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1. Introduction 
Many of the recent computational statistical analysis 

involve advanced algorithms with massive datasets and 
large numbers of parameters need to be estimated. In 
particular; DNA sequence analysis in bioinformatics (Vera, 
Jansen and Suppi 2008), bootstrap and Monte-Carlo 
simulations in multivariate time series analysis (Mahdi 
and McLeod 2012), neural network (Seiffert 2002), and 
cross-validation are computationally very intensive. 
Researchers have more and more need for parallel 
computation in order to speed up the computational 
bottlenecks. This can accomplish by dividing the 
calculations into smaller tasks and distributing them in 
simultaneous processing of multiple systems in order to 
obtain the statistical results much faster than those 
obtained based on the sequential computation procedures. 

In general, the parallel computing aims to do three 
things: splitting the calculations into chunks, executing the 
chunks simultaneously in parallel mode using the slaves 
nodes (alternative name is workers), and combining the 
results back together to the master node. In other words, 
the algorithm of the parallel computing illustrated in 
Figure 1 bellow can be described into steps: 

Step 1: Set up the cluster by initializing the master node 
and the worker processes. 

Step 2: Export all needed variables/objects and data to 
all slaves. 

Step 3: Do the needed parallel calculations using 
calculation functions. Repeat as many times as needed. 
For example, 1000 repetitions on a cluster of 10 CPUs 
will be distributed so that each slave simultaneously deals 
with 100 repetitions. 

Step 4: Wait for all slaves to complete their tasks and to 
send the results back to the master node. 

Step 5: End the parallel execution and shut down the 
worker processes. 

 

Figure 1. Schematic diagram illustrating the algorithm of a parallel program. 
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Super-fast computers with multiple processors are 
useful for high-performance computing as they have the 
ability to provide a linear speed up with respect to the 
number of processors. Basically, high-performance 
computing can be achieved using: a computer cluster 
(Bader & Pennington, 2001) or a Grid computing (Rossini, 
Li, & Tierney, 2007) or a workstation personal 
desktop/laptop with multicore systems. 

A cluster constitutes single machines, called nodes, in 
which the worker processes communicate and managed by 
a master node using the standardized Message Passing 
Interface (MPI) 1 or Parallel Virtual Machine (PVM) 2 or 
network sockets (SOCKETS) (Saltzer, Clarrk, Romkey, & 
Gramlich, 1985). In this sense, a personal computer with 
multicore/CPU systems may be seen as a computer cluster 
where each core/CPU behaves like a node in the cluster.  

MPI and network SOCKETS are more popular than 
PVM. They have become the de facto standard in parallel 
computing.  

MPI was designed by a group of researchers from 
academia and industry to function on a wide variety of 
parallel computers such as Beowulf clusters3 (Sterling, et 
al. 1999). It can be implemented by some software such as 
MPICH/MPICH24, LAM/MPI5, and OpenMPI6. Most of 
the implementations use C, C++, or FORTRAN in order 
to run the computations in a parallel mode.  

A network socket is defined as an endpoint of an inter-
process communication flow across a computer network. 
The popular communication between computer sockets is 
based on the Internet Protocol such as TCP/IP. The term 
socket refers to an entity that is uniquely identified by the 
socket number called IP address. 

Lack of knowledge about MPI, SOCKET, C, C++, and 
FORTRAN could be a barrier for lots of statisticians who 
are dealing with intensive statistical computations and 
trying to speed up the calculations by implementing 
parallel algorithms. 

The R software as a free high quality open source 
project has established itself as the choice of many 
researchers in such cases. It is a high-level programming 
language includes some packages listed on the 
Comprehensive R Archive Network (CRAN) to provide 
the communications layer required for interfaces high-
performance parallel computing.  

However, R itself does not do the parallel computing 
directly; users do not have to know C or FORTRAN in 
order to run parallel jobs. They just need to know how to 
configure their computers (cluster, grid, or personal 
multicore workstation desktop/laptop) by setting up the 
correct host name associated with its node number in 
order to implement the parallel computing using R.  

A good introduction to parallel programming for 
statistical purposes can be found in Rossini, Tierney, & Li, 
(2007) and in Sevcikova, (2004). Eexcellent instructions 
to install and run R parallel package Rmpi under Linux 
and Windows are given by the maintainer of this package7. 

                                                                        
1 http://www.mpi-forum.org/ 
2 http://www.csm.ornl.gov/pvm/ 
3 http://www.beowulf.org/ 
4 http://www.mcs.anl.gov/research/projects/mpich2/ 
5 http://www.lam-mpi.org/ 
6 http://www.open-mpi.org/ 
7 http://www.stats.uwo.ca/faculty/yu/Rmpi/ 

Knaus, (2010) breifly discussed the requirements for the R 
parallel packages snowfall and snow.  

In Section 2, we provide a summary of a selection of 
some of the high quality published computational R 
packages that can utilize multicore/CPUs often found in 
modern personal computer as well as computer cluster or 
grid computing. We stress on the most widely used R 
parallel packages: Rmpi, snow, snowfall, and parallel. In 
Section 3, we briefly compare between some of the 
contributed loop functions in R. An introduction to 
parallel bootstrapping and Monte-Carlo simulations is 
given in Section 4 and simple example with illustrated R 
parallel codes is given in Section 5.  

2. Some Contributed Parallel Packages to 
CRAN 

We provide a summary of high performance computing 
R packages that might be of most general of research 
interest, rpvm 8 , Rmpi 9 , nws 10 , snow 11 , snowfall 12 , 
foreach13, multicore14, and parallel15. A more complete 
overview is given in the task views16. 

The first R package introduced to CRAN was rpvm. It 
was proposed by Li and Rossini in 2001 so it can 
distribute the computation over many computers (a 
computer cluster) using the PVM standard. This package 
is no longer available on CRAN. More details about this 
package can be found in Schmidberger, Morgan, 
Eddelbuettel, Yu, Luke, & Mansmann, (2009). 

2.1. Rmpi: Interface (Wrapper) to MPI  
The R package Rmpi was introduced by Hao Yu in 

2002 to run initially under LAM/MPI. It has been 
developing over the years to work as an interface (wrapper) 
under other implementations of MPI such as Microsoft 
MPI, LAM/MPI, MPICH/MPICH2, OpenMPI, and Deino 
MPI environments. It can be run under various versions of 
Linux and Windows. 

The common Rmpi codes running on computer cluster 
and multicore systems in which Rmpi is properly installed 
can be summarized into steps: 

Step 1: Start cluster and use the command 
mpi.spawn.Rslaves() to detect the host name associated 
with its node number automatically chosen by MPI or 
specific hosts assigned by the argument hosts. For 
example, the command mpi.spawn.Rslaves(nslaves=8) 
means that a cluster with 8 slaves to those hosts 
automatically chosen by MPI will start R in a parallel mode.  

Step 2: Send objects to all slaves using the function 
mpi.bcast.Robj2slave(). In this step, one can use the 
function mpi.scatter.Robj2slave() in order to distribute a 
list of objects from the master node to all slave workers. 
The function mpi.setup.rngstream() maybe used (optional) 
                                                                        
8 http://cran.r-project.org/web/packages/rpvm/index.html 
9 http://cran.r-project.org/web/packages/Rmpi/index.html 
10 http://cran.r-project.org/web/packages/nws/index.html 
11 http://cran.r-project.org/web/packages/snow/index.html 
12 http://cran.r-project.org/web/packages/snowfall/index.html 
13 http://cran.r-project.org/web/packages/foreach/index.html 
14 http://cran.r-project.org/web/packages/multicore/index.html 
15 This package becomes a part of R >=2.14.0. 
16 http://cran.r-project.org/web/views/HighPerformanceComputing.html 
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to initialize the random number stream as we will discuss 
in Section 4. 

Step 3: Do the parallel calculations on the slaves 
(determined in Step 1) simultaneously using suitable 
functions implemented in Rmpi such as mpi.remote.exec(), 
mpi.apply(), mpi.parSapply(), mpi.parReplicate(), and others.  

Step 4: Stop the cluster by shutting down the R slaves 
spawned in Step 1 using the mpi.close.Rslaves() command. 

Some other functions from this package are briefly 
summarized in the Appendix of this article. More details 
can be found in Schmidberger, Morgan, Eddelbuettel, Yu, 
Luke, & Mansmann, (2009). 

2.2. Nws: R Functions for NetWorkSpaces 
and Sleigh 

The nws package (stands for Net Work Spaces) was 
submitted to CRAN in 2006 by REvolution Computing so 
it provides coordination and parallel execution facilities 
using Sleigh.  

Sleigh is a part of NetWorkSpaces (NWS) allows users 
to execute tasks in parallel. More details about this 
package can be found in Schmidberger, Morgan, 
Eddelbuettel, Yu, Luke, & Mansmann, (2009). 

2.3. Snow: Simple Network of Workstations 
The snow package proposed to literature by Rossini, 

Tierney and Li, (2007). It uses the PVM, MPI, NWS 
standards as well as direct SOCKETS. This package is 
widely used in parallel computing in R. It should be noted 
that snow requires the packages Rmpi, nws, and rpvm as 
interfaces to use the MPI, NWS, PVM standards respectively. 

Similar to what we have discussed about Rmpi, the 
common snow codes for parallel computing can be 
summarized into steps: 

Step 1: Start the cluster using any of the contributed 
functions makeCluster(), makePVMcluster(), 
makeMPIcluster(), makeNWScluster(), or makeSOCKcluster(). 
The functions makePVMcluster(), makeMPIcluster(), 
makeNWScluster(), and makeSOCKcluster() are used to start 
cluster under PVM, MPI, NWS, and SOCKETS using the 
corresponding R packages rpvm, Rmpi, nws, and snow itself 
respectively. By default, the function makeCluster() uses 
Rmpi to start the job under MPI but others ("SOCK", "PVM", 
or "NWS".) can be also used via its argument type. 

Step 2: Send a list of objects to all workers using the 
function clusterExport().  

Step 3: Do the calculations implementing the slaves 
determined in Step 1 using any of the contributed 
functions such as clusterEvalQ(), parLapply(), 
parSapply(), parApply(), parRapply(), parCapply(), and 
others. In this step, one can use the functions clusterCall() 
or/and clusterApply() to call or/and distribute a list of 
objects from the master to the slave workers. 

Step 4: Stop the cluster using the function stopCluster(). 
Some other functions from this package are briefly 

summarized in the Appendix of this article and more 
discussion can be found in Tierney, Rossini and Li (2009). 

2.4. Snowfall: Easier Cluster Computing 
(Based on Snow) 

The snowfall package was developed by Knaus, 
Porzelius, Binder, & Schwarzer, (2009) in order to 

improve the package snow. It provides an easier parallel 
programming using SOCKETS, MPI, PVM and NWS 
support. The sfCluster package is a UNIX management 
tool was developed by Knaus based on LAM/MPI to help 
the users of the snowfall package setting up the cluster 
and shutting it down. The functions available from 
snowfall can be used in sequential or parallel modes using 
the build in snowfall function sfInit(). The function 
sfStop() is used to stop the cluster. 

More details about these packages can be found in 
Knaus, Porzelius, Binder, & Schwarzer, (2009) and 
Schmidberger, Morgan, Eddelbuettel, Yu, Luke, & 
Mansmann, (2009). 

2.5. Multicore: Parallel Processing of R Code 
on Machines with Multiple Cores or CPUs 

The multicore package proposed by Simon Urbanek in 
2009 and provides a way of running parallel computations 
in R using the forking17 techniques on machines running 
with POSIX operating systems with multiple cores. It 
should be noted that this package is not compatible with 
Windows operating system and it is only running on 
MacOS X.  

Recently, the R-Core team starts to include a new 
library parallel in R software releases >=2.14.0. This 
library contains a slightly revised copy of some useful 
functions taken from the multicore package as we will 
discuss in Section 2.7.  

2.6. Foreach: Foreach Looping Construct for 
R 

In R, repeated executions can be accomplish using one 
of the looping functions such as for(), repeat(), while(), 
and replicate(). The family of apply() function which 
includes the functions apply(), lapply(), sapply(), eapply(), 
mapply(), and rapply() can be also implemented to 
evaluate some statistical expressions repeatedly. 

The foreach package provides a new looping algorithm 
for executing the R code repeatedly converting the for() 
loop statement in R to a foreach() loop. This algorithm 
allows general iteration over list of values in a collection 
(without the use of the body of the loop counter) on 
personal computer with multicore systems or multiple 
nodes of a cluster computer.  

For parallel execution, the foreach package has been 
adapting the R parallel packages doMC18 (based on the 
package multicore on single workstations), doSNOW 19 
(based on the package snow with SOCKETS), and 
doMPI20 (based on the package Rmpi).  

2.7. Parallel: Parallel R Package 
The package parallel was introduced by Luke 

Tierney 21 and R-Core team in order to support parallel 
computation in R. The first version of this package was 
included in R version 2.14.0 and since then it becomes a 
                                                                        
17 Fork creates a new process (child) as a copy of the current R process 
that can work in parallel to the master process (parent). 
18 http://cran.r-project.org/web/packages/doMC/index.html 
19 http://cran.r-project.org/web/packages/doSNOW/index.html 
20 http://cran.r-project.org/web/packages/doMPI/index.html 
21 Luke Tierney is the maintainer of the R package snow.  
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part of the core R packages. This package is using coarse-
grained parallelization, can be installed in the usual ways 
and is ready to use after typing:  

R> library("parallel"). 
This package builds on the work done for CRAN 

packages multicore and snow with slight revised of 
copies of these packages by using forking taking from the 
package multicore and sockets taken from the package 
snow.  

The steps of computational parallel mode using 
parallel are almost exactly as those we discussed in 
Section 2.3. The parallel package provides new two 
functions makePSOCKcluster() and makeForkCluster() in 
order to spawn the slaves running on the same host as the 
master or optionally elsewhere. The makePSOCKcluster() 
is very similar to makeSOCKcluster() in the package snow 
whereas the function makeForkCluster() starts SOCKET 
cluster by forking on Unix-alike platforms only.  

Some other functions from this package are briefly 
summarized in the Appendix of this article. 

3. Analogues of Apply R functions In 
Paralle Packages 

The base R library has a set of useful contributed 
functions for evaluating some expressions repeatedly that 
we have discussed in Section 2.6. In this article, we have 
named this group by the family of apply() function. The 
functions apply(), lapply(), sapply(), and replicate() are 
used in a sequential (not in a parallel) mode in many 
applications. For example, selecting tuning parameters for 
neural network models often uses cross validation 
methodology based on iteration techniques. Usually the 
structure codes of such techniques include some looping 
functions taken from the members of this family. For 
parallel computing these functions are not useful, hence 
developers of R parallel packages provide some 
alternative parallel functions in order to parallelize the 
loops and speed up the calculations. Some of these 
functions are listed in Table 1.  

Table 1. List to some of sequential and parallel loop functions in 
some R libraries 

base Rmpi snow snowfall parallel 

apply mpi.parApply parApply sfApply parApply 

apply 
(row of 
matrix) 

mpi.parRapply parRapply - parRapply 

apply 
(column 

of 
matrix) 

mpi.parCapply parCapply - parCapply 

lapply mpi.parLapply parLapply sfLapply parLapply/ 
mclapply21F

22 

sapply mpi.parSapply parSapply sfSapply parSapply 

replicate mpi.parReplicate - - - 

Roughly, the speed up calculation time of running R 
code simultanousely on a cluster with n workers is 
approximately: 
                                                                        
22 mclapply() uses forking from packages multicore and it is not working 
on Windows. 

 1time with CPUSpeed up
time with n CPUs

=  

4. Parallel Monte-Carlo Simulation 
Bootstrapping is a nonparametric technique used for 

deriving estimates of standard errors and confidence 
intervals for estimates, such as the mean, median, 
proportion, odds ratio, correlation coefficient or regression 
coefficient, based on selecting samples (with replacement) 
from the original dataset (observed dataset). Each selected 
sample (tested dataset) has the same number of elements 
as the observed dataset. 

Monte-Carlo simulation (Barnard, 1963, Dufour and 
Khalaf, 2001) is more general than bootstrapping in the 
sense that it uses the random numbers for simulating the 
samples from a fitted model to the original dataset. 
Parametric bootstrap can be seen as a Monte-Carlo 
technique used to assess the performance of the 
bootstrapping estimators or predictors. 

Monte-Carlo techniques involve massive computation 
due to the replications in simulations. These techniques 
have been used in many statistical applications such as 
multivariate portmanteau tests (Mahdi and McLeod 2012), 
DNA analysis (Hsiao and Stewart 2008). Parallel 
computing is a very useful tool aims to speed up the 
computation in such cases. 

Results based on bootstrap and Monte-Carlo 
simulations are not reproducible unless R users set the 
random seed up in their R code. In CRAN, Random 
Number Generators (RNG) for parallel computing are 
derived from the libraries rsprng 22F

23 and rlecuyer23F

24 based 
on the algorithms discussed in L'Ecuyer, (1999) and 
L’Ecuyer, Richard, Chen, & Kelton, (2002).  

The function mpi.setup.rngstream() from the package 
Rmpi contains support for multiple RNG streams based 
on the rlecuyer package, whereas the functions 
clusterSetupRNG(), sfClusterSetupRNG(), and 
clusterSetRNGStream() from the packages snow, snowfall, 
and parallel respectively contain multiple RNG streams 
based on rsprng and rlecuyer (users can choose either 
rsprng or rlecuyer with these functions). These functions 
from Rmpi, snow, snowfall, and parallel share the same 
idea that each separate worker generates random numbers 
independently from the others. 

5. Applications 
Many packages available from CRAN have many 

applications with support for parallel processing using 
some contributed parallel functions from the packages that 
we have discussed above. For example, the package 
portes: Portmanteau Tests for Time Series Models 24F

25 , 
implements the Monte-Carlo significance test of 
portmanteau time series discussed in Lin and McLeod, 
(2006) and Mahdi and McLeod, (2012) based on the 
sequential and parallel modes using the parallel package. 

                                                                        
23 http://cran.r-project.org/web/packages/rsprng/index.html 
24 http://cran.r-project.org/web/packages/rlecuyer/index.html 
25 http://cran.r-project.org/web/packages/portes/index.html 
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The package survey: Analysis of Complex Survey 
Samples26, (Lumley, 2004) and the package adegenet: an 
R Package for the Exploratory Analysis of Genetic and 
Genomic Data27, (Jombart, 2008, & Jombart & Ahmed, 
2011) both have some support for parallel processing 
using multicore package. The package PCIT: PCIT 
Algorithm-Partial Correlation Coefficient with 
Information Theory 28, (Watson-Haigh, Kadarmideen, & 
Reverter, 2010) uses Rmpi package for performing the 
partial correlation coefficient with information theory 
algorithm developed by Reverter & Chan, (2008). The 
package pensim: Simulation of High-Dimensional Data 
and Parallelized Repeated Penalized Regression 29 , 
(Waldron, Pintilie, Tsao, Shepherd, Huttenhower, & 
Jurisica, 2011) implements snow package in simulating of 
continuous, correlated high-dimensional data with time to 
event or binary response, and parallelized functions for 
Lasso, Ridge, and Elastic Net penalized regression with 
repeated starts and two-dimensional tuning of the Elastic 
Net. Many examples are given in the online reference 
manual and vignettes of these packages. 

In this section, we give a simple example with some 
illustrated R codes using a personal computer with quad 
core systems. It should be noted that some of these codes 
are running in a sequential mode and maybe consider 
being computer intensive while others implement 
functions taken from the Rmpi package in parallel mode. 
One can modify these codes in order to utilize other 
packages that we have discussed before.  

The example that we introduce make use of the 
univariate regular time series giving the luteinizing 
hormone in blood samples (lh) at 10 minutes intervals 
from a human female. The sample size is 48 samples and 
it is available from the R package datasets (Diggle 1990). 
The ARMA(1,1) model 30  is fitted to this data and the 
portmanteau diagnostic test based on the Monte-Carlo 
version of Ljung-Box test discussed in Lin and McLeod, 
(2006) and Mahdi and McLeod, (2012) is applied into 
steps:  

Step 1: Fit an ARMA(1,1) model to the time series and 
then apply the observed Ljung-Box statistic (denoted by 
obs.stat) at lag 10 using the function Box.test() given in 
base R package on the residual of the fitted model: 

R > fit <-arima(lh, order = c(1,0,1))  
R > res <- ts(fit$residuals)  

R > n <- length(res) 
R > ans <- Box.test(res, lag =10, type = "Ljung-Box")  

R > obs.stat <- as.vector(ans$statistic)  
Step 2: Extract the estimates parameters from the fitted 

model. These estimators are then will be used to simulate 
models using Monte-Carlo simulations:  

R>phi <- as.vector(fit$coef [1]) 
R>theta <- as.vector(fit$coef [2]) 

R>sigma <- fit$sigma2 
R>demean <- as.vector(fit$coef [3]) 

Step 3: Encapsulate the Monte-Carlo procedures into a 
function that can be used for simulating models from 
ARMA(1,1). In this function, the Ljung-Box test is 

                                                                        
26 http://cran.r-project.org/web/packages/survey/index.html 
27 http://cran.r-project.org/web/packages/adegenet/index.html 
28 http://cran.r-project.org/web/packages/PCIT/index.html 
29 http://cran.r-project.org/web/packages/pensim/index.html 
30 ARMA model in time series stands for autoregressive moving average 
model. 

applied on each simulated fitted model (denoted by 
OneSim.stat):  

R>MonteCarlo <- function(n, res, phi, theta, sigma, demean) { 
+ innov <- sample(x=res,size=n,replace = TRUE, prob = NULL) 
+ Sim.Data <- arima.sim(n = n, list(ar = phi, ma = theta), innov = 

innov, 
+ sd = sqrt(sigma), mean = demean) 

+ FitSimModel <- arima(Sim.Data, order = c(1,0,1)) 
+ rboot <- FitSimModel$resid 

+ OneSim.stat <- Box.test(rboot, lag =10, type = "Ljung-
Box")$statistic 

+ return(as.vector(OneSim.stat)) 
+} 

Step 4: Start the cluster by loading the Rmpi package 
and spawn all slaves. Then apply Monte-Carlo 
significance test in parallel mode:  

R>library("Rmpi") 
R>mpi.spawn.Rslaves()  

R>mpi.setup.rngstream(123)  
R>mpi.bcast.Robj2slave(n)  

R>mpi.bcast.Robj2slave(res)  
R>mpi.bcast.Robj2slave(phi) 

R>mpi.bcast.Robj2slave(theta) 
R>mpi.bcast.Robj2slave(sigma) 

R>mpi.bcast.Robj2slave(demean) 
R>mpi.bcast.Robj2slave(MonteCarlo)  

R>sim.stat <- mpi.parReplicate(1000, MonteCarlo( 
 n,res,phi,theta, sigma,demean))  

R>mpi.close.Rslaves()  
Step 5: In the final step, calculate the Monte-Carlo 

portmanteau p-value (note that the p-value based on the 
asymptotic distribution of Ljung-Box test is 0.587): 

R>pvalue <- (1 + sum(as.numeric (sim.stat >= obs.stat)))/(1000 + 1) 
R>pvalue  
0.5394605 

Running the previous example in a computer with 
single core using the sequential function replicate() 
instead of using the parallel function mpi.parReplicate() as 
follows: 

R> set.seed(123) 
R> sim.stat <- replicate(1000, MonteCarlo (n, res, phi, theta, sigma, 

demean)) 
R> pvalue <- (1 + sum(as.numeric (sim.stat >= obs.stat)))/(1000 + 1) 

R> pvalue 
0.5214785 

With respect to the computer time, the CPU time is 3.21 
seconds to get the output of this example in the parallel 
mode whereas it takes 10.4 seconds in the sequential mode.  

6. Comments and Conclusion 
There are many more available R parallel packages 

than those we discussed in this article and many of these 
are briefly described in the CRAN Task Views. 

The reader should be aware that the packages available 
from CRAN, including those in the task views, need only 
to obey R formatting rules with no computer errors. It is 
not guaranteed that all of these packages produce correct 
results. On the other hand packages published by major 
publishers with high impact factor such as the Journal of 
Statistical Software (JSS) or Bioinformatics or Springer-
Verlag or Chapman & Hall/CRC have been carefully 
reviewed for correctness and quality. 

We have selected those parallel packages that might be 
of most general interest, that have been most widely used 
and that we are most familiar with. We have implemented 
some useful functions available from Rmpi package in the 
applications section using our personal computer with four 
quad core CPUs, but one can easily modify the 
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implemented applications’ code in order to use it with 
other R parallel packages.  

Reader should note that Rmpi is working in parallel 
mode with MPI, whereas snow, snowfall, and parallel 
can be implemented in either sequential or parallel mode 
using PVM, MPI, NWS, and SOCKETS. 

Appendix 

Rmpi 

Table 2. Some contributed functions to CRAN taken from Rmpi 
package 

Function Purpose 
mpi.spawn.Rslave

s Start the cluster and spawn R slaves 

mpi.setup.rngstrea
m 

Setups RNG Streams based on rlecuyer package 
on all slaves 

mpi.bcast.Robj Move a general R object around among master and 
all slaves 

mpi.bcast.Robj2sl
ave Same as mpi.bcast.Robj() function 

mpi.scatter.Robj2s
lave 

Distributing a list of data from the master to all 
slaves 

mpi.remote.exec Do calculations at all slaves 

mpi.parReplicate Parallel version of the function replicate() in base 
R 

mpi.apply Scatter an array to slaves and then apply a function 

mpi.iapplyLB Parallel apply with no blocking features 

mpi.close.Rslaves Shut down the cluster 

Snow 

Table 3. Some contributed functions to CRAN taken from snow 
package 

Function Purpose 

makeCluster Start the cluster: The default is the MPI cluster 

makeSOCKcluster Start SOCKET clusters 

makeMPIcluster Start MPI cluster 

makePVMcluster Start PVM cluster 

makeNWScluster Start NWS cluster 

clusterSetupRNG Implementation of Pierre L'Ecuyer's RNG 
Streams on all slaves 

clusterSetupSPRNG Load the rsprng package and initialize separate 
streams on all slaves 

parLapply Parallel version of lapply() function 

parSapply Parallel version of sapply() function 

parApply Parallel version of apply() function 

parRapply Parallel row apply() function for a matrix 

parCapply Parallel column apply() function for a matrix 

clusterCall Call a function on each node and returns list of 
results 

clusterEvalQ Evaluate a literal expression on each node 

clusterExport Export global variables from master to slaves 

stopCluster Shut down the cluster 

Snowfall 

Table 4. Some contributed functions to CRAN taken from snowfall 
package 

Function Purpose 

sfInit Start the cluster 

sfGetCluster Get the snow cluster handler. Use for direct 
calling of snow functions 

sfClusterSetupRNG Setups RNG Streams on all slaves (L'Ecuyer is 
default) 

sfLibrary  Load an R libraries on all nodes, including 
master 

sfExport Export variables from the master to all slaves 

sfRemove Remove previous exported variables from slaves 
and (optional) master 

sfExportAll Export global variables from master to slaves 
with exception of given list 

sfRemoveAll Remove all global variables from the slaves 

sfClusterCall Call a function on each node and returns list of 
results 

sfClusterEvalQ Evaluate a literal expression on all nodes 

sfLapply Parallel version of lapply() function 

sfSapply Parallel version of sapply() function 

sfApply Parallel version of apply() function 

sfStop Shut down the cluster 

Parallel 

Table 5. Some contributed functions to CRAN taken from parallel 
package 

Function Purpose 

detectCores Detect the number of cores/ CPU automatically 

clusterSetRNGStream Implementation of Pierre L'Ecuyer's 
RngStreams on all slaves 

makeCluster Same as makeCluster() in snow package 

makePSOCKcluster Create a parallel socket cluster  

makeForkCluster Create socket cluster by forking (On Unix-alike 
platforms only) 

clusterCall Same as clusterCall() in snow package 

clusterEvalQ Same as clusterEvalQ() in snow package 

clusterExport Same as clusterExport() in snow package 

parLapply Same as parLapply() in snow package 

parSapply Same as parSapply() in snow package 

parApply Same as parApply() in snow package 

mcmapply Parallel version mapply() function using 
forking (not for Windows) 

stopCluster Same as stopCluster() in snow package 
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