Total Domination Subdivision Number in Strong Product Graph

P. Jeyanthi ${ }^{1, *}$, G. Hemalatha ${ }^{2}$, B. Davvaz ${ }^{3}$
${ }^{1}$ Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamil Nadu, India
${ }^{2}$ Department of mathematics, Shri Andal Alagar College of Engineering, Mamandur, Kancheepuram, Tamil Nadu, India
${ }^{3}$ Department of Mathematics, Yazd University, Yazd, Iran
*Corresponding author: jeyajeyanthi@rediffmail.com

Received June 03, 2014; Revised July 25, 2014; Accepted July 28, 2014

Abstract

A set D of vertices in a graph $G(V, E)$ is called a total dominating set if every vertex $v \in V$ is adjacent to an element of D. The domination subdivision number of a graph G is the minimum number of edges that must be subdivided in order to increase the domination number of a graph. In this paper, we determine the total domination number for strong product graph and establish bounds on the total domination subdivision number for strong product graph.

Keywords: total dominating set, strong product graph, total domination number
Cite This Article: P. Jeyanthi, G. Hemalatha, and B. Davvaz, "Total Domination Subdivision Number in Strong Product Graph." American Journal of Applied Mathematics and Statistics, vol. 2, no. 4 (2014): 216-219. doi: 10.12691/ajams-2-4-7.

1. Introduction

Let $G=(V, E)$ be a simple graph on the vertex set V. In a graph G, a set $D \subseteq V$ is a dominating set of G if every vertex in $V-D$ is adjacent to some vertex in D. The domination number of a graph G is the minimum size of a dominating set of vertices in G, denoted by $\gamma(G)$. A thorough study of fundamental domination appears in [2]. The concept of total domination in graphs was introduced by Cokayne, Dawes and Hedetemini [1]. A set of vertices in a graph $G(V, E)$ is called a total dominating set if every vertex $v \epsilon V$ is adjacent to an element of S. The total domination number of some cartesian products of two paths P_{n} and P_{m}, are investigated in $[8,9]$. The values of $\gamma_{t}\left(P_{n, m}\right)$ for $n=2,3,4$ are determined in [8], and for $n=$ 5, 6 are determined in [9].

Let G and H be the two graphs with the set of vertices $U=\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{m}\right\}$ respectively. The strong product of G and H is the graph $G \boxtimes H$ formed by the vertices $V=\left\{\left(u_{i}, v_{j}\right): 1 \leq i \leq n, 1 \leq j \leq m\right\}$ and two vertices $\left(u_{i}, v_{j}\right)$ and $\left(u_{s}, v_{t}\right)$ are adjacent in $G \boxtimes H \quad$ if \quad and \quad only \quad if $\quad\left(u_{i}=u_{s} \operatorname{and} v_{j} a d j v_{t}\right)$, $\left(u_{i} a d j u_{s}\right.$ and $\left._{j}=v_{t}\right)$ or $\left(u_{i} a d j u_{s}\right.$ and $\left._{j} a d j v_{t}\right)$. Domination number is rather difficult to construct graphs with large value of $\operatorname{Sd} \gamma(G), S d \gamma_{t}(G)$ and the first conjecture on
this subject was that $\operatorname{Sd} \gamma(G) \leq 3$ for every G [10]. The concept of total domination subdivision number $\operatorname{Sd} \gamma_{t}(G)$ was due to Haynes et al [3]. Haynes et.al [4] studied the total domination subdivision number of graphs, for instance, they showed that $\operatorname{Sd} \gamma_{t}(G) \leq 3$ holds for a graph having three or more pair wise adjacent simplicial vertices. In [5] the authors proved the total domination subdivision number of trees. Constant upper bounds on the total domination number for several families of graphs were determined in [3]. Nasrin Soltankhah showed that for any $m, n \geq 3, \quad \operatorname{Sd} \gamma_{t}(G) \leq 3$ [7]. The behaviour of several graph parameters in product graphs has become an interesting topic of research [6]. G. Yero and J. A. Rodr'ıguez-Vel'azquez [11] proved that for any $m, n \geq 2, \gamma\left(P_{m} \boxtimes P_{n}\right)=\left\{\left[\frac{m}{3}\right\rceil\left[\frac{n}{3}\right]\right\}$. In this paper is to establish a bound of this type on $\operatorname{Sd} \gamma_{t}\left(P_{n} \boxtimes P_{m}\right)$.

2. Main Result

In this section, we first determine the value of the total domination number of $P_{m} \boxtimes P_{n}$ for $m \leq 4$. Since $P_{1} \boxtimes P_{n} \simeq P_{n}$, we have:
Proposition 2.1. For any $n \geq 2$, we have

$$
\gamma_{t}\left(P_{1} \boxtimes P_{n}\right)=\left\{\begin{array}{ccc}
\frac{n}{2} & \text { if } & n \equiv 0(\bmod 4) \\
\frac{n}{2}+1 & \text { if } & n \equiv 1,2,3(\bmod 4) .
\end{array}\right.
$$

Lemma 2.2. We have $\gamma_{t}\left(P_{1} \boxtimes P_{n}\right)=\left\{\begin{array}{l}2 \text { for } n=2,3,4 \\ 3 \text { for } n=5 .\end{array}\right.$
Proof: To obtain totally dominate the vertices (u_{2}, v_{1}) and (u_{2}, v_{2}), we need two vertices $\left(u_{1}, v_{1}\right)$ and $\left(u_{1}, v_{2}\right)$. Therefore, $\gamma_{t}\left(P_{2} \boxtimes P_{2}\right)=2$. Last column of $P_{2} \boxtimes P_{3}$ is totally dominated by $P_{2} \boxtimes P_{2}$. Hence, $\gamma_{t}\left(P_{2} \boxtimes P_{3}\right)=2$. Let us consider $P_{2} \boxtimes P_{3}$ as block B. The last three columns of $P_{2} \boxtimes P_{4}$ is block B. The first column of $P_{2} \boxtimes P_{4}$ can be totally dominated by B. Hence, $\gamma_{t}\left(P_{2} \boxtimes P_{4}\right)=2$. In $P_{2} \boxtimes P_{5}$, to totally dominate a vertex $\left(u_{1}, v_{4}\right)$, we need one vertex among $\left\{\left(u_{2}, v_{3}\right),\left(u_{2}, v_{4}\right),\left(u_{1}, v_{4}\right)\right\}$. Hence, $\gamma_{t}\left(P_{2} \boxtimes P_{5}\right)=3$. The first three columns of $P_{2} \boxtimes P_{5}$ is block B and also the last column of $P_{2} \boxtimes P_{5}$ is totally dominated by the fourth column. This completes the proof.
Proposition 2.3. For any $n \geq 6$, we have

$$
\gamma_{t}\left(P_{2} \boxtimes P_{n}\right)=\left\{\begin{array}{clc}
\frac{n}{2} & \text { if } & n \equiv 0(\bmod 4) \\
\frac{n+1}{2} & \text { if } & n \equiv 1,3(\bmod 4) \\
\frac{n+2}{2} & \text { if } & n \equiv 2(\bmod 4) .
\end{array}\right.
$$

Proof:

$\triangle \triangle \triangle A M \triangle \triangle$

$\triangle \triangle \triangle \triangle N W \triangle W \triangle W M \triangle$
$\triangle \triangle \triangle \triangle \times \triangle \times \triangle \times N \times \triangle \times \triangle \triangle \square$

Figure 1. $P_{2} \boxtimes P_{n}$

Let S be a total dominating set of $P_{2} \boxtimes P_{n}$. Since $\gamma_{t}\left(P_{2} \boxtimes P_{4}\right)=2$. Suppose that C_{j}, C_{j+1}, C_{j+2} and C_{j+3} are four consecutive columns of $P_{2} \boxtimes P_{n}$. To totally dominate the vertices $\left(u_{1}, v_{j+1}\right)$ and $\left(u_{1}, v_{j+2}\right)$, we need one vertex among $\left\{\begin{array}{l}\left(u_{1}, v_{j}\right),\left(u_{1}, v_{j+2}\right),\left(u_{2}, v_{j}\right), \\ \left(u_{2}, v_{j+1}\right),\left(u_{2}, v_{j+2}\right)\end{array}\right\}$ and one more vertex among $\left\{\begin{array}{l}\left(u_{1}, v_{j+1}\right),\left(u_{1}, v_{j+3}\right),\left(u_{2}, v_{j+1}\right) \text {, } \\ \left(u_{2}, v_{j+2}\right),\left(u_{2}, v_{j+3}\right)\end{array}\right\}$. Now, to describe the total dominating set S , we consider block $B \simeq P_{2} \boxtimes P_{4} \quad$ and $\quad \cap B=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right)\right\}$. If $n \equiv 0(\bmod 4)$, then $P_{2} \boxtimes P_{n}$ can be partitioned with $\frac{n}{4}$ number of blocks B. If $n \equiv 1(\bmod 4)$, then $P_{2} \boxtimes P_{n}$ can be partitioned with $\frac{n-5}{4}$ number of blocks B, plus a block $B^{\prime} \simeq P_{2} \boxtimes P_{5}$ and $S \cap^{\prime}=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right),\left(u_{1}, v_{4}\right)\right\}$. If
$n \equiv 2(\bmod 4)$, then $P_{2} \boxtimes P_{n}$ can be partitioned with $\frac{n-2}{4}$ number of blocks B, plus a block $B^{\prime} \simeq P_{2} \boxtimes P_{2}$ and $S \cap B^{\prime}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\} \quad$. If $n \equiv 3(\bmod 4)$, then $P_{2} \boxtimes P_{n}$ can be partitioned with $\frac{n-3}{4}$ number of blocks B, plus a block $B^{\prime} \simeq P_{2} \boxtimes P_{3}$ and $S \cap^{\prime}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$. This completes the proof.
Proposition 2.4. For $n \geq 3$, the total domination number of $P_{2} \boxtimes P_{n}$ and $P_{3} \boxtimes P_{n}$ are same.
Proof: Last two rows of $P_{3} \boxtimes P_{n}$ is considered as blocks $B \simeq P_{2} \boxtimes P_{n}$ and the first row of $P_{3} \boxtimes P_{n}$ is totally dominated by B, which completes the proof.
Observation 2.5. For $n \geq 1$, we have $P_{k} \boxtimes P_{n} \simeq P_{n} \boxtimes P_{k}$.
Proposition 2.6. For any $n \geq 4$, we have Proof:

Figure 2. $P_{4} \boxtimes P_{n}$

Suppose that S is a total dominating set of $P_{4} \boxtimes P_{n}$. Let us consider $P_{4} \boxtimes P_{3}$ as block. Since the total domination number of $\quad P_{4} \boxtimes P_{3} \quad$ is 2. We have $S \cap B=\left\{\left(u_{2}, v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$. Let C_{j}, C_{j+1} and C_{j+2} be three consecutive columns of $P_{4} \boxtimes P_{n}$. To totally dominate the vertices $\left(u_{2}, v_{j+1}\right)$ and $\left(u_{3}, v_{j+1}\right)$, we need one vertex among $\left\{\begin{array}{l}\left(u_{1}, v_{j}\right),\left(u_{1}, v_{j+1}\right),\left(u_{1}, v_{j+2}\right), \\ \left(u_{2}, v_{j}\right),\left(u_{2}, v_{j+2}\right),\left(u_{3}, v_{j}\right), \\ \left(u_{3}, v_{j+1}\right),\left(u_{3}, v_{j+2}\right)\end{array}\right\}$ and one more vertex among

$$
\left\{\begin{array}{l}
\left(u_{2}, v_{j}\right),\left(u_{2}, v_{j+1}\right),\left(u_{2}, v_{j+2}\right),\left(u_{3}, v_{j}\right), \\
\left(u_{3}, v_{j+2}\right),\left(u_{4}, v_{j}\right),\left(u_{4}, v_{j+1}\right),\left(u_{4}, v_{j+2}\right)
\end{array}\right\} .
$$

Now, to describe our total dominating set S, we consider block $B \simeq P_{4} \boxtimes P_{3}$. If $n \equiv 0(\bmod 3)$, then $P_{4} \boxtimes P_{n}$ can be partitioned with $\frac{n}{3}$ number of blocks B. If $n \equiv 1(\bmod 3)$, then $P_{4} \boxtimes P_{n}$ can be partitioned with $\frac{n-1}{3}$
number of blocks B, plus a block $B^{\prime} \simeq P_{4} \boxtimes P_{1}$ and $S \cap B^{\prime}=\left\{\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)\right\}$. If $n \equiv 2(\bmod 3)$, then $P_{4} \boxtimes P_{n}$ can be partitioned with $\frac{n-2}{3}$ number of blocks B, plus a block $B^{\prime} \simeq P_{4} \boxtimes P_{2}$ and $S_{\cap} B^{\prime}=\left\{\left(u_{2}, v_{1}\right),\left(u_{3}, v_{1}\right)\right\}$. This completes the proof.
Theorem 2.7. We have
$\gamma_{t}\left(P_{m} \boxtimes P_{n}\right)=\left\{\begin{array}{lll}\left(\frac{m}{2}\right) \frac{n}{3} & \text { if } & m \equiv 0(\bmod 4) \\ \left(\frac{m}{2}+1\right) \frac{n}{3} & \text { if } & m \equiv 1,2,3(\bmod 4) .\end{array}\right.$
Proof:

Figure 3. $P_{m} \boxtimes P_{n}$
Let S be a total dominating set of $P_{m} \boxtimes P_{n}$. Since each column of $P_{m} \boxtimes P_{n}$ is isomorphic to $P_{m} \boxtimes P_{1}$. By Proposition 2.1 and Observation 2.5, we have

$$
\gamma_{t}\left(P_{m} \boxtimes P_{1}\right)=\left\{\begin{array}{lll}
\frac{m}{2} & \text { if } & m \equiv 0(\bmod 4) \\
\frac{m}{2}+1 & \text { if } & m \equiv 1,2,3(\bmod 4) .
\end{array}\right.
$$

Let us consider $P_{m} \boxtimes P_{1}$ as block. Now to describe our total dominating set S, we consider block $B \simeq P_{m} \boxtimes P_{1}$. If $m \equiv 0(\bmod 4)$, then $P_{m} \boxtimes P_{n}$ can be partitioned with $\left\lceil\frac{n}{3}\right\rceil$ number of blocks B. By Proposition 2.1 and Observation 2.5, we obtain $\quad \gamma_{t}\left(P_{m} \boxtimes P_{n}\right)=\left(\frac{m}{2}\right)\left\lceil\frac{n}{3}\right\rceil$. If $m \equiv 1,2,3,(\bmod 4)$, then $P_{m} \boxtimes P_{n}$ can be partitioned with $\left\lceil\frac{n}{3}\right\rceil$ number of blocks B. By Proposition 2.1 and Observation 2.5, we obtain $\gamma_{t}\left(P_{m} \boxtimes P_{n}\right)=\left(\left\lfloor\frac{m}{2}\right\rfloor+1\right)\left\lceil\frac{n}{3}\right\rceil$. This completes the proof.

3. Subdivision Number for the Strong Product Graph

Proposition 2.8. For $P_{2} \boxtimes P_{2}$, we have $\operatorname{Sd} \gamma_{t}\left(P_{2} \boxtimes P_{2}\right)=2$.
Proof: Let S be a total dominating set of $P_{2} \boxtimes P_{2}$ and $S=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$. Let $\left(P_{2} \boxtimes P_{2}\right)^{\prime}$ be obtain from $P_{2} \boxtimes P_{2}$ by subdividing an edge $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{1}\right)$ and adding new vertex called x. Now, there is no change in total domination number, i.e, $\gamma_{t}\left(P_{2} \boxtimes P_{2}\right)^{\prime}=\gamma_{t r}\left(P_{2} \boxtimes P_{2}\right)$.

Let $\left(P_{2} \boxtimes P_{2}\right)^{\prime \prime}$ be obtain from $P_{2} \boxtimes P$ by subdividing the edges $\left(u_{1}, v_{1}\right)\left(u_{2}, v_{1}\right),\left(u_{2}, v_{1}\right)\left(u_{1}, v_{2}\right)$ and adding new vertices respectively called x and y. So, we need three vertices for totally domination. Therefore, $S^{\prime \prime}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{2}, v_{2}\right)\right\}$.

Thus, $\gamma_{t}\left(P_{2} \boxtimes P_{2}\right) "=3$. By Lemma.2.2, we obtain that the total domination number of $\left(P_{2} \boxtimes P_{2}\right)^{\prime \prime}$ is greater than the total domination number of $P_{2} \boxtimes P_{2}$. This completes the proof.
Proposition 2.9. For $B \simeq P_{2} \boxtimes P_{2}$, we have $S_{\cap B}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$.
Proof: To describe our total dominating set S, we consider block $B \simeq P_{2} \boxtimes P_{2}$ and $S_{\bigcap B}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right)\right\}$. Since $S d \gamma_{t}\left(P_{2} \boxtimes P_{2}\right)=2$. Thus, we have $\operatorname{Sd} \gamma_{t}\left(P_{2} \boxtimes P_{3}\right)=2$.
Proposition 2.10. For $P_{2} \boxtimes P_{4}$, we have $\operatorname{Sd} \gamma_{t}\left(P_{2} \boxtimes P_{4}\right)=1$.
Proof: Let S be a total dominating set of $P_{2} \boxtimes P_{4}$ and $S=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right)\right\}$. Let $\left(P_{2} \boxtimes P_{4}\right)^{\prime}$ be obtain from $P_{2} \boxtimes P_{4}$ by subdividing an edge $\left(u_{2}, v_{1}\right)\left(u_{1}, v_{2}\right)$ and adding new vertex called x. To totally dominate $\left(u_{2}, v_{1}\right)$, we need one vertex among $\left\{x,\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$. Therefore, $\quad S^{\prime}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right)\right\}$. Thus, $\gamma_{t}\left(P_{2} \boxtimes P_{4}\right)^{\prime}=3$.

By Lemma 2.2, we obtain that the total domination number of $\left(P_{2} \boxtimes P_{4}\right)$ ' is greater than the total domination number of $P_{2} \boxtimes P_{4}$. This completes the proof.
Proposition 2.11. For $P_{2} \boxtimes P_{5}$, we have $\operatorname{Sd} \gamma_{t}\left(P_{2} \boxtimes P_{5}\right)=1$.
Proof: Let S be a total dominating set of $P_{2} \boxtimes P_{5}$ and $S=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right),\left(u_{1}, v_{4}\right)\right\}$. Let $\left(P_{2} \boxtimes P_{5}\right)^{\prime}$ be obtain from $P_{2} \boxtimes P_{5}$ by subdividing an edge $\left(u_{2}, v_{1}\right)\left(u_{1}, v_{2}\right)$ and adding new vertex called x. To totally dominate $\left(u_{2}, v_{1}\right)$, we need one vertex among $\left\{x,\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)\right\}$. Therefore, $S^{\prime}=\left\{\left(u_{1}, v_{1}\right),\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right),\left(u_{1}, v_{4}\right)\right\}$.

Thus, $\gamma_{t}\left(P_{2} \boxtimes P_{5}\right)^{\prime}=4$. By Lemma 2.2, we obtain that the total
domination number of $\left(P_{2} \boxtimes P_{5}\right)^{\prime}$ is greater than the total domination number of $P_{2} \boxtimes P_{5}$. This completes the proof.
Theorem 2.8. For $n \geq 4$, we have Sd $\gamma_{t}\left(P_{2} \boxtimes P_{n}\right)=1$.
Proof: To describe our total dominating set S , we consider block $B \simeq P_{2} \boxtimes P_{4}$ and $S \cap B=\left\{\left(u_{1}, v_{2}\right),\left(u_{1}, v_{3}\right)\right\}$. Since $\operatorname{Sd} \gamma_{t}\left(P_{2} \boxtimes P_{4}\right)=1$ and by Proposition 2.3, we have $\operatorname{Sd} \gamma_{t}\left(P_{2} \boxtimes P_{n}\right)=1$.
Theorem 2.9. For $n \geq 3$, subdivision number of $P_{2} \boxtimes P_{n}$ and $P_{3} \boxtimes P_{n}$ are same.
Proof: Last two rows of $P_{3} \boxtimes P_{n}$ is considered as blocks $B \simeq P_{2} \boxtimes P_{n}$ and the first row of $P_{3} \boxtimes P_{n}$ is totally dominated by B , which completes the proof.
Theorem 2.10. For $n \geq 4$, we have Sd $\gamma_{t}\left(P_{4} \boxtimes P_{n}\right)=1$.
Proof: To describe our total dominating set S , we consider block $B \simeq P_{4} \boxtimes P_{3}$ and $S_{\cap} B=\left\{\left(u_{2}, v_{2}\right),\left(u_{3}, v_{2}\right)\right\}$. By Theorem 2.9, we have $\operatorname{Sd} \gamma_{t}\left(P_{4} \boxtimes P_{3}\right)=1$. Thus, $\operatorname{Sd} \gamma_{t}\left(P_{4} \boxtimes P_{n}\right)=1$.
Theorem 2.11. For $n \geq 4$, we have $\operatorname{Sd} \gamma_{t}\left(P_{m} \boxtimes P_{n}\right)=1$.
Proof: To describe our total dominating set S , we consider block $B \simeq P_{4} \boxtimes P_{n}$. By Theorem 2.10, we have $\operatorname{Sd} \gamma_{t}\left(P_{4} \boxtimes P_{n}\right)=1$. Thus, $\operatorname{Sd} \gamma_{t}\left(P_{m} \boxtimes P_{n}\right)=1$.

References

[1] E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, Total dominations in graphs, Networks, 10 (1980), 211-219.
[2] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
[3] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, Total domination subdivision numbers, J. Combin. Math. Combin. Comput., 44 (2003), 115-128.
[4] W. Haynes and Michael A. Henning, Total domination subdivision numbers of graphs, Discussiones Mathematicae Graph Theory 24(2004), 457-467.
[5] Teresa W. Haynes, Michael A. Henning and Lora Hopkins, Total domination subdivision numbers of trees, Discrete Mathematics 286(2004), 195-202.
[6] W. Imrich, S. Klav̌zar, D. F. Rall, Topics in Graph Theory. A. K. Peters Ltd., Wellesley, MA, 2008.
[7] N.Soltankhah, On total domination subdivision number of grid graphs, Int.J.Contemp.Math.Sciences, 5(49) (2010), 2419-2432.
[8] N. Soltankhah, Results on total domination and total restrained domination in grid graphs, International Mathematical Forum, 5(7) (2010), 319-332.
[9] S. Gravier, Total domination number of grid graphs, Discrete Applied Mathematics, 121 (2002) 119-128.
[10] S. Velammal, "Studies in Graph Theory", Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997.
[11] G. Yero, J. A. Rodr'ıguez-Vel'azquez, Roman domination in Cartesian product graphs and Strong product graph, Discrete Math., 7(2013), 262-274.

