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Abstract  A set D of vertices in a graph G(V,E) is called a total dominating set if every vertex v∈V is adjacent to 
an element of D. The domination subdivision number of a graph G is the minimum number of edges that must be 
subdivided in order to increase the domination number of a graph. In this paper, we determine the total domination 
number for strong product graph and establish bounds on the total domination subdivision number for strong product 
graph. 
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1. Introduction 

Let ( ),G V E=  be a simple graph on the vertex set V. 
In a graph G, a set D V⊆  is a dominating set of G if 
every vertex in –V D  is adjacent to some vertex in D. 
The domination number of a graph G is the minimum size 
of a dominating set of vertices in G, denoted by ( )Gγ . A 
thorough study of fundamental domination appears in [2]. 
The concept of total domination in graphs was introduced 
by Cokayne, Dawes and Hedetemini [1]. A set of vertices 
in a graph ( , )G V E  is called a total dominating set if 
every vertex v V  is adjacent to an element of S. The total 
domination number of some cartesian products of two 
paths nP  and mP , are investigated in [8,9]. The values of 

( ),t n mPγ  for n = 2, 3, 4 are determined in [8], and for n = 
5, 6 are determined in [9].  

Let G and H be the two graphs with the set of vertices 
{ }1 2, , , nU u u u= …  and { }1 2, , , mV v v v= …  respectively. 

The strong product of G and H is the graph G H  
formed by the vertices ( ){ }, :1 ,1i jV u v i n j m= ≤ ≤ ≤ ≤  

and two vertices ( ),i ju v  and ( ),s tu v  are adjacent in 

G H  if and only if ( )and ,i s j tu u v adjv=  

( )andi s j tu adju v v=  or ( )and .i s j tu adju v adjv  Domination 

number is rather difficult to construct graphs with large 
value of ( ) ( ), tSd G Sd Gγ γ  and the first conjecture on 

this subject was that ( ) 3Sd Gγ ≤  for every G [10]. The 

concept of total domination subdivision number ( )tSd Gγ  
was due to Haynes et al [3]. Haynes et.al [4] studied the 
total domination subdivision number of graphs, for 
instance, they showed that ( ) 3tSd Gγ ≤  holds for a graph 
having three or more pair wise adjacent simplicial vertices. 
In [5] the authors proved the total domination subdivision 
number of trees. Constant upper bounds on the total 
domination number for several families of graphs were 
determined in [3]. Nasrin Soltankhah showed that for any 

, 3,m n ≥  ( ) 3tSd Gγ ≤  [7]. The behaviour of several 
graph parameters in product graphs has become an 
interesting topic of research [6]. G. Yero and J. A. 
Rodr´ıguez-Vel´azquez [11] proved that for any 

( ), 2, .
3 3m n
m nm n P Pγ     ≥ =         

  In this paper is to 

establish a bound of this type on ( ).t n mSd P Pγ   

2. Main Result 
In this section, we first determine the value of the total 

domination number of m nP P  for 4.m ≤  Since 

1 ,n nP P P  we have: 
Proposition 2.1. For any 2,n ≥  we have 

 ( )
( )

( )
1

if 0 mod 4
2

1 if 1,2,3 mod 4 .
2

t n

n n
P P

n n
γ

 ≡= 
 + ≡


  



 American Journal of Applied Mathematics and Statistics 217 

 

Lemma 2.2. We have ( )1
2 for 2,3,4
3 for 5.t n

n
P P

n
γ

=
=  =

  

Proof: To obtain totally dominate the vertices 2 1( , )u v  
and 2 2( , ),u v  we need two vertices ( )1 1,u v  and ( )1 2, .u v  

Therefore, ( )2 2 2t P Pγ = . Last column of 2 3P P  is 

totally dominated by 2 2.P P  Hence, ( )2 3 2.t P Pγ =  
Let us consider 2 3P P  as block B. The last three 
columns of 2 4P P  is block B. The first column of 

2 4P P  can be totally dominated by B. Hence, 

( )2 4 2.t P Pγ =  In 2 5P P , to totally dominate a vertex 

( )1 4, ,u v  we need one vertex among 

( ) ( ) ( ){ }2 3 2 4 1 4, , , , , .u v u v u v  Hence, ( )2 5 3.t P Pγ =  The 

first three columns of 2 5P P  is block B and also the last 
column of 2 5P P  is totally dominated by the fourth 
column. This completes the proof.  
Proposition 2.3. For any 6n ≥ , we have 

 ( )

( )

( )

( )

2

if 0 mod 4
2

1 if 1,3 mod 4
2

2 if 2 mod 4 .
2

t n

n n

nP P n

n n

γ

 ≡


+= ≡


+
≡

  

Proof: 

 

Figure 1. 2 nP P  

Let S be a total dominating set of 2 .nP P  Since 

( )2 4 2.t P Pγ =  Suppose that 1 2, ,j j jC C C+ +  and 3jC +  

are four consecutive columns of 2 .nP P  To totally 

dominate the vertices ( )1 1, ju v +  and ( )1 2, ,ju v +  we need 

one vertex among 
( ) ( ) ( )
( ) ( )

1 1 2 2

2 1 2 2

, , , , , ,

, , ,

j j j

j j

u v u v u v

u v u v

+

+ +

  
 
  

 and one 

more vertex among 
( ) ( ) ( )
( ) ( )

1 1 1 3 2 1

2 2 2 3

, , , , , ,
.

, , ,

j j j

j j

u v u v u v

u v u v

+ + +

+ +

  
 
  

 

Now, to describe the total dominating set S, we consider 
block 2 4B P P   and ( ) ( ){ }1 2 1 3, , , .B u v u v∩ =  If 

( )0 mod 4 ,n ≡  then 2 nP P  can be partitioned with 
4
n  

number of blocks B. If ( )1 mod 4 ,n ≡  then 2 nP P  can be 

partitioned with 5
4

n −  number of blocks B, plus a block 

2 5'B P P   and ( ) ( ) ( ){ }1 2 1 3 1 4' , , , , ,S B u v u v u v=∩ . If 

( )2 mod 4 ,n ≡  then 2 nP P  can be partitioned with 

2
4

n −  number of blocks B, plus a block 2 2'B P P   and 

( ) ( ){ }1 1 1 2' , , ,S B u v u v=∩ . If ( )3 mod 4 ,n ≡  then 

2 nP P  can be partitioned with 3
4

n −  number of blocks B, 

plus a block 2 3'B P P   and ( ) ( ){ }1 1 1 2' , , , .S B u v u v=∩  
This completes the proof. 
Proposition 2.4. For 3,n ≥  the total domination number 
of 2 nP P  and 3 nP P  are same. 
Proof: Last two rows of 3 nP P  is considered as blocks 

2 nB P P   and the first row of 3 nP P  is totally 
dominated by B, which completes the proof. 
Observation 2.5. For 1n ≥ , we have .k n n kP P P P   
Proposition 2.6. For any 4,n ≥  we have 
Proof: 

 

Figure 2. 4 nP P  

Suppose that S is a total dominating set of 4 nP P . Let 
us consider 4 3P P  as block. Since the total domination 
number of 4 3P P  is 2. We have 

( ) ( ){ }2 2 3 2, , ,S B u v u v=∩ . Let 1,j jC C +  and 2jC +  be 

three consecutive columns of 4 .nP P  To totally 

dominate the vertices ( )2 1, ju v +  and ( )3 1, ,ju v +  we need 

one vertex among 

( ) ( ) ( )
( ) ( ) ( )
( ) ( )

1 1 1 1 2

2 2 2 3

3 1 3 2

, , , , , ,

, , , , , ,

, , ,

j j j

j j j

j j

u v u v u v

u v u v u v

u v u v

+ +

+

+ +

 
 
 
 
 
  

 and 

one more vertex among 

 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2 1 2 2 3

3 2 4 4 1 4 2

, , , , , , , ,
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+ + +

  
 
  

 

Now, to describe our total dominating set S, we 
consider block 4 3B P P  . If ( )0 mod3 ,n ≡  then 

4 nP P  can be partitioned with 
3
n  number of blocks B. If 

( )1 mod3 ,n ≡  then 4 nP P  can be partitioned with 1
3

n −  
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number of blocks B, plus a block 4 1'B P P   and 

( ) ( ){ }2 1 3 1' , , , .S B u v u v=∩  If ( )2 mod3 ,n ≡  then 

4 nP P  can be partitioned with 2
3

n −  number of blocks B, 

plus a block 4 2'B P P   and ( ) ( ){ }2 1 3 1' , , , .S B u v u v=∩  
This completes the proof. 
Theorem 2.7. We have 

( )
( )

( )

if 0 mod 4
2 3

1 if 1,2,3 mod 4 .
2 3

t m n

m n m
P P

m n m
γ

   ≡   = 
  + ≡  

  

Proof: 

 

Figure 3. m nP P  

Let S be a total dominating set of .m nP P  Since each 
column of m nP P  is isomorphic to 1.mP P  By 
Proposition 2.1 and Observation 2.5, we have 

 ( )
( )

( )
1

if 0 mod 4
2

1 if 1,2,3 mod 4 .
2

t m

m m
P P

m m
γ

 ≡= 
 + ≡


  

Let us consider 1mP P  as block. Now to describe our 
total dominating set S, we consider block 1.mB P P   If 

( )0 mod 4 ,m ≡  then m nP P can be partitioned with 
3
n 
  

 

number of blocks B. By Proposition 2.1 and Observation 

2.5, we obtain ( ) .
2 3t m n
m nP Pγ    =       

  If 

( )1,2,3, mod 4 ,m ≡  then m nP P  can be partitioned with 

3
n 
  

 number of blocks B. By Proposition 2.1 and 

Observation 2.5, we obtain ( ) 1 .
2 3t m n
m nP Pγ     = +        

  

This completes the proof. 

3. Subdivision Number for the Strong 
Product Graph 
Proposition 2.8. For 2 2 ,P P  we have 

( )2 2 2.tSd P Pγ =  
Proof: Let S  be a total dominating set of 2 2P P  and 

( ) ( ){ }1 1 1 2, , , .S u v u v=  Let ( )2 2 'P P  be obtain from 

2 2P P  by subdividing an edge ( )( )1 1 2 1, ,u v u v  and adding 
new vertex called .x  Now, there is no change in total 

domination number, i.e, ( ) ( )'
2 2 2 2 .t trP P P Pγ γ=   

Let ( )2 2 ''P P  be obtain from 2P P  by subdividing 

the edges ( )( )1 1 2 1, , ,u v u v  ( )( )2 1 1 2, ,u v u v  and adding 
new vertices respectively called x  and .y  So, we need 
three vertices for totally domination. Therefore, 

( ) ( ) ( ){ }1 1 1 2 2 2'' , , , , , .S u v u v u v=  

Thus, ( )2 2 ' ' 3.t P Pγ =  By Lemma.2.2, we obtain that 

the total domination number of ( )2 2 ' 'P P  is greater than 
the total domination number of 2 2.P P  This completes 
the proof. 
Proposition 2.9. For 2 2B P P  , we have 

( ) ( ){ }1 1 1 2, , , .S B u v u v=∩  
Proof: To describe our total dominating set S, we consider 
block 2 2B P P   and ( ) ( ){ }1 1 1 2, , , .S B u v u v=∩  Since 

( )2 2 2.tSd P Pγ =  Thus, we have ( )2 3 2.tSd P Pγ =  
Proposition 2.10. For 2 4 ,P P  we have 

( )2 4 1.tSd P Pγ =  
Proof: Let S  be a total dominating set of 2 4P P  and 

( ) ( ){ }1 2 1 3, , , .S u v u v=  Let ( )2 4 'P P  be obtain from 

2 4P P  by subdividing an edge ( )( )2 1 1 2, ,u v u v  and 

adding new vertex called .x  To totally dominate ( )2 1, ,u v  

we need one vertex among ( ) ( ){ }1 1 2 2, , , , .x u v u v  

Therefore, ( ) ( ) ( ){ }1 1 1 2 1 3' , , , , , .S u v u v u v=  Thus, 

( )2 4 ' 3.t P Pγ =  
By Lemma 2.2, we obtain that the total domination 

number of ( )2 4 'P P  is greater than the total domination 
number of 2 4.P P  This completes the proof.  
Proposition 2.11. For 2 5 ,P P  we have 

( )2 5 1.tSd P Pγ =  
Proof: Let S  be a total dominating set of 2 5P P  and 

( ) ( ) ( ){ }1 2 1 3 1 4, , , , , .S u v u v u v=  Let ( )2 5 'P P  be obtain 

from 2 5P P  by subdividing an edge ( )( )2 1 1 2, ,u v u v  and 

adding new vertex called .x  To totally dominate ( )2 1, ,u v  

we need one vertex among ( ) ( ){ }1 1 2 2, , , , .x u v u v Therefore, 

( ) ( ) ( ) ( ){ }1 1 1 2 1 3 1 4' , , , , , , , .S u v u v u v u v= Thus, 

( )2 5 ' 4.t P Pγ =  By Lemma 2.2, we obtain that the total 
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domination number of ( )2 5 'P P  is greater than the total 
domination number of 2 5.P P  This completes the proof.  
Theorem 2.8. For 4,n ≥  we have ( )2 1.t nSd P Pγ =  
Proof: To describe our total dominating set S, we consider 
block 2 4B P P   and ( ) ( ){ }1 2 1 3, , , .S B u v u v=∩  Since 

( )2 4 1tSd P Pγ =  and by Proposition 2.3, we have 

( )2 1.t nSd P Pγ =  
Theorem 2.9. For 3,n ≥  subdivision number of 2 nP P  
and 3 nP P  are same. 
Proof: Last two rows of 3 nP P  is considered as blocks 

2 nB P P   and the first row of 3 nP P  is totally 
dominated by B, which completes the proof. 
Theorem 2.10. For 4,n ≥  we have ( )4 1.t nSd P Pγ =  
Proof: To describe our total dominating set S, we consider 
block 4 3B P P   and ( ) ( ){ }2 2 3 2, , , .S B u v u v=∩  By 

Theorem 2.9, we have ( )4 3 1.tSd P Pγ =  Thus, 

( )4 1.t nSd P Pγ =  

Theorem 2.11. For 4,n ≥  we have ( ) 1.t m nSd P Pγ =  
Proof: To describe our total dominating set S, we consider 
block 4 .nB P P   By Theorem 2.10, we have 

( )4 1.t nSd P Pγ =  Thus, ( ) 1.t m nSd P Pγ =  
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