19 8 8 2 1 1 0 1 1 1 0 0 0 

7 0 1 2 8 10 8 12 8 5 1 3 3 0 1 0 1 0 0 0 

8 0 0 2 4 8 3 7 5 7 3 4 1 0 0 3 0 0 0 0 

9 0 0 1 2 0 2 2 1 4 3 2 0 1 1 0 0 1 0 0 

10 0 0 0 0 2 4 4 0 2 0 1 2 0 0 1 0 0 0 0 

11 0 0 1 1 1 1 3 2 1 1 0 0 1 0 3 0 0 0 1 

12 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 

13 0 0 0 0 0 0 0 1 0 0 2 0 0 0 0 0 0 0 1 

14 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

15 0 0 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 

17 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

18 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

20 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 
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Figure 3. Cumulative overcrowding distribution by people in household (blue) and bedrooms in house (red) 

 

Figure 4. Histograms of geographic group sizes with corresponding superimposed gamma distributions for (a): the high MDR-TB prevalence cluster; 
and,(b): the high MDR-TB prevalence cluster 

Table 5. Overcrowding (more than 2 people per bedroom) by 
number of bedrooms 
Number of Bedrooms Overcrowded, n (%) 

1 50 (63.3%) 
2 28 (32.6%) 
3 23 (22.6%) 
4 14 (12.2%) 
5 9 (8.7%) 
6 3 (3%) 
7 1 (1.6%) 

8+ 0 (0.0%) 

Cement and brick materials are the most commonly 
used building materials (85.0%) followed by other (7.7%) 
for houses in this study (see Table 6). Not surprisingly, 
cement and brick houses are the most commonly used 
building materials for permanent houses (65.8%),proper 
(36.5%) and family (33.9%) homes. The most commonly 
used material for squatter and temporary dwellings is rush 
mat. Only 9 houses are built from adobe while other 
building materials were used to build a large amount of 
houses (58 total). The majority of houses are permanent 
structures (77.4%) and only 9 houses are defined as 
squatter home types. 

Table 6. Frequency of home type, building material, and address type 
 Building material Address type 
 Cement and bricks, n(%) Adobe, n (%) Rush mat, n (%) Other, n (%) Permanent, n (%) Temporary, n (%) 
Home type       
Proper 279 (36.5%) 5 (0.6%) 25 (3.2%) 36 (4.7%) 341 (44.6%) 4 (0.5%) 
Rented 110 (14.4%) 2 (0.3%) 2 (0.3%) 2 (0.3%) 21 (2.8%) 95 (12.4%) 
Family Home 259 (33.9%) 2 (0.3%) 13 (1.7%) 18 (2.3%) 227 (29.7%) 65 (8.5%) 
Squatter 2 (0.3%) 0 (0.0%) 7 (0.9%) 2 (0.3%) 2 (0.3%) 9 (1.2%) 
Address type       
Permanent 503 (65.8%) 5 (0.7%) 33 (4.3%) 50 (6.6 %)   
Temporary 147 (19.2%) 4 (0.5%) 14 (1.8%) 8 (1.1%)   
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In order to compute meaningful standardized rates, the 
individual data were aggregated geographically into 
geographic groups. These groups were constructed with a 
hierarchical cluster analysis using the Lance-Williams 
flexible-beta method (SAS PROC CLUSTER; beta = -
100). The model revealed that X and Y were the highest 
and lowest MDR-TB cluster stratified by prevalence rate 
in the SJL study site. The predictor variables used for 
clustering were: longitude, latitude, and altitude; the 
criteria involved the centrographic measures of spatial 

mean and standard distance. (Table 7) Histograms for 
these groups constructed in SAS were roughly 
characterized by a gamma distribution with respective K-S 
goodness-of-fit probabilities of 0.141 and 0.006. A 
goodness-of-fit criterion can be a measure of within-
cluster homogeneity versus among-cluster heterogeneity, 
often measured by the distance of each plot to the center 
of the cluster to which it belongs, compared to the average 
distance to other clusters (Kulldorff et al., 2005).  

Table 7. MDR-TB parameter estimates with clusterings used to specify repeated covariate measures 

covariate 
With no random effects With random effects 
Parameter estimate Standard error Parameter estimate Standard error 

High MDR-TB prevalence cluster 
intercept -1.5555 0.1417 -1.5487 0.1228 
age 0.0126 0.0032 0.0124 0.0028 
# bedrooms -0.1459 0.0127 -0.1509 0.0108 
time on the job 0.2222 0.0347 0.2449 0.0303 
rental home 0.6090 0.0774 0.5230 0.0675 
single 0.3334 0.0693 0.2743 0.0600 
random effects 0  1  
scale 3.4338  2.9112  
Low MDR-TB prevalence cluster 
intercept -1.4404 0.1507 -1.4119 0.1463 
age 0.0133 0.0032 0.0121 0.0031 
# bedrooms -0.1420 0.0128 -0.1415 0.0123 

All aggregated attribute variables were converted to 
percentages, and all aggregated interval/ratio variables 
were converted to means. 

We then derived MDR-TB-related OLS Estimators 
using 0 1i i iy x uβ β= + +  where iy  was a dependent 
variable, xi  was an independent right-hand side (RHS) 

variable, iu  was the error term (unobservable), 

0 1andβ β  were coefficients. The ordinary least squares 
procedure minimizes the sum of squares error (SSE) 
(Hosmer and Lemeshew 2000). The minimization 
problem was given as follows: 
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Thereafter, we derived the MDR-TB related OLS 

estimate of ( )0 0β β . We then divided equation (1-a) by -

2 which rendered  
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equation was quantitated as  

0 1
1 1

0
n n

i i
i i

y n xβ β
= =

− − =∑ ∑  by 

dividing both sides by n. We then arranged 
 

0 1 0y xβ β− − =  and  

0 1y xβ β= −  to solve the OLS 

estimate 

0β . We then attained the OLS estimate of 

( )1 1,β β  which we then rearranged as 
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We multiplied equation (3.1) by the sum of ix  and 
equation (3.2) by n. Subsequently we attained 
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Then: 
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The numerator of equation (3.3) was then re-written as 
follows: 
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The denominator of equation (3.4) was then be re-
written as follows: 
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The MDR-TB-reated regression model with 
autocorrelated disturbances was as follows: '

t t ty x vβ= + , 

1 1 ...t t t m t mv v vε ϕ ϕ− −= − − −  and ( )20,t Nε σ . In these 

equations, ty  are the dependent values, tx  is a column 
vector of regressor variables, β  is a column vector of 
structural parameters, and tε  is normally and 
independently distributed with a mean of 0 and a variance 
of 2σ . Note that in this parameterization, the signs of the 
autoregressive parameters are reversed from the 
parameterization documented in most of the literature.  

PROC AUTOREG offers four estimation methods for 
the autoregressive error model. The default method, Yule-
Walker (YW) estimation, is the fastest computationally. 
The Yule-Walker method used by PROC AUTOREG is 
described in Gallant and Goebel (1976). Harvey (1981) 
calls this method the two-step full transform method. The 
other methods are iterated YW, unconditional least 
squares (ULS), and maximum likelihood (ML). The ULS 
method is also referred to as nonlinear least squares (NLS) 
or exact least squares (ELS).  

We let ϕ  represent the vector of the MDR-TB 
RELATED autoregressive parameters, 

1 2 m( , , , ) 'ϕ ϕ ϕ ϕ= …  and let the variance matrix of the 

error vector ( )1 Nv v ,.., v '=  be Σ , ( ) 2' .E vv Vσ= ∑ =  If 
the vector of autoregressive parameters ϕ  is known, the 
matrix V can be computed from the autoregressive 
parameters. Σ  is then 2Vσ . Given Σ , the efficient 
estimates of regression parameters β  can be computed 
using generalized least squares (GLS). The GLS estimates 
then yieldED the unbiased estimate of the variance 2σ . 

The Yule-Walker method alternates estimation of β  
using generalized least squares with estimation of ϕ  
using the Yule-Walker equations applied to the sample 
autocorrelation function. The YW method starts by 
forming the OLS estimate of β . Next, ϕ  is estimated 
from the sample autocorrelation function of the OLS 
residuals by using the Yule-Walker equations. Then V is 
estimated from the estimate of ϕ , and Σ  is estimated 

from V and the OLS estimate of 2ϕ . The autocorrelation 
corrected estimates of the regression parameters β  are 
then computed by GLS, using the estimated Σ  matrix. 
These are the Yule-Walker estimates.  

If the ITER option is specified, the Yule-Walker 
residuals are used to form a new sample autocorrelation 
function, the new autocorrelation function is used to form 
a new estimate of ϕ  and V, and the GLS estimates are 
recomputed using the new variance matrix. This 
alternation of estimates continues until either the 
maximum change in the ϕ  estimate between iterations is 
less than the value specified by the CONVERGE= option 
or the maximum number of allowed iterations is reached. 
This produces the iterated Yule-Walker estimates. 
Iteration of the estimates may not yield much 
improvement.  

The Yule-Walker equations, solved to obtain ϕ  and a 

preliminary estimate of 2σ , are 
( )1 mR r Here r r , , r '∅ = − = … , where ri is the lag i sample 

autocorrelation. The matrix R is the Toeplitz matrix whose 
i,j th element is r i j− . If you specify a subset model, 
then only the rows and columns of R and r corresponding 
to the subset of lags specified are used. If the BACKSTEP 
option is specified, for purposes of significance testing, 
the matrix [Rr] is treated as a sum-of-squares-and-
crossproducts matrix arising from a simple regression with 
N-k observations, where k is the number of estimated 
parameters.  

The Unconditional Least Squares and Maximum 
Likelihood Methods then defined the transformed error, e 
as e=L-1en where in the MDR-TB model.. The 
unconditional sum of squares for the model, S, is 

1S n'V n e'e−= = . The ULS estimates are computed by 
minimizing S with respect to the sampled parameters β  
and iϕ . The full log likelihood function for the 
autoregressive error model was 

( ) ( ) ( )2
2

1ln 2 ln ln
2 2 2 2
N N Sl Vπ σ

σ
= − − − −  where |V| 

denotes determinant of V. For the ML method, the 
likelihood function is maximized by minimizing an 
equivalent sum-of-squares function. Maximizing l with 
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respect to 2σ  (and concentrating 2σ  out of the likelihood) 

and dropping the constant term ( ) ( )ln 2 1 ln
2
N Nπ− + −  

produces the concentrated log likelihood function 

( )1/ln | |
2

N
c

Nl S V= − . Rewriting the variable term within 

the logarithm gives 1/ 1/' .N N
mlS L e e L=  

PROC AUTOREG then computed the ML estimates by 

minimizing the objective function 1/ 1/' .N N
mlS L e e L=  

The maximum likelihood estimates may not exist for 
some data sets (Anderson and Mentz; 1980). The sample 
autocorrelation function is computed from the structural 
residuals or noise '

t t tn y x b= − , where b is the current 
estimate of β . The sample autocorrelation function of the 
MDR-TB risk model was the sum of all available lagged 
products of tn  of order j divided by j+ , where   was 
the number of such products.. In this research the Toeplitz 
matrix of autocorrelations, R, was at least positive 
semidefinite. If there are missing values, these 
autocorrelation estimates of r can yield an R matrix that is 
not positive semidefinite (Griffith 2003). If such estimates 
occur, a warning message is printed, and the estimates are 
tapered by exponentially declining weights until R is 
positive definite.  

The calculation of V from ϕ  for the general AR(M) 
model was complicated, and the size of V was dependent 
on the number of clinical observations. Instead of actually 
calculating V and performing GLS in the usual way, in 
practice a Kalman filter algorithm was used to transform 
the data and compute the GLS results through a recursive 
process. In all of the estimation methods, the original data 
was transformed by the inverse of the Cholesky root of V. 
We let L denote the Cholesky root of V— that is, V=LL’ 
with L lower triangular. For an AR(m) model, L-1 is a 
band diagonal matrix with m anomalous rows at the 
beginning and the autoregressive parameters along the 
remaining rows (Griffith 2003). Since there was no 
missing values, after the first m-1 observations the MDR-
TB data was transformed as 1 1 ...t t t m t mz x x xϕ ϕ− −= + + + . 

The transformation was carried out using a Kalman 
filter, and the lower triangular matrix L ws never directly 
computed. The Kalman filter algorithm, as it applies here, 
is described in Harvey and Phillips (1979) and Jones 
(1980). Although L was not computed explicitly, for ease 
of presentation the model terms were based on L. If there 
are missing values, then the submatrix of L consisting of 
the rows and columns with nonmissing values is used to 
generate the transformations (Griffith 2003). The ULS and 
ML estimates were then qunatiated employing a Gauss-
Newton algorithm to minimize the sum of squares and 
maximize the log likelihood, respectively in the first-order 
MDR-TB model. The relevant optimization was 
performed simultaneously for both the regression and AR 
parameters. The OLS estimates of β  and the Yule-
Walker estimates of ϕ  were used as starting values for 
these methods. The Gauss-Newton algorithm required the 

derivatives of e or 1/NL e  with respect to the sampled 
time series MDR-TB CLINICAL parameters. The 

derivatives with respect to the parameter vector β  were 
1/

1/1 1 .
' '

N
NL ee L X L L X

β β
− −∂∂

= − = −
∂ ∂

 These derivatives 

were computed by the transformation described previously. 
The derivatives with respect to ϕ  were computed by 
differentiating the Kalman filter recurrences and the 
equations for the initial conditions.  

For the Yule-Walker method, the estimate of the error 
variance, 2s , was the error sum of squares from the last 
application of GLS, divided by the error degrees of 
freedom (e.g., number of clincal MDR-TB observations N 
minus the number of free parameters). The variance-
covariance matrix for the components of B was taken as 

( ) 12 1s X 'V X
−−  for the Yule-Walker method. For the 

ULS and ML methods, the variance-covariance matrix of 

the parameter estimates was computed as ( ) 12s J 'J − . For 
the ULS method, J was the matrix of derivatives of e with 
respect to the sampled parameters. For the ML method, J 

was the matrix of derivatives of 1/NL e  divided by 
1/NL . Since ϕ  was known, the estimate of the variance-

covariance matrix of B was ( ) 12 1s X 'V X
−− . Park and 

Mitchell (1980) investigated the small sample 
performance of the standard error estimates obtained from 
some of these methods. In particular, simulating an AR (1) 
model for the noise term, they found that the standard 
errors calculated using GLS with an estimated 
autoregressive parameter underestimated the true standard 
errors. These estimates of standard errors in the MDR-TB 
risk model are the ones calculated by PROC AUTOREG 
with the Yule-Walker method.  

For ULS or ML estimation, the joint variance-
covariance matrix of all the regression and auto regression 
clinical MDR-TB time series explanatory parameters was 
computed The estimates of the standard errors calculated 
with the ULS or ML method took into account the joint 
estimation of the AR and the regression parameters and 
gave more accurate standard-error values than the YW 
method.. At the same values of the autoregressive 
parameters, the ULS and ML standard errors will always 
be larger than those computed from Yule-Walker (Griffith 
2003). However, simulations of the models used by Park 
and Mitchell (1980) suggest that the ULS and ML 
standard error estimates can also be underestimates. 
Caution is advised, especially when the estimated 
autocorrelation is high and the sample size is 
small(Griffith 2003). For the Yule-Walker method, the 
variance-covariance matrix wascomputed only for the 
regression parameters.  

The Yule-Walker estimation method is not directly 
appropriate for estimating models that include lagged 
dependent variables among the regressors. Therefore, the 
maximum likelihood method is the default when the 
LAGDEP or LAGDEP= option is specified in the 
MODEL statement. However, when lagged dependent 
variables are used, the maximum likelihood estimator is 
not exact maximum likelihood but is conditional on the 
first few values of the dependent variable. 
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In this research, iet was the residual associated with the 
observation at time t, then the Durbin Watson test statistic 

was 
( )212

2
1

,
T

t tt
T

tt

e e
d

e

−=

=

−
=
∑

∑
 where T was the number of 

georeferenced clinical MDR-TB observations. Since in the 
autoregressive MDR-TB model d was approximately 
equal to ( )2 1 r− , when r was the sample autocorrelation 
of the residuals,  2d =  indicated no autocorrelation. The 
value of d always lies between 0 and 4 (Cressie 1993). In 
the model residual forecasts the Durbin–Watson statistic 
was substantially less than 2, indicating positive serial 
correlation. As a rough rule of thumb, if Durbin–Watson 
is less than 1.0, there may be cause for alarm. Small 
values of d indicate successive error terms are, on average, 
close in value to one another, or positively correlated 
(Griffith 2003). If  2d > , successive error terms are, on 
average, much different in value from one another, i.e., 
negatively correlated (Cressie 1993). In regressions, this 
can imply an underestimation of the level of statistical 
significance. 

To validate for positive autocorrelation at significance 
α , the test statistic d in the MDR-TB model was 
compared to lower and upper critical values ( ,Ld α  and 

,Ud α ): If ,Ld d α< , there was statistical evidence that the 
error terms are delineating positive spatial autocorrelation 
(PSA) (aagragtion of similar values in geospace) (Griffith 
2003). If ,Ud d α> , there is no statistical evidence that the 
error terms are positively autocorrelated while applying 

, ,L Ud d dα α< < , the test would be inconclusive (Cressie 
1993). Positive serial correlation is serial correlation in 
which a positive error for one observation increases the 
chances of a positive error for another observation. To 
validate our resultswe tested for negative autocorrelation 
at significance α . Thereafter the test statistic (4 − d) was 
compared to lower and upper critical values ( ,Ld α  and 

,Ud α ). If ( ) ,4  Ld d α− < , in the MDR-TB model then 
there was statistical evidence that the error terms are 
negatively autocorrelated. If ( ) ,4  Ud d α− > , in the 
model thenwe assumed was no statistical evidence and 
that the error terms were representing negative spatial 
autocorrelation (NSA) (i.e., aggregation of dissimilar 
values in geospace)while ( ), , 4  L Ud d dα α< − < , the 
test is inconclusive (Cressie 1993). Negative serial 
correlation in an MDR-TB model implies that a positive 
error for one observation increases the chance of a 
negative error for another observation and a negative error 
for one observation increases the chances of a positive 
error for another (Jacob et al. 2013). In our model, the 
critical values, ,Ld α  and ,Ud α , varied by level of 

significance ( )α , the number of observations, and the 
number of predictors in the regression equation. Further if 
the design matrix Χ of the regression is known, exact 
critical values for the distribution of d under the  

null hypothesis of no serial correlation can be 
calculated. Under the null hypothesis d is distributed as 

2
1

2
1

n kVi ii
n k

ii

ξ

ξ

−∑ =
−∑ =

 where n are the number of sampled MDR-

TB observations and k the number of regression variables; 
the iξ  are independent standard normal random variables; 
and the iV  are the nonzero eigenvalues of 

( ) 1T TI X X X X
− 

− 
 

 A where A is the matrix that 

transforms the residuals into the d statistic, i.e. Td e Ae= . 
We then computed the Durbin h static and the MDR-TB 
parmater estimates. 

The calculated Durbin h statsic for the autoregressively 
predicted MDR-TB parameter estimatess: 

Statistic Value Prob Label 

Durbin h 2.7814 0.0027 Pr > h 

The first-order MDR-TB parameter estimation then was 
qunatitated as: 

Parameter Estimates 

Variable DF Estimate Standard 
Error 

t 
Value 

Approx Pr > 
|t| 

Intercept 1 1.5742 0.9300 1.69 0.0999 

ylag 1 0.9376 0.0510 18.37 <.0001 

In this research the pdf was 

( )
( ) ( )( )
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tr
p B m
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− + + −Ψ Β − ΨΒ
Ψ =

Γ
 

where 1−Ψ = ∑  and ( )·pΓ  was the multivariate gamma 

function. The multivariate Gamma function, [i.e., ( )·pΓ ], 
is a generalization of the Gamma function which is useful 
in multivariate statistics, appearing in the pdf of the 
inverse Wishart distributions (Spiegelhater et al. 2002). 
We also noticed that the gamma function had two 
equivalent expressions. One was 

( ) ( )( ) ( )1 /2
0

exp a p
p s

a trace S S dS− +
>

Γ = −∫  where 

S 0>  meaning S was positive-definite. The other one, 

was ( ) ( ) ( )1 /4

1
1 / 2

p
p p

p
j

a a jπ −

=
Γ = Γ + −  ∏  from which 

we determined the recursive relationships in the sampled 
MDR-TB predictors using 

( ) ( ) ( )

( ) ( ) ( )
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. Thus, 

( ) ( )1   a aΓ = Γ , ( ) ( ) ( )1/2
2    1 /  2a a aπΓ = Γ Γ −  and 

( ) ( ) ( ) ( )3 /  2
3    1 /  2  1a a a aπΓ = Γ Γ − Γ − . 
Marginal and conditional distributions from an inverse 

Wishart-distributed matrix were then generated. In this 
research ( )1~ ,A W m− Ψ  had an inverse Wishart 
distribution. We partitioned the matrices A and Ψ  
conformably with each other using 

11 22 11 22

21 22 21 22
,

A A
A

A A
Ψ Ψ   

= Ψ =   Ψ Ψ   
 where Aij  and ijΨ  

were i jp p×  matrices. We obtained 11A  which was 
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independent of 1
11 12A A−  and 22 1A ⋅ , where 

1
22 1 22 21 11 12 12A  A  A A A A−
⋅ = −  was the Schur 

complement of 11A  in A. Commonly, a finite element 
problem is split into non-overlapping sub-domains in 
predictive distribution models and the unknowns in the 
interiors of the sub-domains are eliminated. In this 
research, the remaining Schur complement system on the 
unknowns associated with sub-domain interfaces was 
solved by the conjugate gradient method. In mathematics, 
the conjugate gradient method is an algorithm for the 
numerical solution of particular systems of linear 
equations, namely those whose matrix is symmetric and 
positive-definite (Hosmer and lenaeshew 2000). 

In this research, the conjugate gradient method was 
unstable with respect to the perturbations in both the 
MDR-TB models (e.g., most directions were not in 
practice conjugate, and the exact solution was never 
obtained). Fortunately, the conjugate gradient method can 
be used as an iterative method as it provides 
monotonically improving approximations κΧ  to the exact 
solution which can reach the required tolerance after a 
relatively small number of iterations (Cressie 1993). Our 
improvement was linear and its speed was determined by 
the condition number ( )Aκ  of the system matrix A; 

where, the larger the ( )Aκ  the slower the improvement in 

both MDR-TB models. Since some of our ( )Aκ  were 
large, preconditioning was used to replace the original 
system Ax b 0− =  with ( )1M Ax b 0− − =  so that 

( )1M Aκ −  got smaller than ( )Aκ . In most cases, 

preconditioning is necessary to ensure fast convergence of 
the conjugate gradient method (Cressie 1993). In this 
research, the preconditioned conjugate gradient method 
for the MDR-TB models took the following form: 

1
0 0 0 0 0 0r b Ax : z : M r : p : z : k : 0−= − = =  repeat: 

k 1 k k k k 1 k k kX : X a p : r : r Apα+ += + = − : if 1rk+  was 

sufficiently smaller than exit loop end if 1
k 1 k 1z : M r−
+ += , 

1 1:
T
k k

k T
k k

z r
z r

β + += , 1 1:k k k kP z Pβ+ + +  and k : k 1= + . In our 

models the above formulation was equivalent for applying 
the conjugate gradient method without preconditioning to 

the system where ( ) 1 1 1T
E A E x E b− − −=  and where 

TEE M=  and  Tx E x= . The preconditioner matrix M, 
was symmetric positive-definite and fixed, (i.e., stationary 
from iteration to iteration) in both models. We then 
compared the derived estimates of the number of iterations 
with empirical distribution functions from the larval 
habitat model residual estimates. The empirical 
distribution function, is the cumulative distribution 
function associated with the empirical measure of the 
sample (Cressie 1993). 

We also obtained ( )1
11 11 2~ ,A W m p− Ψ − , 

( )1 1 1
11 12 221 11 12 221 111 2| ~ , ,p pA A A MN A− − −

⋅ × ⋅Ψ Ψ ⊗Ψ  where 

( ),p xMN × ⋅ ⋅  was a matrix normal distribution and 

( )1
221 221~ ,A W m−
⋅ ⋅Ψ . A conjugate distribution was then 

determined to make inference about a covariance matrix 
Σ  whose prior p( )Σ  had a ( )1 ,W m− Ψ  distribution. The 
models revealed that the sampled clinical and 
environmental MDR-TB observations were independent 
p-variate Gaussian variables drawn from a N(0, )Σ  
distribution in both models. The conditional distribution 
p( | X)Σ  of the sampled clinical and environmental data 

had a ( )1 ,W A N M− +Ψ +  distribution, where 
TA XX==  was the number of sampled predictors times the 

sample covariance matrix. Due to its conjugacy to the 
multivariate Gaussian, it was possible to integrate out the 
Gaussian-based parameters using: 
( ) ( ) ( )

2

2 2

| , | | ,

2 .

2

m
p

np m n
p

P X m P X P m d

m n

mπ
+

Ψ = ∑ ∑ Ψ ∑

+ Ψ Γ  
 =

 Ψ + Α Γ  
 

∫

 The variance 

of the diagonal used the same formula in the MDR-TB 
models with i = j, which was then simplified to: 

( )
( ) ( )

2

2
2

var .
1 3

ii
iib

m p mp

ψ
=

− − −
 The mean was then 

( )
1

E B
m p

Ψ
=

− −
 in both models. Thereafter, we 

calculated the variance of each element of B in models 
which there after rendered 

( ) ( ) ( )
( )( ) ( )

2

2

1 1
var

1 3
ij ii jj

ij
m p m p

b
m p m p m p

ψ ψ ψ− + + − −
=

− − − − −
. 

In this research, we used the Conjugate distribution to 
make inference about a covariance matrix Σ  whose prior 
had a ( )1

11,W mψ−  distribution. A conjugate prior has the 
same functional form in q as the likelihood function which 
leads to a posterior distribution belonging to the same 
distribution family as the prior (Cressie 1993). In the 
models, the Beta(a1,a2) distribution had probability mass 

function f(q) given by: ( ) ( )

( )

11 21

1
11 21

0

1

1

f

t t dt

αα

αα

θ θ
θ

−−

−−

⋅ −
=

⋅ − ⋅∫
 

(3.4). The denominator was a constant in both models so 

we rewrote the equations as: ( ) ( ) 11 21 1 .f ααθ θ θ −−∝ ⋅ −  
We estimated the true probability of p, the likelihood 
function ( ), ;l s n q  in both models. This was given by the 
binomial distribution probability mass function in the 
models which was written using q to represent the 

unknown parameter p (i.e., ( ) ( ), ; n ssn
l s n

s
θ θ θ − 

= ⋅ ⋅ − 
 

 

(3.5). Since the binomial coefficient 
n
s

 
 
 

 was constant for 

the sampled MDR-TB parameters datasets (i.e. known n, 

s), we rewrote the equation as: ( ) ( ), ; 1 n ssl s n θ θ θ −∝ ⋅ −  
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By doing so the models revealed that the Beta distribution 
and the binomial likelihood function had the same 

functional form in q, (i.e. ( ). 1 baq q− , where a and b were 
constants). Since the posterior distribution is a product of 
the prior and likelihood function, it too had the same 
functional form. By combining Equations 3.4 and 3.5 we 

then had: ) ( ) 11 21, 1 n ssf s n ααθ θ θ − + −− +∝ ⋅ − . We noticed 
that we had a Beta(a1+s, a2+n-s) distribution, so the 
posterior density was actually 

) ( )

( )

11 21

1
11 21

0

1
,

1

n ss

n ss
f s n

t t dt

αα

αα

θ θ
θ

− + −− +

− + −− +

⋅ −
=

⋅ − ⋅∫
 in the models. 

The Beta(1, 1) distribution in the MDR-TB models was 
the same as a Uniform(0, 1) distribution, so we started 
with a Uniform(0, 1) prior for p, which then revealed that 
the posterior distribution could be rendered by Beta(s+1, 
n-s+1). The Jeffrey's prior for a binomial probability then 
was calculated as a Beta(½, ½). In Bayesian probability, 
the Jeffrey’s prior, is a non-informative (objective) prior 
distribution on parameter space that is proportional to the 
square root of the determinant of the Fisher information: 

( ) ( )det .p Iθ θ∝
 

It has the key feature that it is 

invariant under reparameterization of the parameter vector 
θ


.  
Note, although some infectious disease cluster modelers 

have used a Beta(0, 0) prior for quantifying within 
residual cluster based predictor covariate coefficient 
estimates it is mathematically undefined and therefore 
meaningless by itself, giving a posterior distribution of 
Beta(s, n-s) which has a mean of s/n: in other words it 
provides an unbiased estimate for the binomial probability 
but has a mode of ( ) ( )1 / 2s n− −  which is not intuitive, 
and doesn't work if 0s =  or n. 

For an alternate parameterization ϕ


 in the MDR-TB 

models we derived ( ) ( )detp Iϕ ϕ∝
 

 from 

( ) ( )detp Iθ θ∝
 

 using the change of variables theorem, 

the definition of Fisher information, and that the product 
of determinants which in this research was calculated a the 
determinant of the matrix product using: 
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Thereafter, for a case of a single MDR-TB parameter 
space sampled variable we derived  
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Because the spread of tuberculosis may be governed by 
similarities as well as dissimilarities in geographic 
locations, eigenvectors portraying both PSA and NSA 
were included in the analysis. The clusterings used to 
identify geographic groups in the stratified clusters were 
treated as repeated measures as to exploit spatial 
autocorrelation effects. Model parameters were generated 
employing variance decomposition estimates. Stepwise 
selected predictor covariate coefficient estimates 
accounted for the most variance, with the common set of 
selected coefficient estimates being age, number of 
bedrooms, time on the job, and rental home account. We 
found that several coefficient estimates covariates were 
specific to the clusterings used for aggregation purposes. 
All random effects had both a spatially structured SSRE 
and a SURE component. This made some difference in the 
Poisson regression model parameter estimation, but failed 
to account for much of the detected over dispersion in the 
MDR-TB models. The SURE’s tended to account for a 
decreasing amount of variance with increasing geographic 
aggregation. Meanwhile, spatial structuring tended to 
increase in importance with increasing geographic 
aggregation. In the models accounting for spatial 
structuring yielded a SURE that better conformed to a 
bell-shaped curve, while the SSREs included a mixture of 
PSA and NSA components, with weak NSA being 
dominant. The two finer geographic aggregations were 
characterized by a mixture whose net spatial 
autocorrelation was close to 0. 

A stepwise logistic regression analysis of the sampled 
MDR-TB data identified the following six covariates, in 
the spatial analysis of the geographically aggregated 
parameters in using a 10% selection criterion: number of 
bedrooms, time on the job (in months), latitude, rented 
home type, testing sensitive to isoniazid in an LJ medium, 
and testing sensitive to streptomycin in an LJ medium. 
These six covariates rendered a pseudo-R2 value of 0.3249, 
suggesting that the estimates accounted for about 32% of 
the geographic variation across the 195 groups. 

A Bayesian specification of the problem was also 
solved using WinBUGS®, employing normal priors for 
each of the six logistic regression coefficients. This 
solution had posterior mean regression coefficients and 
standard errors that were almost identical to those for a 
frequentist solution. 160,000 MCMC replications were 
executed. The first 10,000 were discarded as a burn-in set, 
and the resulting 150,000 were weeded such that only 
every third replication result was retained. The final 
MCMC dataset contained 50,000 replications. These 
replications conformed closely to a normal distribution, 
had no trend in the time series plot, and displayed no serial 
correlation. The estimated coefficients for testing sensitive 
to isoniazid and testing sensitive to streptomycin in an LJ 
medium had MCMC chains containing marked serial 
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correlation. Weeding each of these chains by 200 adjusted 
for this correlation, but reduced the sample sizes to 750 
replications. The resulting estimates and standard errors 
were very similar to those for the 50,000 replications This 
Bayesian problem was then respecified to include a 
random effects term, which contained both SSRE and 
SURE components; the latter not conforming very closely 
to a normal distribution (the diagnostic Shapiro-Wilk 
statistic had a null hypothesis probability of P(S-W) = 
0.0025). The random effects increased the pseudo-R2 
value to 0.9877. The SSRE accounted for about 56% of 
the random effects, contained eigenvectors representing 
both PSA and NSA, and represented an overall map 
pattern characterized by negligible autocorrelation (i.e., 
MC = -0.0544). The final MDR-TB model output 
detailing the sequential decomposition of the variance. 
The logistic regression model mean response, which was 
estimated with quasi-likelihood techniques because of the 
presence of severe under dispersion (i.e., deviance = 
0.0247), comprised the estimates. 

The linear analysis of geographically aggregated MDR-
TB data in indicated that: (1) as the number of bedrooms 
in a house in which infected persons reside increases, and 
as the percentage of isoniazid-sensitive infected persons 
increased, the standardized rate of MDR-TB tended to 
decrease; and, (2) as the average working time, as the 
percentage of rental house types, and as the percentage of 
streptomycin-sensitive persons increased, the standardized 
rate of MDR-TB tended to increase. These results also 
indicated that spatial autocorrelation plays a key role in 
the aggregated pattern of the standardized rates of MDR-
TB, with a very weak tendency toward geographic 
clustering in terms of a gradient as a function of latitude, 
combined with a compensating mixture of PSA and NSA. 
Meanwhile, the SURE indicated that a sizeable amount of 
variability was unaccounted for by variables other than 
those contained in the clinical and environmental-sampled 
dataset which most likely played an important role in the 
geographic distribution of individuals infected with MDR-
TB. 

A stepwise logistic regression analysis of these data 
identified the following two covariates, using a 10% 
selection criterion marital status and adobe building 
material. These covariate coefficient estimates rendered a 
pseudo-R2 value of 0.2966, suggesting that they accounted 
for about 30% of the geographic variation across the 
sampled MDR-TB data. The Bayesian estimation matrix 
then was respecified to include a random effects term, 
which contained both SSRE and SURE components, the 
latter conforming to a normal distribution (the diagnostic 
Shapiro-Wilk statistic had a null hypothesis probability of 
P(S-W) = 0.1572). The random effects increased the 
pseudo-R2 value to 0.9973. The SSRE accounted for about 
one third of the random effects, contained eigenvectors 
representing both PSA and NSA, and represented an 
overall MDR-TB map pattern characterized by weak NSA 
(i.e., MC = -0.2240). The final model output detailing 
sequential decomposition of variance was generated. The 
logistic regression model mean response, which was 
estimated with quasi-likelihood techniques because of the 
presence of severe underdispersion (i.e., deviance = 
0.0017), contained the estimates. 

These results indicated that as the percentage of houses 
of adobe construction in which infected persons resided 

increased, the standardized rate MDR-TB tended to 
increase; whereas, as the percentage of infected persons 
whose marital status was single increased, the 
standardized rate of MDR-TB tended to decrease. These 
results also indicated that spatial autocorrelation plays a 
key role in the aggregated pattern of the standardized rates 
of MDR-TB, with a weak tendency toward geographic 
clustering, but a concomitant stronger tendency toward 
geographic dispersion (a mixture of positive and dominant 
NSA was present). Meanwhile, the SURE indicated that a 
sizeable amount of variability was unaccounted for by the 
sampled variables other than those contained in the dataset, 
and these unknown variables most likely played an 
important role in the geographic distribution of individuals 
infected with MDR-TB. Patterns in these maps reflected 
the groupings. The SURE maps contained a more 
geographically mixed set of values; whereas, similar 
conspicuous patterns appear in the SSRE maps. 

We then qunatiated presents the pairwise spatial 
correlations for the four drug resistance outcomes. We see 
a strong spatial correlation among INH, RIF, and EMB, 
implying that the drug resistance to these three drugs are 
similar over the region. Meanwhile, we see a small spatial 
correlation of resistance to SM with the other three drugs. 
Figure 5 and Figure 6 shows the spatial effects of four 
drug resistance outcomes. Since INH, RIF, and EMB have 
strong spatial correlations, the resistance pattern are 
similar for these three drugs. Large spatial effects were 
found in the West side boundary and southeast corner, 
implying increased probability of drug resistance to these 
three drugs in these regions. For the drug SM, large spatial 
effects were spotted in several regions and lowest in the 
north. 

4. Discussion 
In the high prevalence hierarchical intra-cluster-based 

MDR-TB regression model number of bedrooms, time on 
the job (in months), rented home type, testing sensitive to 
isoniazid in an LJ medium, and testing sensitive to 
streptomycin in an LJ medium. Overall resistance to one 
or more drugs Praharaj et al. (2004) used 1378 isolates 
from HIV negative cases and 68 isolates from AIDS cases 
for determining drug susceptibility to first line 
antitubercular drugs which revealed that 13.78% with 
streptomycin resistance was the highest. Similar resistance 
to one or more drugs has been reported by Jena et al. 
(1995) and Sonnenberg et al. (2000) who had found 
approximately 12.7% and 11% respectively. Drug 
susceptibility testing for Mycobacterium tuberculosis is 
especially required in difficult cases of tuberculosis (TB) 
chemotherapy and in cases of MDR-TB; combined 
resistance to isonizid and rifampicin with or without 
resistance to any other drug. For example, Agatha et al. 
(2003), used 70 pulmonary isolates of M tuberculosis 
[Indirect drug susceptibility testing (DST)] and 20 sputum 
(10 acid fast bacilli [AFB] positive and 10 AFB negative) 
specimens (direct DST) using 0.2μg isoniazid (INH), 2μg 
ethambutol (EMB), 40 μg rifampicin (RIF) and 4 μg 
streptomycin STR) which revealed that the sensitivity and 
specificity for isoniazid was 100% and for streptomycin 
was 91.8%. The rapid and accurate susceptibility testing 
of M. tuberculosis is essential for effective patient 



 American Journal of Applied Mathematics and Statistics 296 

 

treatment and to prevent transmission of the disease. In the 
low MDR-TB stratified clusters being single was an 
important covariate. Urban crowding and crowded group 
living situations in poorly ventilated spaces has led to 
increased disease transmisssion 
(www.dhpe.org/infect/tb.html). Incidence rates of MDR-

TB in prisons, juvenile detention centers, and homeless 
shelters are higher than that in the general population. TB 
bacteria also can flourish in crowded nursing homes 
because older adults often have immune systems 
weakened by illness or aging 
(http://bhealthblog.com/tuberculosis). 

 

Figure 5. Bayesian random effect components for the clusters of aggregated individuals based INH, RIF, and EMB for a SSRE high MDR-TB 
prevalence clusters 

 

Figure 6. Bayesian random effect components for the clusters of aggregated individuals based INH, RIF, and EMB for a SSRE for the MDR-TB 
prevalence cluster 
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We then generated DW statistics to test for first-order 
autocorrelation error coefficients in the regression models. 
The tests were easy to compute under standard 
assumptions and possessed optimal power properties for 
identifying the serial dependence in the MDR-TB endemic 
transmission-oriented models. Although the power 
function of the DW tests were dependent upon the 
regressor vectors, useful upper and lower bounds for the 
power estimates were established. The bounds were 
obtained from irregularities on the roots of non-definitive 
symmetric matrices. The d statistics contained 
comparisons between the clinical and environmental 
predictor variables in each model separated by lags greater 
than one. Unfortunately, closing the gaps modified the 
structure of the regression matrices, consequently, we 
could not apply specialized tables for the regressors using 
seasonal dummy variables. We did however, quantify the 
serial dependence scheme against the DW gauged to 
obtain other tests (e.g., Yulk-Walker). These tests revealed 
that there was marginal levels of first-order positive 
autocorrelation in the models. Finite sample power of the 
DW test can quantitate fractionally integrated first-order 
serial disturbances in hierarchical MDR-Bluster-based 
regression models. 

A Bayesian specification was then solved employing 
respecified priors for each of the regression-based 
coefficients which allowed flexible model fitting and 
estimation and mapping of all "high risk" MDR-TB 
geolocations generated from the linear and non-linear 
estimation models. Our Bayesian matrices offered 
extensive statistical treatment of the sampled clinical and 
environmental explanatory predictor covariate coefficient 
estimates including inference about each sampled MDR-
TB parameter value in the SJL study site and calculation 
of confidence intervals for model predictions. In this 
research, an extremely wide range of fit statistics were 
defined based on the distribution of predictions used in 
constructing the models including the calculation of p 
values, describing the probability that the sampled 
parameter arose by chance given the model assumptions. 
Bayesian and non-linear optimization MDR-TB models 
can provide efficient asymptotical estimators that are more 
efficient than simple linear-based regression covariate 
coefficient estimates For example, Bayesian inference can 
express the actual credibility related in the analyses of the 
sampled MDR-TB parameters whereas, the frequentist 
confidence interval would include only the estimator in a 
given percentage of the data sampled. 

In this research, we found that WinBUGS® was able to 
recognize conjugate specifications which was updated via 
direct sampling using standardized algorithms. In the 
estimation matrix, multiple MCMC replications were 
executed. Our replications conformed closely to a normal 
distribution and had no trend in the time series plot. The 
estimated coefficients for testing the sampled 
georeferenced cluster-based explanatory predictor 
covariate coefficient estimates had MCMC chains 
containing marked serial correlation. Weeding each of the 
chains generated by the iterations adjusted for this 
correlation, but reduced the sample sizes in each MDR-TB 
model. The resulting variance estimates in both the 
models were very similar to those for the replications. 
Posterior predictive simulations were then explicitly 
accounted for in the parametric uncertainty estimates. 

Equilibrium probabilities of the Markov processes in the 
models were also computed by multiplying the 
probabilities of the embedded chain by the mean times 
spent in the various states. The geometrically ergodic 
Markov chains were shown to have a positive extremal 
index as soon as the drift function in the MDR-TB models 
were satisfied. Our Markov chains indicated that 
geometric ergodicity was a key requirement to consistent 
variance estimation of the asymptotic normal distribution 
in the models. In this research, the Markov chains also 
guaranteed the consistency of a batch means estimate of 
the asymptotic variance in the sampled clinical and 
environmental parameters, which in turn allowed for the 
construction of asymptotically valid standard errors in the 
models. The Bayesian matrices were then respecified to 
include a random effects term which contained both SSRE 
and SURE components; the latter not conforming very 
closely to a normal distribution in either model. The 
random effects were modeled via Bayesian specifications 
for quantifying spatial heterogeneity globally in the 
within-cluster based explanatory predictor covariate 
coefficient estimates. The random effects increased 
pseudo-R2 values. The SSRE accounted for the random 
effects in the high and low MDR-TB stratified clusters. 
The clusters contained eigenvectors representing both 
PSA and NSA but, the overall MDR-TB map pattern in 
the models residuals was characterized by weak NSA. 

 The models generated in this research captured the 
NSA in the residual intra-cluster correlation analyses 
which may have been attributable to the competitive 
locational processes, negative spatial externalities, the 
construction of spatial correlograms, the spectrum (i.e., 
eigenvalues) of a geographic weights matrix, the 
calculation of linear regression residuals and the 
computation of local indicators of spatial autocorrelation 
(LISA) statistics. Fortunately, NSA can be detected in 
empirical analyses of spatiotemporal-sampled MDR-TB 
predictor variables. For example, a Moran’s scatterplot for 
NSA detection can be easily constructed by graphing 
Cartesian pairs of sampled clinical and environmental 
cluster based explanatory predictor covariate coefficient 
attribute value z-scores (i.e., summation of Z1 scores) in 
SAS®. Focusing on the mean response specification in a 
spatial filter logistic model using a geographic weighted 
matrix can then capture NSA in predictive autoregressive 
MDR-TB distribution model cluster based residual 
estimates. 

Several worthwhile implications can be drawn from this 
research. For example, a general problem in MDR-TB 
modeling concerns aggregation of sampled predictor 
variables in order to calculate rates while avoiding small 
valued covariate coefficient measurement estimates (see 
Gandhi et al. 2006). In this research, for example, clinical 
and environmental sampled individual patient data were 
treated as repeated measures, as well as aggregated into 
clusters. Tendencies were detectable between these two 
treatments of individuals, and across the clusterings. 
Those variables that furnished statistical explanation in all 
but the coarsest geographic aggregation (low MDR-TB 
prevalence cluster) were: number of bedrooms, time on 
job, and rental home. The stepwise selected covariates 
tended to account for about 30% of the variance in all 
cases. All random effects contained a spatially structured 
component. Those spatially unstructured components were 
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estimated by employing individual data and then the 
clusters were treated as repeated measures which 
accounted for a decreasing amount of variance with 
increasing geographic aggregation coarseness (i.e., 20%, 
11%, and 3%). In contrast, having no repeated 
measurements but employing a Bayesian analysis in 
which a prior was attached to the random effects yielded 
what appeared to be overestimated components (i.e., the 
residual and the spatially unstructured random effects 
could not be differentiated): all SURE estimates accounted 
for about 50% of the variance; whereas, the residual 
estimates were less than 1.5%. In other words, attaching a 
prior distribution in a Bayesian analysis failed to furnish 
sufficient ancillary information for differentiating between 
these two components. Nevertheless, eigenvector spatial 
filtering methodology allowed estimation of the SSRE. 
The MDR-TB model estimates indicated a concomitant 
strong tendency toward geographic dispersion. A mixture 
of positive and dominant negative spatial autocorrelation 
was present in the SSRE using the clinical and 
environment-sampled MDR-TB parameters. 

In this paper a Bayesian model selection procedure was 
investigated using a MCMC approach. Bayesian model 
selection, particularly the MCMC method considered in 
this paper has many advantages over traditional methods 
for time series explanatory endemic transmission-orieentd 
MDR-TB predictive risk modeling analyses using closed 
form approximations. Following the tuning of the prior 
distributions, the next step in fitting the multinomial 
model was to program the likelihood function. When 
fitting this sample model with PROC NLMIXED, Chen 
and Kuo (2001) offer an alternative specification of the 
model, a Poisson non-linear time series explanatory 
epidemiological risk model. To fit the Poisson non-linear 
MDR-TB epidemiologicalendemic transmission-oriented 
risk model, texperimenters may transpose the data set so 
that, within every clinical sampled parameter estimator . 
As of SAS 9.3 (Stokes, 2011), PROC MCMC supports 
multivariate distributions such as the multinomial 
distribution. Therefore the model can be programmed 
directly as it appears above. The following code illustrates 
the PROC MCMC statement within a macro, which will 
allow running multiple chains more easily. Multiple 
chains are necessary for Gelman-Rubin convergence 
diagnostics. 

Gelman and Rubin (1992) propose a general approach 
to monitoring convergence of MCMC output in which 

  1m >  parallel chains are run with starting values(high 
MDR-TB prevalence cluster-relatd explanatory covariates) 
that are over dispersed relative to the posterior distribution. 
Convergence is diagnosed when the chains have 
`forgotten' their initial values, and the output from all 
chains is indistinguishable. The gelman.diag diagnostic is 
applied to a single MDR-tb-related predictor variable from 
the chain. It is based a comparison of within-chain and 
between-chain variances, and is similar to a classical 
analysis of variance. There are two ways to estimate the 
variance of the stationary distribution ina a time series 
MDR-TB epidemiological endemic transmission-oriented 
risk model: the mean of the empirical variance within each 
chain, W, and the empirical variance from all chains 
combined, which can be expressed as sigma.hat^2 = (n-
1)W/n + B/n where n is the number of iterations and B/n is 
the empirical between-chain variance. If the chains have 

converged, in the risk model then both estimates are 
unbiased. Otherwise the first method will underestimate 
the variance, since the individual chains in the MDR-TB 
risk model would not have had time to range all over the 
stationary distribution, and the second method will 
overestimate the variance, since the starting sampled 
clinical points were chosen to be overdispersed. The 
convergence diagnostic is based on the assumption that 
the target distribution is normal. A Bayesian credible 
interval can be constructed theerfater using a t-distribution 
with mean mu.hat = Sample mean of all chains combined 
and variance V.hat=sigma.hat2 + B/(mn)and df estimated 
by the method of moments d = 2*V.hat^2/Var(V.hat).Use 
of the t-distribution accounts for the fact that the mean and 
variance of the posterior distribution are estimated. The 
convergence diagnostic for the model would be 
R=sqrt((d+3) V.hat /((d+1)W). Values substantially above 
1 indicate lack of convergence (Gelman, and Rubin, 1992). 
If the chains have not converged, Bayesian credible 
intervals based on the t-distribution may be too wide.  

Though a stochastic search of the model space, modern 
computational techniques, such as Reverse Jump MCMC 
(RJMCMC) (Green, 1995),can allow model selection in 
cases where there is a large number of sampled clinical 
MDR-TB explanatory covariates under consideration. 
This is typically difficult in the frequentist MDR-TB-
related frameworks. In addition, inference for time series, 
explanatory, MDR-TB–related, endemic, transmission-
oriented coefficients, accounting for model uncertainty, 
may be a byproduct of the RJMCMC approach. In a 
robust Bayesian MDR-TB endemic transmission-oriented 
explanatory endemic trasnmission-oriented paradigm, 
uncertainty may have a straightforward probabilistic 
interpretation. Model uncertainty is accounted for in the 
Bayesian paradigm by allowing the model to vary as a 
random quantity (Clyde and George, 2004). Traditionally, 
predictive time series explanatory MDR-TB related 
epidemiological risk models, or regression coefficients, 
are given a certain amount of a priori weight. 

For example, suppose an experimeneter is given a 

sequence ( )1, , nx x  of IID ( )2, vN µ δ  random variables 

and an a priori distribution of µ  given by ( )2
0 , mN µ δ . 

We wish to find the maximum a posteriori probability 
(MAP estimate of µ .) The MAP can be used to obtain a 
sampled clinical MDR-TB sample point estimate of an 
unobserved quantity on the basis of empirical dataset. The 
MAP may be closely related to Fisher's method of 
maximum likelihood (ML), but employs an augmented 
optimization objective which incorporates a prior 
distribution over the quantity to estimate. The function to 
be maximized is then given by 
( ) ( ) ( ) ( )
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which is equivalent to minimizing the following function 

of µ :
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∑ . Thus, we see that the 

MAP estimator for μ is given by 
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out to be a linear interpolation between the prior mean and 
the sample mean weighted by their respective covariances. 
The case of mσ →∞  is called a non-informative prior 
and leads to an ill-defined a priori probability distribution; 
in this case ˆ ˆ .MAP MLµ µ→  

The MDR-TB RISK model may then be updated via 
Bayesian learning just as the parameters are in the classic 
Bayesian parameter estimation framework to obtain the 
posterior distribution of the model. The prior weighting of 
the sampled explanatory MDR-TB time series coefficients 
is another benefit over frequentist methods such as Akaike 
information criterion (AIC) which a measure of the 
relative quality of a statistical model for a given set of data. 
AIC deals with the trade-off between the goodness of fit 
of the model and the complexity of the model quantity 
(Cressie 1993). Bayesism is founded on information 
theory as it offers a relative estimate of the information 
lost when a given model is used to represent the process 
that generates the data (Griffith 2003). 

Information theory is a branch of applied mathematics, 
electrical engineering, and computer science involving the 
quantification of information. Information theory was 
developed by Claude E. Shannon to find fundamental 
limits on signal processing operations such as 
compressing data and on reliably storing and 
communicating data ny other areas, including statistical 
inference, natural language processing, cryptography, 
neurobiologythe evolutionand functionof molecular codes, 
model selection in ecology, thermal physicsquantum 
computing, plagiarism detectionand other forms of data 
analysis Suppose that a sampled empirical dataset of 
MDR-TB related clinical paramter estimators is generated 
by some unknown process f. An experimenter may then 
consider two candidate models to represent f: g1 and g2. If 
the experimenter knew f, then he or she could find the 
sampled MDR-TB information lost from using g1 to 
represent f by calculating the Kullback–Leibler divergence, 

KL 1( )D f g‖ ; similarly, the information lost from using g2 
to represent f could be found by calculating KL 2( )D f g‖ .  

In probability theory and information theory, the 
Kullback–Leibler divergence (also information divergence, 
information gain, relative entropy, or KLIC; here 
abbreviated as KL divergence) is a non-symmetric 
measure of the difference between two probability 
distributions P and Q . Specifically, the Kullback–Leibler 
divergence of Q  from P, denoted ( )KL ||D P Q , is a 
measure of the information lost when Q  is used to 
approximate P The KL divergence measures the expected 
number of extra bits required to code samples from P 
when using a code based on Q , rather than using a code 
based on P. Typically P represents the "true" distribution 
of data, observations, or a precisely calculated theoretical 
distribution. The measure Q  typically represents a theory, 
model, description, or approximation of P. Although it is 
often intuited as a metric or distance, the KL divergence is 
not a true metric — for example, it is not symmetric: the 
KL divergence from P to Q  is generally not the same as 

that from Q  to P. However, its infinitesimal form, 
specifically its Hessian, is a metric tensor: it is the Fisher 
information metric.KL divergence is a special case of a 
broader class of divergences called f-divergences 

The Kullback–Leibler divergence is always non-
negative, ( ) 0KLD P Q ≥  a result known as Gibbs' 

inequality, with ( )KL ||D P Q  zero if and only if P Q=  

almost everywhere. The entropy ( )H P  thus sets a 

minimum value for the cross-entropy ( ),H P Q , the 
expected number of bits required when using a code based 
on Q  rather than P; and the KL divergence therefore 
represents the expected number of extra bits that must be 
transmitted to identify a value x drawn from X, if a code is 
used corresponding to the probability distribution Q , 
rather than the "true" distribution P. The Kullback–Leibler 
divergence remains well-defined for continuous 
distributions, and furthermore is invariant under parameter 
transformations. For example, if a transformation is made 
from variable x  to variable ( )y x , then, since 

( ) ( )P x dx P y dy=  and ( ) ( )Q x dx Q y=  dy the 
Kullback–Leibler divergence may be rewritten: 

( ) ( ) ( )
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where ( )a ay y x=  and ( )b by y x= . Although it was 
assumed that the transformation was continuous, this need 
not be the case. This also shows that the Kullback–Leibler 
divergence produces a dimensionally consistent quantity, 
since if x is a dimensioned variable, ( )P x  and ( )Q x  are 

also dimensioned, since e.g. ( )P x dx  is dimensionless. 
The argument of the logarithmic term is and remains 
dimensionless, as it must. It can therefore be seen as in 
some ways a more fundamental quantity than some other 
properties in information theory[9] (such as self-
information or Shannon entropy), which can become 
undefined or negative for non-discrete probabilities. The 
Kullback–Leibler divergence is additive for independent 
distributions in much the same way as Shannon entropy. If 

1 2,P P  are independent distributions, with the joint 
distribution ( ) ( ) ( )1 2,P x y P x P y= , and 1 2, ,Q Q Q  

likewise, then ( ) ( ) ( )1 2 2 2 .KL KL KLD P Q D P Q D P Q= +  
The Kullback–Leibler divergence between two 
multivariate normal distributions of the dimension k  with 
the means 0 1,µ µ  and their corresponding nonsingular 
covariance matrices 0 1,Σ Σ  is: 

( )
( ) ( )1

1 0 1 0

0 1 0

1

1
det2 ln
det

KL

tr
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µ µ−Σ Σ + −

= Σ
− −
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 
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  . The logarithm 

in the last term must be taken to base e since all terms 
apart from the last are base-e logarithms of expressions 
that are either factors of the density function or otherwise 
arise naturally. The equation therefore gives a result 
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measured in nats. Dividing the entire expression above by 
log 2e  yields the divergence in bits. 

By so doing An experimenter choose then cloose the 
candidate model that minimized the information loss. We 
cannot choose with certainty, because we do not know f. 
Akaike (1974) showed, however, that we can estimate, via 
AIC, how much more (or less) information is lost by g1 
than by g2. It is remarkable that such a simple formula for 
AIC results. The estimate, though, is only valid 
asymptotically; if the number of data points is small, then 
some correction is often necessary. AIC does not provide 
a test of a model in the sense of testing a null hypothesis; 
i.e Certain covariates can be given more or less weight in 
determining the most appropriate model. Methods such as 
AIC selection weight all covariates equally. The posterior 
distribution of interest in Bayesian model inference is the 
joint distribution of the model and the parameters for each 
model. A sample from this distribution is obtained 

from the RJMCMC sampler and inference concerning 
regression parameters and the model itself can be 
extracted from this sample. The RJMCMC approach also 
has one other major advantage over AIC and Bayesian 
closed form approximations, it is directly extendable to 

spatial generalized linear mixed models (GLMM). This 
implies the RJMCMC approach can be an all purpose tool 
for geostatistical regression inference for Gaussian and 
non-Gaussian. 

Another candidate approach for linearly quantifying 
clinical and environmental MDR covariate coefficient 
estimates in the future is to make use of locally 
polynomial regression modeling. Locally linear 
approaches to modeling large and complex data sets have 
been successfully demonstrated in a variety of 
applications, most of which include a separation of the 
data into blocks based on prior knowledge about the 
structure of the data being analyzed. This suggests that 
nonlinear and non-monotone response surfaces may be 
handled by local high-order polynomial models 
constructed using spatiotemporal MDR-TB parameters. In 
order to also account for linearly dependent regressors in 
spatiotemporal-sampled MDR-TB data and inter-
correlations between the responses, more alternatives to 
OLS, can be generated. Bi-linear methods based on 
estimated latent variables, [e.g. Principal Component 
Analysis (PCA) and Partial Least Squares Regression 
(PLSR)] may also reveal considerable success in 
spatiotemporal cluster-based MDR-TB parameter analysis. 
Martens and Martens (1986) demonstrated the use of 
PLSR as an alternative to ANOVA to facilitate the 
interpretation of multi-response residual within cluster-
based data from designed experiments. PLSR maximizes 
the explained covariance between the regressors and the 
responses (Cressie 1993). In contrast to most other linear 
regression methods, PLSR also utilizes inter-correlations 
between the response variables for model stabilization, 
and does not require the regressor variables to be linearly 
independent. PLSR is efficient for compressing inputs, 
intermediate states and output variables into their most 
relevant subspaces [i.e., spanned by the estimated latent 
variables, also called PLS components (PCs)], and, hence 
may provide a versatile means for MDR-TB cluster-based 
data compression by reducing the rank of both regressors 
(i.e., X) and responses (i.e.,Y). This, in turn, may provide 
an effective approach to identification of important 

features in complex MDR-TB sampled clinical and 
environmental predictors. PLSR is equivalent to OLS 
when the regressor rank is not reduced, that is, when all 
PLS components are included (Hosmer and Leneshew 
2000). Modeling MDR-TB based on such estimated latent 
variables represented by so-called X- and Y- score vectors 
also may have the advantage of being suited for graphical 
visualization, inspection and interpretation via their 
associated sets of coefficients describing the relationship 
between the score vectors and the original sampled MDR-
TB parameters. Campbell et al. (2006) has shown that 
metamodels based on subspaces found by PLSR, when 
compared to Legendre polynomials and PCA, gave the 
simplest and most predictive basis for sensitivity analysis 
for a set of computational models. In Martens et al. (2009) 
the suitability of PLSR for interpretation of complex 
biological systems and use of PLSR in sensitivity analysis 
was demonstrated. This motivates probing the versatility 
of a new variant of local MDR-TB modeling, [i.e., 
Hierarchical Cluster-based PLS regression (HC-PLSR)], 
which will assume no prior knowledge about the sampled 
clinical and environmental data structure. Therefore 
besides quantitating HC-PLSR MDR-predictor covariate 
coefficient estimates, the metamodelling performance of 
HC-PLSR, global PLSR and global ordinary least squares 
regression for a dynamic spatiotemporal hierarchical 
cluster-based MDR-TB regression framework can be 
constructed. These test beds can also encompass large 
classes of dynamic models. We can also compare the HC-
PLSR MDR-TB model approach in terms of explained 
variance and prediction accuracy increases with the degree 
of nonlinearity and the presence of positive feedback 
loops with other hierarchical cluster-based regression 
model outputs. 

In conclusion, a regression analysis of the clinical and 
environmental MDR-TB predictor variables identified 
multiple covariate coefficient estimates associated with 
the sampled data. Thereafter, we developed a practical 
approach to diagnosing the existence of a latent stochastic 
process in the mean of the regression model. The 
asymptotic distribution of standard generalized linear 
model estimators were derived for helping to quantiate 
where an autocorrelated latent process was present. 
Simple formulae for the effect of autocovariance on 
standard errors of the regression coefficients were also 
provided. Methods for adjusting for the severe bias in the 
proposed estimators of autocovariance were derived and 
their behaviour was investigated. The model filtered out 
the latent autocorrelation patterns from the error-
covariance matrix. Incorporation of all relevant 
eigenvectors in the MDR-TB model left the remaining 
residual component spatially uncorrelated. A Bayesian 
matrix was then generated using an MCMC algorithm. 
The model was respecified to include a random effects 
error term, which contained both SSRE and SURE 
components. The random error effects in the Bayesian 
coefficients increased the pseudo-R2 values in the models. 
The SSRE accounted for about one third of the random 
effects error in the sampled MDR-TB data, which 
contained eigenvectors representing both PSA and NSA. 
The final model revealed an overall map pattern 
characterized by weak NSA in the models. Quasi-
likelihood techniques in a regression equation and 
Bayesian prior distributions can quantify intra-cluster 
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correlations using sequential decomposition of variance 
estimates from clinical and environmental-sampled MDR-
TB explanatory variables for identifying at-risk 
populations. 
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