Total Domination Subdivision Number in Strong Product Graph

P. Jeyanthi^{1,*}, G. Hemalatha², B. Davvaz³

¹Department of Mathematics, Govindammal Aditanar College for Women, Tiruchendur, Tamil Nadu, India

²Department of mathematics, Shri Andal Alagar College of Engineering, Mamandur, Kancheepuram, Tamil Nadu, India

³Department of Mathematics, Yazd University, Yazd, Iran

*Corresponding author: jeyajeyanthi@rediffmail.com

Received June 03, 2014; Revised July 25, 2014; Accepted July 28, 2014

Abstract A set *D* of vertices in a graph G(V,E) is called a total dominating set if every vertex $v \in V$ is adjacent to an element of *D*. The domination subdivision number of a graph *G* is the minimum number of edges that must be subdivided in order to increase the domination number of a graph. In this paper, we determine the total domination number for strong product graph and establish bounds on the total domination subdivision number for strong product graph.

Keywords: total dominating set, strong product graph, total domination number

Cite This Article: P. Jeyanthi, G. Hemalatha, and B. Davvaz, "Total Domination Subdivision Number in Strong Product Graph." *American Journal of Applied Mathematics and Statistics*, vol. 2, no. 4 (2014): 216-219. doi: 10.12691/ajams-2-4-7.

1. Introduction

Let G = (V, E) be a simple graph on the vertex set *V*. In a graph *G*, a set $D \subseteq V$ is a dominating set of *G* if every vertex in V - D is adjacent to some vertex in *D*. The domination number of a graph *G* is the minimum size of a dominating set of vertices in *G*, denoted by $\gamma(G)$. A thorough study of fundamental domination appears in [2]. The concept of total domination in graphs was introduced by Cokayne, Dawes and Hedetemini [1]. A set of vertices in a graph G(V, E) is called a total dominating set if every vertex $v \in V$ is adjacent to an element of S. The total domination number of some cartesian products of two paths P_n and P_m , are investigated in [8,9]. The values of $\gamma_t(P_{n,m})$ for n = 2, 3, 4 are determined in [8], and for n =5, 6 are determined in [9].

Let *G* and *H* be the two graphs with the set of vertices $U = \{u_1, u_2, ..., u_n\}$ and $V = \{v_1, v_2, ..., v_m\}$ respectively. The strong product of *G* and *H* is the graph $G \boxtimes H$ formed by the vertices $V = \{(u_i, v_j): 1 \le i \le n, 1 \le j \le m\}$ and two vertices (u_i, v_j) and (u_s, v_t) are adjacent in $G \boxtimes H$ if and only if $(u_i = u_s \operatorname{and} v_j a dj v_t)$, $(u_i a dj u_s \operatorname{and} v_j = v_t)$ or $(u_i a dj u_s \operatorname{and} v_j a dj v_t)$. Domination number is rather difficult to construct graphs with large value of $Sd\gamma(G), Sd\gamma_t(G)$ and the first conjecture on this subject was that $Sd\gamma(G) \leq 3$ for every G [10]. The concept of total domination subdivision number $Sd\gamma_t(G)$ was due to Haynes et al [3]. Haynes et.al [4] studied the total domination subdivision number of graphs, for instance, they showed that $Sd\gamma_t(G) \leq 3$ holds for a graph having three or more pair wise adjacent simplicial vertices. In [5] the authors proved the total domination subdivision number of trees. Constant upper bounds on the total domination number for several families of graphs were determined in [3]. Nasrin Soltankhah showed that for any $m, n \ge 3$, $Sd\gamma_t(G) \le 3$ [7]. The behaviour of several graph parameters in product graphs has become an interesting topic of research [6]. G. Yero and J. A. Rodr'iguez-Vel'azquez [11] proved that for any $m, n \ge 2, \gamma \left(P_m \boxtimes P_n \right) = \left\{ \left\lceil \frac{m}{3} \right\rceil \left\lceil \frac{n}{3} \right\rceil \right\}$. In this paper is to establish a bound of this type on $Sd\gamma_t(P_n \boxtimes P_m)$.

2. Main Result

In this section, we first determine the value of the total domination number of $P_m \boxtimes P_n$ for $m \le 4$. Since $P_1 \boxtimes P_n \simeq P_n$, we have:

Proposition 2.1. For any $n \ge 2$, we have

$$\gamma_t \left(P_1 \boxtimes P_n \right) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ \\ \frac{n}{2} + 1 & \text{if } n \equiv 1, 2, 3 \pmod{4}. \end{cases}$$

Lemma 2.2. We have $\gamma_t (P_1 \boxtimes P_n) = \begin{cases} 2 & \text{for } n = 2, 3, 4 \\ 3 & \text{for } n = 5. \end{cases}$

Proof: To obtain totally dominate the vertices (u_2, v_1) and (u_2, v_2) , we need two vertices (u_1, v_1) and (u_1, v_2) . Therefore, $\gamma_t (P_2 \boxtimes P_2) = 2$. Last column of $P_2 \boxtimes P_3$ is totally dominated by $P_2 \boxtimes P_2$. Hence, $\gamma_t (P_2 \boxtimes P_3) = 2$. Let us consider $P_2 \boxtimes P_3$ as block B. The last three columns of $P_2 \boxtimes P_4$ is block *B*. The first column of $P_2 \boxtimes P_4$ can be totally dominated by *B*. Hence, $\gamma_t (P_2 \boxtimes P_4) = 2$. In $P_2 \boxtimes P_5$, to totally dominate a vertex $(u_1, v_4),$ we need one vertex among $\{(u_2, v_3), (u_2, v_4), (u_1, v_4)\}$. Hence, $\gamma_t (P_2 \boxtimes P_5) = 3$. The first three columns of $P_2 \boxtimes P_5$ is block B and also the last column of $P_2 \boxtimes P_5$ is totally dominated by the fourth column. This completes the proof.

Proposition 2.3. For any $n \ge 6$, we have

$$\gamma_t \left(P_2 \boxtimes P_n \right) = \begin{cases} \frac{n}{2} & \text{if } n \equiv 0 \pmod{4} \\ \frac{n+1}{2} & \text{if } n \equiv 1, 3 \pmod{4} \\ \frac{n+2}{2} & \text{if } n \equiv 2 \pmod{4}. \end{cases}$$

Proof:

Figure 1. $P_2 \boxtimes P_n$

Let *S* be a total dominating set of $P_2 \boxtimes P_n$. Since $\gamma_t (P_2 \boxtimes P_4) = 2$. Suppose that C_j, C_{j+1}, C_{j+2} and C_{j+3} are four consecutive columns of $P_2 \boxtimes P_n$. To totally dominate the vertices (u_1, v_{j+1}) and (u_1, v_{j+2}) , we need

one vertex among
$$\begin{cases} (u_1, v_j), (u_1, v_{j+2}), (u_2, v_j), \\ (u_2, v_{j+1}), (u_2, v_{j+2}) \end{cases}$$
 and one
$$[(u_1, v_{j+1}), (u_1, v_{j+2}), (u_2, v_{j+1}),]$$

more vertex among $\begin{cases} (u_1, v_{j+1}), (u_1, v_{j+3}), (u_2, v_{j+1}), \\ (u_2, v_{j+2}), (u_2, v_{j+3}) \end{cases}$

Now, to describe the total dominating set S, we consider block $B \simeq P_2 \boxtimes P_4$ and $\bigcirc B = \{(u_1, v_2), (u_1, v_3)\}$. If $n \equiv 0 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n}{4}$ number of blocks B. If $n \equiv 1 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n-5}{4}$ number of blocks B, plus a block $B' \simeq P_2 \boxtimes P_5$ and $S \bigcirc B' = \{(u_1, v_2), (u_1, v_3), (u_1, v_4)\}$. If $n \equiv 2 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n-2}{4}$ number of blocks *B*, plus a block $B' \simeq P_2 \boxtimes P_2$ and $S \bigcap B' = \{(u_1, v_1), (u_1, v_2)\}$. If $n \equiv 3 \pmod{4}$, then $P_2 \boxtimes P_n$ can be partitioned with $\frac{n-3}{4}$ number of blocks *B*, plus a block $B' \simeq P_2 \boxtimes P_3$ and $S \bigcap B' = \{(u_1, v_1), (u_1, v_2)\}$. This completes the proof.

Proposition 2.4. For $n \ge 3$, the total domination number of $P_2 \boxtimes P_n$ and $P_3 \boxtimes P_n$ are same.

Proof: Last two rows of $P_3 \boxtimes P_n$ is considered as blocks $B \simeq P_2 \boxtimes P_n$ and the first row of $P_3 \boxtimes P_n$ is totally dominated by *B*, which completes the proof.

Observation 2.5. For $n \ge 1$, we have $P_k \boxtimes P_n \simeq P_n \boxtimes P_k$. **Proposition 2.6.** For any $n \ge 4$, we have **Proof**:

Figure 2. $P_4 \boxtimes P_n$

Suppose that *S* is a total dominating set of $P_4 \boxtimes P_n$. Let us consider $P_4 \boxtimes P_3$ as block. Since the total domination number of $P_4 \boxtimes P_3$ is 2. We have $S \cap B = \{(u_2, v_2), (u_3, v_2)\}$. Let C_j, C_{j+1} and C_{j+2} be three consecutive columns of $P_4 \boxtimes P_n$. To totally dominate the vertices (u_2, v_{j+1}) and (u_3, v_{j+1}) , we need

one vertex among
$$\begin{cases} (u_1, v_j), (u_1, v_{j+1}), (u_1, v_{j+2}), \\ (u_2, v_j), (u_2, v_{j+2}), (u_3, v_j), \\ (u_3, v_{j+1}), (u_3, v_{j+2}) \end{cases} \text{ and}$$

one more vertex among

$$\left\{ (u_{2}, v_{j}), (u_{2}, v_{j+1}), (u_{2}, v_{j+2}), (u_{3}, v_{j}), \\ (u_{3}, v_{j+2}), (u_{4}, v_{j}), (u_{4}, v_{j+1}), (u_{4}, v_{j+2}) \right\}.$$

Now, to describe our total dominating set *S*, we consider block $B \simeq P_4 \boxtimes P_3$. If $n \equiv 0 \pmod{3}$, then $P_4 \boxtimes P_n$ can be partitioned with $\frac{n}{3}$ number of blocks *B*. If $n \equiv 1 \pmod{3}$, then $P_4 \boxtimes P_n$ can be partitioned with $\frac{n-1}{3}$

number of blocks B, plus a block $B' \approx P_4 \boxtimes P_1$ and $S \cap B' = \{(u_2, v_1), (u_3, v_1)\}$. If $n \equiv 2 \pmod{3}$, then $P_4 \boxtimes P_n$ can be partitioned with $\frac{n-2}{3}$ number of blocks *B*, plus a block $B' \approx P_4 \boxtimes P_2$ and $S \cap B' = \{(u_2, v_1), (u_3, v_1)\}$. This completes the proof. **Theorem 2.7.** We have

$$\gamma_t \left(P_m \boxtimes P_n \right) = \begin{cases} \left(\frac{m}{2} \right) \frac{n}{3} & \text{if } m \equiv 0 \pmod{4} \\ \left(\frac{m}{2} + 1 \right) \frac{n}{3} & \text{if } m \equiv 1, 2, 3 \pmod{4}. \end{cases}$$

Proof:

Figure 3. $P_m \boxtimes P_n$

Let *S* be a total dominating set of $P_m \boxtimes P_n$. Since each column of $P_m \boxtimes P_n$ is isomorphic to $P_m \boxtimes P_1$. By Proposition 2.1 and Observation 2.5, we have

$$\gamma_t \left(P_m \boxtimes P_1 \right) = \begin{cases} \frac{m}{2} & \text{if } m \equiv 0 \pmod{4} \\ \frac{m}{2} + 1 & \text{if } m \equiv 1, 2, 3 \pmod{4} \end{cases}$$

Let us consider $P_m \boxtimes P_1$ as block. Now to describe our total dominating set *S*, we consider block $B \approx P_m \boxtimes P_1$. If $m \equiv 0 \pmod{4}$, then $P_m \boxtimes P_n$ can be partitioned with $\left\lceil \frac{n}{3} \right\rceil$ number of blocks *B*. By Proposition 2.1 and Observation 2.5, we obtain $\gamma_t \left(P_m \boxtimes P_n\right) = \left(\frac{m}{2}\right) \left\lceil \frac{n}{3} \right\rceil$. If $m \equiv 1, 2, 3, \pmod{4}$, then $P_m \boxtimes P_n$ can be partitioned with $\left\lceil \frac{n}{3} \right\rceil$ number of blocks *B*. By Proposition 2.1 and Observation 2.5, we obtain $\gamma_t \left(P_m \boxtimes P_n\right) = \left(\left\lfloor \frac{m}{2} \right\rfloor + 1\right) \left\lceil \frac{n}{3} \right\rceil$. This completes the proof.

3. Subdivision Number for the Strong Product Graph

Proposition 2.8. For $P_2 \boxtimes P_2$, we have $Sd\gamma_t (P_2 \boxtimes P_2) = 2$.

Proof: Let *S* be a total dominating set of $P_2 \boxtimes P_2$ and $S = \{(u_1, v_1), (u_1, v_2)\}$. Let $(P_2 \boxtimes P_2)'$ be obtain from $P_2 \boxtimes P_2$ by subdividing an edge $(u_1, v_1)(u_2, v_1)$ and adding new vertex called *x*. Now, there is no change in total domination number, i.e., $\gamma_t (P_2 \boxtimes P_2)' = \gamma_{tr} (P_2 \boxtimes P_2)$.

Let $(P_2 \boxtimes P_2)^*$ be obtain from $P_2 \boxtimes P$ by subdividing the edges $(u_1, v_1)(u_2, v_1)$, $(u_2, v_1)(u_1, v_2)$ and adding new vertices respectively called *x* and *y*. So, we need three vertices for totally domination. Therefore, $S^* = \{(u_1, v_1), (u_1, v_2), (u_2, v_2)\}.$

Thus, $\gamma_t (P_2 \boxtimes P_2)^{"} = 3$. By Lemma.2.2, we obtain that the total domination number of $(P_2 \boxtimes P_2)^{"}$ is greater than the total domination number of $P_2 \boxtimes P_2$. This completes the proof.

Proposition 2.9. For $B \simeq P_2 \boxtimes P_2$, we have $S \cap B = \{(u_1, v_1), (u_1, v_2)\}.$

Proof: To describe our total dominating set *S*, we consider block $B \simeq P_2 \boxtimes P_2$ and $S \cap B = \{(u_1, v_1), (u_1, v_2)\}$. Since $Sd\gamma_t (P_2 \boxtimes P_2) = 2$. Thus, we have $Sd\gamma_t (P_2 \boxtimes P_3) = 2$.

Proposition 2.10. For $P_2 \boxtimes P_4$, we have $Sd\gamma_t(P_2 \boxtimes P_4) = 1$.

Proof: Let *S* be a total dominating set of $P_2 \boxtimes P_4$ and $S = \{(u_1, v_2), (u_1, v_3)\}$. Let $(P_2 \boxtimes P_4)'$ be obtain from $P_2 \boxtimes P_4$ by subdividing an edge $(u_2, v_1)(u_1, v_2)$ and adding new vertex called *x*. To totally dominate (u_2, v_1) , we need one vertex among $\{x, (u_1, v_1), (u_2, v_2)\}$. Therefore, $S' = \{(u_1, v_1), (u_1, v_2), (u_1, v_3)\}$. Thus, $\gamma_t (P_2 \boxtimes P_4)' = 3$.

By Lemma 2.2, we obtain that the total domination number of $(P_2 \boxtimes P_4)'$ is greater than the total domination number of $P_2 \boxtimes P_4$. This completes the proof.

Proposition 2.11. For $P_2 \boxtimes P_5$, we have $Sd\gamma_t (P_2 \boxtimes P_5) = 1$.

Proof: Let *S* be a total dominating set of $P_2 \boxtimes P_5$ and $S = \{(u_1, v_2), (u_1, v_3), (u_1, v_4)\}$. Let $(P_2 \boxtimes P_5)'$ be obtain from $P_2 \boxtimes P_5$ by subdividing an edge $(u_2, v_1)(u_1, v_2)$ and adding new vertex called *x*. To totally dominate (u_2, v_1) , we need one vertex among $\{x, (u_1, v_1), (u_2, v_2)\}$. Therefore, $S' = \{(u_1, v_1), (u_1, v_2), (u_1, v_3), (u_1, v_4)\}$. Thus, $\gamma_t (P_2 \boxtimes P_5)' = 4$. By Lemma 2.2, we obtain that the total domination number of $(P_2 \boxtimes P_5)'$ is greater than the total domination number of $P_2 \boxtimes P_5$. This completes the proof. **Theorem 2.8.** For $n \ge 4$, we have $Sd \gamma_t (P_2 \boxtimes P_n) = 1$.

Proof: To describe our total dominating set S, we consider block $B \simeq P_2 \boxtimes P_4$ and $S \cap B = \{(u_1, v_2), (u_1, v_3)\}$. Since $Sd\gamma_t (P_2 \boxtimes P_4) = 1$ and by Proposition 2.3, we have $Sd\gamma_t (P_2 \boxtimes P_n) = 1$.

Theorem 2.9. For $n \ge 3$, subdivision number of $P_2 \boxtimes P_n$ and $P_3 \boxtimes P_n$ are same.

Proof: Last two rows of $P_3 \boxtimes P_n$ is considered as blocks $B \simeq P_2 \boxtimes P_n$ and the first row of $P_3 \boxtimes P_n$ is totally dominated by B, which completes the proof.

Theorem 2.10. For $n \ge 4$, we have $Sd \ \gamma_t (P_4 \boxtimes P_n) = 1$.

Proof: To describe our total dominating set S, we consider block $B \simeq P_4 \boxtimes P_3$ and $S \cap B = \{(u_2, v_2), (u_3, v_2)\}$. By

Theorem 2.9, we have $Sd\gamma_t (P_4 \boxtimes P_3) = 1$. Thus, $Sd\gamma_t (P_4 \boxtimes P_n) = 1$.

Theorem 2.11. For $n \ge 4$, we have $Sd \gamma_t (P_m \boxtimes P_n) = 1$.

Proof: To describe our total dominating set S, we consider block $B \simeq P_4 \boxtimes P_n$. By Theorem 2.10, we have $Sd\gamma_t (P_4 \boxtimes P_n) = 1$. Thus, $Sd\gamma_t (P_m \boxtimes P_n) = 1$.

References

- E.J. Cockayne, R.M. Dawes and S.T. Hedetniemi, *Total dominations in graphs*, Networks, 10 (1980), 211-219.
- [2] T.W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1997.
- [3] T.W. Haynes, S.T. Hedetniemi and L.C. van der Merwe, *Total domination subdivision numbers*, J. Combin. Math. Combin. Comput., 44 (2003), 115-128.
- [4] W. Haynes and Michael A. Henning, *Total domination subdivision numbers of graphs*, Discussiones Mathematicae Graph Theory 24(2004), 457-467.
- [5] Teresa W. Haynes, Michael A. Henning and Lora Hopkins, *Total domination subdivision numbers of trees*, Discrete Mathematics 286(2004), 195-202.
- [6] W. Imrich, S. Klav^{*}zar, D. F. Rall, *Topics in Graph Theory*. A. K. Peters Ltd., Wellesley, MA, 2008.
- [7] N.Soltankhah, On total domination subdivision number of grid graphs, Int.J.Contemp.Math.Sciences, 5(49) (2010), 2419-2432.
- [8] N. Soltankhah, *Results on total domination and total restrained domination in grid graphs*, International Mathematical Forum, 5(7) (2010), 319-332.
- [9] S. Gravier, *Total domination number of grid graphs*, Discrete Applied Mathematics, 121 (2002) 119-128.
- [10] S. Velammal, "Studies in Graph Theory", Ph.D. Thesis (Manonmaniam Sundaranar University, Tirunelveli, 1997.
- [11] G. Yero, J. A. Rodr'iguez-Vel'azquez, Roman domination in Cartesian product graphs and Strong product graph, Discrete Math., 7(2013), 262-274.