
American Journal of Applied Mathematics and Statistics, 2014, Vol. 2, No. 4, 224-230
Available online at http://pubs.sciepub.com/ajams/2/4/9
© Science and Education Publishing
DOI:10.12691/ajams-2-4-9

A Survey of R Software for Parallel Computing

Esam Mahdi*

Department of Mathematics, Islamic University of Gaza
*Corresponding author: emahdi@iugaza.edu.ps

Received June 16, 2014; Revised July 31, 2014; Accepted August 04, 2014

Abstract This article provides a summary of a selection of some of the high-performance parallel packages
(libraries) available from the Comprehensive R Archive Network (CRAN) using the statistical software R. These
packages can utilize multicore systems often found in modern personal computers as well as computer cluster or grid
computing in order to provide linear speed up the computations in many of advanced statistical modern applications.
Some illustrative R parallel codes are given in order to introduce the reader to some basic ideas about parallel
programming in R packages.

Keywords: R, high performance computing, network of workstations, message passing interface, parallel
computing, computer cluster, grid computing, multicore systems

Cite This Article: Esam Mahdi, “A Survey of R Software for Parallel Computing.” American Journal of
Applied Mathematics and Statistics, vol. 2, no. 4 (2014): 224-230. doi: 10.12691/ajams-2-4-9.

1. Introduction
Many of the recent computational statistical analysis

involve advanced algorithms with massive datasets and
large numbers of parameters need to be estimated. In
particular; DNA sequence analysis in bioinformatics (Vera,
Jansen and Suppi 2008), bootstrap and Monte-Carlo
simulations in multivariate time series analysis (Mahdi
and McLeod 2012), neural network (Seiffert 2002), and
cross-validation are computationally very intensive.
Researchers have more and more need for parallel
computation in order to speed up the computational
bottlenecks. This can accomplish by dividing the
calculations into smaller tasks and distributing them in
simultaneous processing of multiple systems in order to
obtain the statistical results much faster than those
obtained based on the sequential computation procedures.

In general, the parallel computing aims to do three
things: splitting the calculations into chunks, executing the
chunks simultaneously in parallel mode using the slaves
nodes (alternative name is workers), and combining the
results back together to the master node. In other words,
the algorithm of the parallel computing illustrated in
Figure 1 bellow can be described into steps:

Step 1: Set up the cluster by initializing the master node
and the worker processes.

Step 2: Export all needed variables/objects and data to
all slaves.

Step 3: Do the needed parallel calculations using
calculation functions. Repeat as many times as needed.
For example, 1000 repetitions on a cluster of 10 CPUs
will be distributed so that each slave simultaneously deals
with 100 repetitions.

Step 4: Wait for all slaves to complete their tasks and to
send the results back to the master node.

Step 5: End the parallel execution and shut down the
worker processes.

Figure 1. Schematic diagram illustrating the algorithm of a parallel program.

 American Journal of Applied Mathematics and Statistics 225

Super-fast computers with multiple processors are
useful for high-performance computing as they have the
ability to provide a linear speed up with respect to the
number of processors. Basically, high-performance
computing can be achieved using: a computer cluster
(Bader & Pennington, 2001) or a Grid computing (Rossini,
Li, & Tierney, 2007) or a workstation personal
desktop/laptop with multicore systems.

A cluster constitutes single machines, called nodes, in
which the worker processes communicate and managed by
a master node using the standardized Message Passing
Interface (MPI) 1 or Parallel Virtual Machine (PVM) 2 or
network sockets (SOCKETS) (Saltzer, Clarrk, Romkey, &
Gramlich, 1985). In this sense, a personal computer with
multicore/CPU systems may be seen as a computer cluster
where each core/CPU behaves like a node in the cluster.

MPI and network SOCKETS are more popular than
PVM. They have become the de facto standard in parallel
computing.

MPI was designed by a group of researchers from
academia and industry to function on a wide variety of
parallel computers such as Beowulf clusters3 (Sterling, et
al. 1999). It can be implemented by some software such as
MPICH/MPICH24, LAM/MPI5, and OpenMPI6. Most of
the implementations use C, C++, or FORTRAN in order
to run the computations in a parallel mode.

A network socket is defined as an endpoint of an inter-
process communication flow across a computer network.
The popular communication between computer sockets is
based on the Internet Protocol such as TCP/IP. The term
socket refers to an entity that is uniquely identified by the
socket number called IP address.

Lack of knowledge about MPI, SOCKET, C, C++, and
FORTRAN could be a barrier for lots of statisticians who
are dealing with intensive statistical computations and
trying to speed up the calculations by implementing
parallel algorithms.

The R software as a free high quality open source
project has established itself as the choice of many
researchers in such cases. It is a high-level programming
language includes some packages listed on the
Comprehensive R Archive Network (CRAN) to provide
the communications layer required for interfaces high-
performance parallel computing.

However, R itself does not do the parallel computing
directly; users do not have to know C or FORTRAN in
order to run parallel jobs. They just need to know how to
configure their computers (cluster, grid, or personal
multicore workstation desktop/laptop) by setting up the
correct host name associated with its node number in
order to implement the parallel computing using R.

A good introduction to parallel programming for
statistical purposes can be found in Rossini, Tierney, & Li,
(2007) and in Sevcikova, (2004). Eexcellent instructions
to install and run R parallel package Rmpi under Linux
and Windows are given by the maintainer of this package7.

1 http://www.mpi-forum.org/
2 http://www.csm.ornl.gov/pvm/
3 http://www.beowulf.org/
4 http://www.mcs.anl.gov/research/projects/mpich2/
5 http://www.lam-mpi.org/
6 http://www.open-mpi.org/
7 http://www.stats.uwo.ca/faculty/yu/Rmpi/

Knaus, (2010) breifly discussed the requirements for the R
parallel packages snowfall and snow.

In Section 2, we provide a summary of a selection of
some of the high quality published computational R
packages that can utilize multicore/CPUs often found in
modern personal computer as well as computer cluster or
grid computing. We stress on the most widely used R
parallel packages: Rmpi, snow, snowfall, and parallel. In
Section 3, we briefly compare between some of the
contributed loop functions in R. An introduction to
parallel bootstrapping and Monte-Carlo simulations is
given in Section 4 and simple example with illustrated R
parallel codes is given in Section 5.

2. Some Contributed Parallel Packages to
CRAN

We provide a summary of high performance computing
R packages that might be of most general of research
interest, rpvm 8 , Rmpi 9 , nws 10 , snow 11 , snowfall 12 ,
foreach13, multicore14, and parallel15. A more complete
overview is given in the task views16.

The first R package introduced to CRAN was rpvm. It
was proposed by Li and Rossini in 2001 so it can
distribute the computation over many computers (a
computer cluster) using the PVM standard. This package
is no longer available on CRAN. More details about this
package can be found in Schmidberger, Morgan,
Eddelbuettel, Yu, Luke, & Mansmann, (2009).

2.1. Rmpi: Interface (Wrapper) to MPI
The R package Rmpi was introduced by Hao Yu in

2002 to run initially under LAM/MPI. It has been
developing over the years to work as an interface (wrapper)
under other implementations of MPI such as Microsoft
MPI, LAM/MPI, MPICH/MPICH2, OpenMPI, and Deino
MPI environments. It can be run under various versions of
Linux and Windows.

The common Rmpi codes running on computer cluster
and multicore systems in which Rmpi is properly installed
can be summarized into steps:

Step 1: Start cluster and use the command
mpi.spawn.Rslaves() to detect the host name associated
with its node number automatically chosen by MPI or
specific hosts assigned by the argument hosts. For
example, the command mpi.spawn.Rslaves(nslaves=8)
means that a cluster with 8 slaves to those hosts
automatically chosen by MPI will start R in a parallel mode.

Step 2: Send objects to all slaves using the function
mpi.bcast.Robj2slave(). In this step, one can use the
function mpi.scatter.Robj2slave() in order to distribute a
list of objects from the master node to all slave workers.
The function mpi.setup.rngstream() maybe used (optional)

8 http://cran.r-project.org/web/packages/rpvm/index.html
9 http://cran.r-project.org/web/packages/Rmpi/index.html
10 http://cran.r-project.org/web/packages/nws/index.html
11 http://cran.r-project.org/web/packages/snow/index.html
12 http://cran.r-project.org/web/packages/snowfall/index.html
13 http://cran.r-project.org/web/packages/foreach/index.html
14 http://cran.r-project.org/web/packages/multicore/index.html
15 This package becomes a part of R >=2.14.0.
16 http://cran.r-project.org/web/views/HighPerformanceComputing.html

226 American Journal of Applied Mathematics and Statistics

to initialize the random number stream as we will discuss
in Section 4.

Step 3: Do the parallel calculations on the slaves
(determined in Step 1) simultaneously using suitable
functions implemented in Rmpi such as mpi.remote.exec(),
mpi.apply(), mpi.parSapply(), mpi.parReplicate(), and others.

Step 4: Stop the cluster by shutting down the R slaves
spawned in Step 1 using the mpi.close.Rslaves() command.

Some other functions from this package are briefly
summarized in the Appendix of this article. More details
can be found in Schmidberger, Morgan, Eddelbuettel, Yu,
Luke, & Mansmann, (2009).

2.2. Nws: R Functions for NetWorkSpaces
and Sleigh

The nws package (stands for Net Work Spaces) was
submitted to CRAN in 2006 by REvolution Computing so
it provides coordination and parallel execution facilities
using Sleigh.

Sleigh is a part of NetWorkSpaces (NWS) allows users
to execute tasks in parallel. More details about this
package can be found in Schmidberger, Morgan,
Eddelbuettel, Yu, Luke, & Mansmann, (2009).

2.3. Snow: Simple Network of Workstations
The snow package proposed to literature by Rossini,

Tierney and Li, (2007). It uses the PVM, MPI, NWS
standards as well as direct SOCKETS. This package is
widely used in parallel computing in R. It should be noted
that snow requires the packages Rmpi, nws, and rpvm as
interfaces to use the MPI, NWS, PVM standards respectively.

Similar to what we have discussed about Rmpi, the
common snow codes for parallel computing can be
summarized into steps:

Step 1: Start the cluster using any of the contributed
functions makeCluster(), makePVMcluster(),
makeMPIcluster(), makeNWScluster(), or makeSOCKcluster().
The functions makePVMcluster(), makeMPIcluster(),
makeNWScluster(), and makeSOCKcluster() are used to start
cluster under PVM, MPI, NWS, and SOCKETS using the
corresponding R packages rpvm, Rmpi, nws, and snow itself
respectively. By default, the function makeCluster() uses
Rmpi to start the job under MPI but others ("SOCK", "PVM",
or "NWS".) can be also used via its argument type.

Step 2: Send a list of objects to all workers using the
function clusterExport().

Step 3: Do the calculations implementing the slaves
determined in Step 1 using any of the contributed
functions such as clusterEvalQ(), parLapply(),
parSapply(), parApply(), parRapply(), parCapply(), and
others. In this step, one can use the functions clusterCall()
or/and clusterApply() to call or/and distribute a list of
objects from the master to the slave workers.

Step 4: Stop the cluster using the function stopCluster().
Some other functions from this package are briefly

summarized in the Appendix of this article and more
discussion can be found in Tierney, Rossini and Li (2009).

2.4. Snowfall: Easier Cluster Computing
(Based on Snow)

The snowfall package was developed by Knaus,
Porzelius, Binder, & Schwarzer, (2009) in order to

improve the package snow. It provides an easier parallel
programming using SOCKETS, MPI, PVM and NWS
support. The sfCluster package is a UNIX management
tool was developed by Knaus based on LAM/MPI to help
the users of the snowfall package setting up the cluster
and shutting it down. The functions available from
snowfall can be used in sequential or parallel modes using
the build in snowfall function sfInit(). The function
sfStop() is used to stop the cluster.

More details about these packages can be found in
Knaus, Porzelius, Binder, & Schwarzer, (2009) and
Schmidberger, Morgan, Eddelbuettel, Yu, Luke, &
Mansmann, (2009).

2.5. Multicore: Parallel Processing of R Code
on Machines with Multiple Cores or CPUs

The multicore package proposed by Simon Urbanek in
2009 and provides a way of running parallel computations
in R using the forking17 techniques on machines running
with POSIX operating systems with multiple cores. It
should be noted that this package is not compatible with
Windows operating system and it is only running on
MacOS X.

Recently, the R-Core team starts to include a new
library parallel in R software releases >=2.14.0. This
library contains a slightly revised copy of some useful
functions taken from the multicore package as we will
discuss in Section 2.7.

2.6. Foreach: Foreach Looping Construct for
R

In R, repeated executions can be accomplish using one
of the looping functions such as for(), repeat(), while(),
and replicate(). The family of apply() function which
includes the functions apply(), lapply(), sapply(), eapply(),
mapply(), and rapply() can be also implemented to
evaluate some statistical expressions repeatedly.

The foreach package provides a new looping algorithm
for executing the R code repeatedly converting the for()
loop statement in R to a foreach() loop. This algorithm
allows general iteration over list of values in a collection
(without the use of the body of the loop counter) on
personal computer with multicore systems or multiple
nodes of a cluster computer.

For parallel execution, the foreach package has been
adapting the R parallel packages doMC18 (based on the
package multicore on single workstations), doSNOW 19
(based on the package snow with SOCKETS), and
doMPI20 (based on the package Rmpi).

2.7. Parallel: Parallel R Package
The package parallel was introduced by Luke

Tierney 21 and R-Core team in order to support parallel
computation in R. The first version of this package was
included in R version 2.14.0 and since then it becomes a

17 Fork creates a new process (child) as a copy of the current R process
that can work in parallel to the master process (parent).
18 http://cran.r-project.org/web/packages/doMC/index.html
19 http://cran.r-project.org/web/packages/doSNOW/index.html
20 http://cran.r-project.org/web/packages/doMPI/index.html
21 Luke Tierney is the maintainer of the R package snow.

 American Journal of Applied Mathematics and Statistics 227

part of the core R packages. This package is using coarse-
grained parallelization, can be installed in the usual ways
and is ready to use after typing:

R> library("parallel").
This package builds on the work done for CRAN

packages multicore and snow with slight revised of
copies of these packages by using forking taking from the
package multicore and sockets taken from the package
snow.

The steps of computational parallel mode using
parallel are almost exactly as those we discussed in
Section 2.3. The parallel package provides new two
functions makePSOCKcluster() and makeForkCluster() in
order to spawn the slaves running on the same host as the
master or optionally elsewhere. The makePSOCKcluster()
is very similar to makeSOCKcluster() in the package snow
whereas the function makeForkCluster() starts SOCKET
cluster by forking on Unix-alike platforms only.

Some other functions from this package are briefly
summarized in the Appendix of this article.

3. Analogues of Apply R functions In
Paralle Packages

The base R library has a set of useful contributed
functions for evaluating some expressions repeatedly that
we have discussed in Section 2.6. In this article, we have
named this group by the family of apply() function. The
functions apply(), lapply(), sapply(), and replicate() are
used in a sequential (not in a parallel) mode in many
applications. For example, selecting tuning parameters for
neural network models often uses cross validation
methodology based on iteration techniques. Usually the
structure codes of such techniques include some looping
functions taken from the members of this family. For
parallel computing these functions are not useful, hence
developers of R parallel packages provide some
alternative parallel functions in order to parallelize the
loops and speed up the calculations. Some of these
functions are listed in Table 1.

Table 1. List to some of sequential and parallel loop functions in
some R libraries

base Rmpi snow snowfall parallel

apply mpi.parApply parApply sfApply parApply

apply
(row of
matrix)

mpi.parRapply parRapply - parRapply

apply
(column

of
matrix)

mpi.parCapply parCapply - parCapply

lapply mpi.parLapply parLapply sfLapply parLapply/
mclapply21F

22

sapply mpi.parSapply parSapply sfSapply parSapply

replicate mpi.parReplicate - - -

Roughly, the speed up calculation time of running R
code simultanousely on a cluster with n workers is
approximately:

22 mclapply() uses forking from packages multicore and it is not working
on Windows.

 1time with CPUSpeed up
time with n CPUs

=

4. Parallel Monte-Carlo Simulation
Bootstrapping is a nonparametric technique used for

deriving estimates of standard errors and confidence
intervals for estimates, such as the mean, median,
proportion, odds ratio, correlation coefficient or regression
coefficient, based on selecting samples (with replacement)
from the original dataset (observed dataset). Each selected
sample (tested dataset) has the same number of elements
as the observed dataset.

Monte-Carlo simulation (Barnard, 1963, Dufour and
Khalaf, 2001) is more general than bootstrapping in the
sense that it uses the random numbers for simulating the
samples from a fitted model to the original dataset.
Parametric bootstrap can be seen as a Monte-Carlo
technique used to assess the performance of the
bootstrapping estimators or predictors.

Monte-Carlo techniques involve massive computation
due to the replications in simulations. These techniques
have been used in many statistical applications such as
multivariate portmanteau tests (Mahdi and McLeod 2012),
DNA analysis (Hsiao and Stewart 2008). Parallel
computing is a very useful tool aims to speed up the
computation in such cases.

Results based on bootstrap and Monte-Carlo
simulations are not reproducible unless R users set the
random seed up in their R code. In CRAN, Random
Number Generators (RNG) for parallel computing are
derived from the libraries rsprng 22F

23 and rlecuyer23F

24 based
on the algorithms discussed in L'Ecuyer, (1999) and
L’Ecuyer, Richard, Chen, & Kelton, (2002).

The function mpi.setup.rngstream() from the package
Rmpi contains support for multiple RNG streams based
on the rlecuyer package, whereas the functions
clusterSetupRNG(), sfClusterSetupRNG(), and
clusterSetRNGStream() from the packages snow, snowfall,
and parallel respectively contain multiple RNG streams
based on rsprng and rlecuyer (users can choose either
rsprng or rlecuyer with these functions). These functions
from Rmpi, snow, snowfall, and parallel share the same
idea that each separate worker generates random numbers
independently from the others.

5. Applications
Many packages available from CRAN have many

applications with support for parallel processing using
some contributed parallel functions from the packages that
we have discussed above. For example, the package
portes: Portmanteau Tests for Time Series Models 24F

25 ,
implements the Monte-Carlo significance test of
portmanteau time series discussed in Lin and McLeod,
(2006) and Mahdi and McLeod, (2012) based on the
sequential and parallel modes using the parallel package.

23 http://cran.r-project.org/web/packages/rsprng/index.html
24 http://cran.r-project.org/web/packages/rlecuyer/index.html
25 http://cran.r-project.org/web/packages/portes/index.html

228 American Journal of Applied Mathematics and Statistics

The package survey: Analysis of Complex Survey
Samples26, (Lumley, 2004) and the package adegenet: an
R Package for the Exploratory Analysis of Genetic and
Genomic Data27, (Jombart, 2008, & Jombart & Ahmed,
2011) both have some support for parallel processing
using multicore package. The package PCIT: PCIT
Algorithm-Partial Correlation Coefficient with
Information Theory 28, (Watson-Haigh, Kadarmideen, &
Reverter, 2010) uses Rmpi package for performing the
partial correlation coefficient with information theory
algorithm developed by Reverter & Chan, (2008). The
package pensim: Simulation of High-Dimensional Data
and Parallelized Repeated Penalized Regression 29 ,
(Waldron, Pintilie, Tsao, Shepherd, Huttenhower, &
Jurisica, 2011) implements snow package in simulating of
continuous, correlated high-dimensional data with time to
event or binary response, and parallelized functions for
Lasso, Ridge, and Elastic Net penalized regression with
repeated starts and two-dimensional tuning of the Elastic
Net. Many examples are given in the online reference
manual and vignettes of these packages.

In this section, we give a simple example with some
illustrated R codes using a personal computer with quad
core systems. It should be noted that some of these codes
are running in a sequential mode and maybe consider
being computer intensive while others implement
functions taken from the Rmpi package in parallel mode.
One can modify these codes in order to utilize other
packages that we have discussed before.

The example that we introduce make use of the
univariate regular time series giving the luteinizing
hormone in blood samples (lh) at 10 minutes intervals
from a human female. The sample size is 48 samples and
it is available from the R package datasets (Diggle 1990).
The ARMA(1,1) model 30 is fitted to this data and the
portmanteau diagnostic test based on the Monte-Carlo
version of Ljung-Box test discussed in Lin and McLeod,
(2006) and Mahdi and McLeod, (2012) is applied into
steps:

Step 1: Fit an ARMA(1,1) model to the time series and
then apply the observed Ljung-Box statistic (denoted by
obs.stat) at lag 10 using the function Box.test() given in
base R package on the residual of the fitted model:

R > fit <-arima(lh, order = c(1,0,1))
R > res <- ts(fit$residuals)

R > n <- length(res)
R > ans <- Box.test(res, lag =10, type = "Ljung-Box")

R > obs.stat <- as.vector(ans$statistic)
Step 2: Extract the estimates parameters from the fitted

model. These estimators are then will be used to simulate
models using Monte-Carlo simulations:

R>phi <- as.vector(fit$coef [1])
R>theta <- as.vector(fit$coef [2])

R>sigma <- fit$sigma2
R>demean <- as.vector(fit$coef [3])

Step 3: Encapsulate the Monte-Carlo procedures into a
function that can be used for simulating models from
ARMA(1,1). In this function, the Ljung-Box test is

26 http://cran.r-project.org/web/packages/survey/index.html
27 http://cran.r-project.org/web/packages/adegenet/index.html
28 http://cran.r-project.org/web/packages/PCIT/index.html
29 http://cran.r-project.org/web/packages/pensim/index.html
30 ARMA model in time series stands for autoregressive moving average
model.

applied on each simulated fitted model (denoted by
OneSim.stat):

R>MonteCarlo <- function(n, res, phi, theta, sigma, demean) {
+ innov <- sample(x=res,size=n,replace = TRUE, prob = NULL)
+ Sim.Data <- arima.sim(n = n, list(ar = phi, ma = theta), innov =

innov,
+ sd = sqrt(sigma), mean = demean)

+ FitSimModel <- arima(Sim.Data, order = c(1,0,1))
+ rboot <- FitSimModel$resid

+ OneSim.stat <- Box.test(rboot, lag =10, type = "Ljung-
Box")$statistic

+ return(as.vector(OneSim.stat))
+}

Step 4: Start the cluster by loading the Rmpi package
and spawn all slaves. Then apply Monte-Carlo
significance test in parallel mode:

R>library("Rmpi")
R>mpi.spawn.Rslaves()

R>mpi.setup.rngstream(123)
R>mpi.bcast.Robj2slave(n)

R>mpi.bcast.Robj2slave(res)
R>mpi.bcast.Robj2slave(phi)

R>mpi.bcast.Robj2slave(theta)
R>mpi.bcast.Robj2slave(sigma)

R>mpi.bcast.Robj2slave(demean)
R>mpi.bcast.Robj2slave(MonteCarlo)

R>sim.stat <- mpi.parReplicate(1000, MonteCarlo(
 n,res,phi,theta, sigma,demean))

R>mpi.close.Rslaves()
Step 5: In the final step, calculate the Monte-Carlo

portmanteau p-value (note that the p-value based on the
asymptotic distribution of Ljung-Box test is 0.587):

R>pvalue <- (1 + sum(as.numeric (sim.stat >= obs.stat)))/(1000 + 1)
R>pvalue
0.5394605

Running the previous example in a computer with
single core using the sequential function replicate()
instead of using the parallel function mpi.parReplicate() as
follows:

R> set.seed(123)
R> sim.stat <- replicate(1000, MonteCarlo (n, res, phi, theta, sigma,

demean))
R> pvalue <- (1 + sum(as.numeric (sim.stat >= obs.stat)))/(1000 + 1)

R> pvalue
0.5214785

With respect to the computer time, the CPU time is 3.21
seconds to get the output of this example in the parallel
mode whereas it takes 10.4 seconds in the sequential mode.

6. Comments and Conclusion
There are many more available R parallel packages

than those we discussed in this article and many of these
are briefly described in the CRAN Task Views.

The reader should be aware that the packages available
from CRAN, including those in the task views, need only
to obey R formatting rules with no computer errors. It is
not guaranteed that all of these packages produce correct
results. On the other hand packages published by major
publishers with high impact factor such as the Journal of
Statistical Software (JSS) or Bioinformatics or Springer-
Verlag or Chapman & Hall/CRC have been carefully
reviewed for correctness and quality.

We have selected those parallel packages that might be
of most general interest, that have been most widely used
and that we are most familiar with. We have implemented
some useful functions available from Rmpi package in the
applications section using our personal computer with four
quad core CPUs, but one can easily modify the

 American Journal of Applied Mathematics and Statistics 229

implemented applications’ code in order to use it with
other R parallel packages.

Reader should note that Rmpi is working in parallel
mode with MPI, whereas snow, snowfall, and parallel
can be implemented in either sequential or parallel mode
using PVM, MPI, NWS, and SOCKETS.

Appendix

Rmpi

Table 2. Some contributed functions to CRAN taken from Rmpi
package

Function Purpose
mpi.spawn.Rslave

s Start the cluster and spawn R slaves

mpi.setup.rngstrea
m

Setups RNG Streams based on rlecuyer package
on all slaves

mpi.bcast.Robj Move a general R object around among master and
all slaves

mpi.bcast.Robj2sl
ave Same as mpi.bcast.Robj() function

mpi.scatter.Robj2s
lave

Distributing a list of data from the master to all
slaves

mpi.remote.exec Do calculations at all slaves

mpi.parReplicate Parallel version of the function replicate() in base
R

mpi.apply Scatter an array to slaves and then apply a function

mpi.iapplyLB Parallel apply with no blocking features

mpi.close.Rslaves Shut down the cluster

Snow

Table 3. Some contributed functions to CRAN taken from snow
package

Function Purpose

makeCluster Start the cluster: The default is the MPI cluster

makeSOCKcluster Start SOCKET clusters

makeMPIcluster Start MPI cluster

makePVMcluster Start PVM cluster

makeNWScluster Start NWS cluster

clusterSetupRNG Implementation of Pierre L'Ecuyer's RNG
Streams on all slaves

clusterSetupSPRNG Load the rsprng package and initialize separate
streams on all slaves

parLapply Parallel version of lapply() function

parSapply Parallel version of sapply() function

parApply Parallel version of apply() function

parRapply Parallel row apply() function for a matrix

parCapply Parallel column apply() function for a matrix

clusterCall Call a function on each node and returns list of
results

clusterEvalQ Evaluate a literal expression on each node

clusterExport Export global variables from master to slaves

stopCluster Shut down the cluster

Snowfall

Table 4. Some contributed functions to CRAN taken from snowfall
package

Function Purpose

sfInit Start the cluster

sfGetCluster Get the snow cluster handler. Use for direct
calling of snow functions

sfClusterSetupRNG Setups RNG Streams on all slaves (L'Ecuyer is
default)

sfLibrary Load an R libraries on all nodes, including
master

sfExport Export variables from the master to all slaves

sfRemove Remove previous exported variables from slaves
and (optional) master

sfExportAll Export global variables from master to slaves
with exception of given list

sfRemoveAll Remove all global variables from the slaves

sfClusterCall Call a function on each node and returns list of
results

sfClusterEvalQ Evaluate a literal expression on all nodes

sfLapply Parallel version of lapply() function

sfSapply Parallel version of sapply() function

sfApply Parallel version of apply() function

sfStop Shut down the cluster

Parallel

Table 5. Some contributed functions to CRAN taken from parallel
package

Function Purpose

detectCores Detect the number of cores/ CPU automatically

clusterSetRNGStream Implementation of Pierre L'Ecuyer's
RngStreams on all slaves

makeCluster Same as makeCluster() in snow package

makePSOCKcluster Create a parallel socket cluster

makeForkCluster Create socket cluster by forking (On Unix-alike
platforms only)

clusterCall Same as clusterCall() in snow package

clusterEvalQ Same as clusterEvalQ() in snow package

clusterExport Same as clusterExport() in snow package

parLapply Same as parLapply() in snow package

parSapply Same as parSapply() in snow package

parApply Same as parApply() in snow package

mcmapply Parallel version mapply() function using
forking (not for Windows)

stopCluster Same as stopCluster() in snow package

References
[1] Bader, D., & Pennington, R. (2001). Cluster computing:

Applications. The International Journal of High Performance
Computing, 15 (2), 181-185.

[2] Barnard, G. A. (1963). Discussion of ‘‘The spectral analysis of
point processes’’ by M. S. Bartlett. Journal of the royal statistical
society, B, 25, 264-96.

[3] Diggle, P. (1990). Time Series: A Biostatistical Introduction.
Oxford.

[4] Dufour, J.-M., & Khalaf, L. (2001). Monte-Carlo test methods in
econometrics. In companion to theoretical econometrics (eds B.
Baltagi). Oxford:Blackwell.

[5] Hsiao, Y., & Stewart, R. D. (2008). Monte Carlo simulation of
DNA damage induction by x-rays and selected radioisotopes.
Physics in medicine and biology, 53 (1), 233-244.

230 American Journal of Applied Mathematics and Statistics

[6] Jombart, T. (2008). adegenet: a R package for the multivariate
analysis of genetic markers. Bioinformatics, 24 (11), 1403-1405.

[7] Jombart, T., & Ahmed, I. (2011). adegenet 1.3-1: new tools for the
analysis of genome-wide SNP data. Bioinformatics, 27 (21), 3070-
3071.

[8] Knaus, J. (2010, 03 04). Developing parallel programs using
snowfall. Retrieved from CRAN : cran.r-
project.org/web/packages/snowfall/vignettes/snowfall.pdf

[9] Knaus, J., Porzelius, C., Binder, H., & Schwarzer, G. (2009).
Easier parallel computing in R with snowfall and sfCluster. The R
Journal, 1 (1).

[10] L’Ecuyer, P., Richard, S., Chen, E. J., & Kelton, W. D. (2002). An
object-oriented random-numberpackage with many long streams
and substreams. Operations Research, 50, 1073-1075.

[11] L'Ecuyer, P. (1999). Good parameters and implementations for
combined multiple recursive random number generators.
Operations Research, 47, 159-164.

[12] Lin, J.-W., & McLeod, A. I. (2006). Improved Pen˜a-Rodrıguez
portmanteau test. Computational statistics and data analysis. 51
(3), 1731-1738.

[13] Lumley, T. (2004). Analysis of complex survey samples. Journal of
Statistical Software, 9 (1), 1-19.

[14] Mahdi, E., & McLeod, I. (2012). Improved multivariate
portmanteau test. Journal of Time Series Analysis, 33 (2), 211-
222.

[15] Reverter, A., & Chan, E. (2008). Combining partial correlation
and an information theory approach to the reversed engineering
of gene co-expression networks. Bioinformatics, 24 (21), 2491-
2497.

[16] Rossini, A., Tierney, L., & Li, N. (2007). Simple parallel
statistical computing in R. Journal of Computational and
Graphical Statistics, 16 (2), 399-420.

[17] Saltzer, J., Clarrk, D., Romkey, J., & Gramlich, W. (1985). The
desktop computer as a network. 1EEE Journal on selected areas in
communications, 3 (3).

[18] Schmidberger, M., Morgan, M., Eddelbuettel, D., Yu, H., Luke, T.,
& Mansmann, U. (2009). State of the art in parallel computing
with R. 31 (1), 1-26.

[19] Seiffert, U. (2002). Artificial neural networks on massively
parallel computer hardware. ESANN'2002 proceedings-European
symposium on artificial neural networks, (pp. 319-330). Bruges
(Belgium).

[20] Sevcikova, H. (2004). Statistical simulations on parallel
computers. Journal of Computational and Graphical Statistics, 13
(4), 886-906.

[21] Sterling, T., Becker, D., Salmon, J., & Daniel, S. (1999). How to
build a Beowulf-A guide to the implementation and application of
PC clusters. Cambridge, Ma: The MIT Press.

[22] Tierney, L., Rossini, A., & Li, N. (2009). Snow: A parallel
computing framework for the R system. International journal of
parallel programming, 37, 78-90.

[23] Vera, G., Jansen, R., & Suppi, R. (2008). R/parallel-speeding up
bioinformatics analysis with R. BMC Bioinformatics, 9 (390).

[24] Waldron, L., Pintilie, M., Tsao, M.-S., Shepherd, F., Huttenhower,
C., & Jurisica, I. (2011). Optimized application of penalized
regression methods to diverse genomic data. Bioinformatics, 27
(24), 3399-3406.

[25] Watson-Haigh, N., Kadarmideen, H., & Reverter, A. (2010). PCIT:
an R package for weighted gene co-expression networks based on
partial correlation and information theory approaches.
Bioinformatics, 26 (3), 411-413.

