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1. Introduction 
The first important result in the theory of fixed point of 

compatible mappings was obtained by Gerald Jugck in 
1986 [2] as a generalization of commuting mappings. 
Pathak, Chang and Cho [3] in 1994 introduced the concept 
of compatible mappings of type(P). In 2004 Rohen, Singh 
and shambhu [5] introduced the concept of compatible 
mappings of type(R) by combining the definitions of 
compatible mappings and compatible mappings of type(P). 
The aim of this paper is to prove a common fixed point 
theorem of compatible mappings of type(R) in metric 
space by considering eight self mappings. 

2. Preliminaries 
Definition 2.1: [2] A metric space is given by a set X and 
a distance function d : X X× →   such that 

(i) (Positivity) For all x, y X,0 d(x, y).∈ ≤  
(ii) (Non-degenerated) For all x, y X,∈  

 0 d(x, y) x y.= ⇔ =  

(iii) (Symmetry) For all x, y X,∈  

 d(x, y) d(y, x).=  

(iv) (Triangle inequality) For all x, y, z X,∈  

 d(x, y) d(x, z) d(z, y).≤ +  

Definition 2.2: [4] Let S and T be mappings from a 
complete metric space X into itself. The mappings S and T 
are said to be compatible if ( )n n nd STx ,TSm 0li x∞→ =  
whenever n{x }  is a sequence in X such that 

n n n nlim lT S timx x∞ ∞→ →= =  for some t X.∈  

Definition 2.3: [4] Let S and T be mappings from a 
complete metric space X into itself. The mappings S and T 
are said to be compatible of type (P) if 

n n nd(SSx ,TTxl ) 0im ∞→ =  whenever n{x }  is a sequence 
in X such that for n n n nlim lS T timx x∞ ∞→ →= =  for some 
t X.∈  
Definition 2.4: [4] Let S and T be mappings from a 
complete metric space X into itself. The mappings S and T 
are said to be compatible of type (R) if 

n n nd(STx , TSxl ) 0im ∞→ =  and n n nd(SSx ,TTxl ) 0im ∞→ =  
whenever n{x }  is a sequence in X such that for 

n n n nlim lS T timx x∞ ∞→ →= =  for some t X.∈  
Proposition 2.5. [4] Let S and T be mappings from a 
complete metric space (X, d) into itself. If a pair {S, T} is 
compatible of type (R) on X and Sz = Tz for z ∈ X,Then 
STz = TSz = SSz = TTz. 

Proposition 2.6. [4] Let S and T be mappings from a 
complete metric space (X, d) into itself. If a pair {S, T} is 
compatible of type (R) on X and 

n n n nlim lS T zimx x∞ ∞→ →= =  for some z X,∈  then we 
have 
(i) ( )nd TSx ,Sz 0→  as n → ∞ if S is continuous,  

(ii) ( )nd STx ,Tz 0→  as n → ∞ if T is continuous and 
(iii) STz = TSz and Sz = Tz if S and T are continuous at z. 
Lemma 2.7. [4] Let A, B, S and T be mapping from a 
metric space(X, d) into itself satisfying the following 
conditions: 

(1) ( ) ( ) ( ) ( )A X T X and B X S X⊆ ⊆  

(2) 

( )

( ) ( )
( ) ( )

2
1

2

d(Ax,Sx)d(By,Ty)
d Ax,By k

d(By,Sx)d(Ax,Ty)

d Ax,Sx d Ax,Ty
k

d By,Ty d By,Sx

 
≤     + 

 
+  

+  

 

1 2 1 2Where 0 k 2k 1; k ,k 0.≤ + < ≥  
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(3) Let 0x X∈  then by (1) there exists 1x X∈  such 
that 1 0Tx Ax=  and for 1x  there exists 2x X∈  such that 

2 1Sx Bx=  and so on. Continuing this process we can 
define a sequence { }ny  in X such that  

 2n 1 2n 1 2n

2n 2n 2n 1

y Tx Ax
and y Sx Bx .

+ +

−

= =
= =

 

Then the sequence { }ny  is Cauchy sequence in X. 
Theorem: [4] Let A, B, S and T be mapping from a 
metric space (X, d) into itself satisfying the following 
conditions: 

(1) ( ) ( ) ( ) ( )A X T X and B X S X⊆ ⊆  

(2) 

( )

( ) ( )
( ) ( )

2
1

2

d(Ax,Sx)d(By,Ty)
d Ax,By k

d(By,Sx)d(Ax,Ty)

d Ax,Sx d Ax,Ty
k

d By,Ty d By,Sx

 
≤     + 

 
+  

+  

 

1 2 1 2Where 0 k 2k 1; k ,k 0.≤ + < ≥  
(3) Let 0x X∈  then by (1) there exists 1x X∈  such 

that 1 0Tx Ax=  and for 1x  there exists 2x X∈  such that 

2 1Sx Bx=  and so on. Continuing this process we can 
define a sequence { }ny  in X such that  

 2n 1 2n 1 2n

2n 2n 2n 1

y Tx Ax
and y Sx Bx .

+ +

−

= =
= =

 

Then the sequence { }ny  is Cauchy sequence in X. 
(4) One of A, B, S or T is continuous. 
(5) [A, S] and [B, T] are compatible of type (R) on X. 

Then A, B, S and T have a unique common fixed point in 
X.  

3. Main Result 
Lemma 3.1: Let C, D, E, F, K, M, P and V be self maps 
of a complete metric space (X, d) satisfying the following 
conditions: 
(1) C(X) DPV(X) and E(X) FKM(X)⊆ ⊆  

(2) 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2
1

2

d Cx,FKMx d Ey,DPVy
d Cx,Ey α

d Ey,FKMx d Cx,DPVy

d Cx,FKMx d Cx,DPVy
α

d Ey,DPVy d Ey,FKMx

 
≤  
  

+

  +

 
 
+  

 

Where 1 2 1 20 α α 1; , 02 .≤ < ∝ ∝ ≥+  
(3) Let 0x X∈  then by (1) there exists 1x X∈  such that 

1 0DPVx Cx=  and for 1x  there exists 2x X∈  such that 

2 1FKMx Ex=  and so on.continuing this process we 
candefine a sequence n{y }  in X such that  

 2n 1 2n 1 2n

2n 2n 2n 1

y DPVx Cx
y FKMx Exand

+ +

−

= =
= =

 

Then the sequence n{y }  is a Cauchy sequence in X. 
Proof: By condition (2) and (3), we have 

 ( ) ( )
( ) ( )

( ) ( )

2 2
2n 1 2n 2n 2n 1

2n 2n 2n 1 2n 1
1

2n 1 2n 2n 2n 1

2n 2n 2n 2n 1
2

2n 1 2n 1 2n 1 2n

1 2n 1 2n 2n 2n 1

[d(y , y )] [d(Cx ,Ex )]
d(Cx ,FKMx )d(Ex ,DPVx )

α
d(Ex ,FKMx )d(Cx ,DPVx )

d Cx ,FKMx d Cx ,DPVx
α

d Ex ,DPVx d Ex ,FKMx

α d y , y d y , y

+ −

− −

− −

−

− − −

+ −

=

 
≤  + +

 
 
  

=



+
+

+

2 2n 1 2n 2n 1 2n 1

0

α [d(y , y )d(y , y ) 0]+ + −

  
+ +

 

 
( ) ( )

2n 1 2n
2n 1 2n 1 2n 2n 1 2

2n 2n 1

2n 1 2n 2n 2n 1

d(y , y )
[d(y , y )] α d(y , y ) α

d(y , y )

d y , y pd y , y

+
+ −

−

+ −

 
≤ +  + 
≤  

 

1 2

2

α α
where p 1.

1 α
+

= <
−

 

Hence { }ny  is Cauchy sequence. 
Theorem 3.2: Let C, D, E, F, K, M, P and V be self maps 
of a complete metric space (X, d) satisfying the following 
conditions: 
(1) C(X) DPV(X) and E(X) FKM(X)⊆ ⊆  

(2) 
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2
1

2

d Cx,FKMx d Ey,DPVy
d Cx, Ey α

d Ey,FKMx d Cx,DPVy

d Cx,FKMx d Cx,DPVy
+α

d Ey,DPVy d Ey,FKMx

 
≤   +

 
 
+ 

 




  

Where 1 2 1 20 α α 1; , 02 .≤ < ∝ ∝ ≥+  
(3) Let 0x X∈  then by (1) there exists 1x X∈  such that 

1 0DPVx Cx=  and for 1x  there exists 2x X∈  such that 

2 1FKMx Ex=  and so on.continuing this process we 
candefine a sequence { }ny  in X such that 

 2n 1 2n 1 2n 2n 2n 2n 1y x Cx and y F .KMx ExDPV+ + −= = = =  

Then the sequence { }ny  is a Cauchy sequence in X. 
(4) One of C, E, FKM, DPV is continuous. 
(5) [C, FKM] and [E, DPV] are compatible of type (R) on 
X. 

Then C, D, E, F, K, M, P and V have a unique common 
fixed point in X. 

Proof: By lemma 3.1, { }ny  is Cauchy sequence. and 
since X is complete so there exists a point z X∈  such that 

nlim y z=  as n .∞→  
Consequently subsequences 2n 2n 2n 1, ,Cx FKMx Ex −  

and 2n 1DPVx +  converges to z. Let FKM be continuous. 
Since C and FKM are compatible of type (R) on X. Then 
by proposition 2.6, We have 2

2n(FKM) x FKMz→  and 

2n(C)(FKM)x FKMz→  as n .∞→  
Now by condition (2), we have 
( )[ ]

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )( )

2n 2n-1

2
2n 2n 2n-1 2n-1

1 2
2n-1 2n 2n 2n-1

2
2n 2n 2n 2n-1

2 2
2n-1 2n-1 2n-1 2n

d CFKMx , Ex

d CFKMx , FKM x d Ex , DPVx
α

d Ex , FKM x d CFKMx , DPVx

d CFKMx , FKM x d CFKMx , DPVx
α

d Ex , DPVx d Ex , FKM x

+

+

≤

+
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( )

( )( ) ( )

( )( ) ( )

( )( ) ( )

( ) ( )( )

2
2n 2n-1

2
2n 2n 2n 2n-1

1 2
2n 2n 2n-1 2n-1

2
2n 2n 2n 2n-1

2 2
2n 2n-1 2n 2n

d CFKMx , y

d CFKMx , FKM x d y , y
α

d y , FKM x d CFKMx , y

d CFKMx , FKM x d CFKMx , y
α

d y , y d y , FKM x

 
 
 


  

≤
+

 
 
 
+







+


 

Letting n ∞→ , we have 

 
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2
1

2

d FKMz,FKMz d z, z
D FKMz,z α

d z,FKMz d FKMz,z

d FKMz,FKMz d FKMz,z
α

d z, z d z,FKMz

 
≤   +

 
 
+


  

+
 

 

 
( ) ( ) ( )

( ) ( )

2
1

2 2
1

d FKMz,z α d z,FKMz d FKMz,z

d FKMz,z α d FKMz,z

 ≤   

≤   

 

Which is a contradiction. Hence 

 FKMz z=  (3.1) 
Now by putting x = z and 2n 1y=x −  in condition (2), 

then we have 

 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( )
( ) ( )
( ) ( )

2
2n 1

2n-1 2n-1
1

2n-1 2n-1

2n-1
2

2n-1 2n-1 2n-1
2

2n

2n 2n-1
1

2n 2n-1

2

d Cz,Ex

d Cz,FKMz d Ex ,DPVx
α

d Ex ,FKMz d Cz,DPVx

d Cz,FKMz d Cz,DPVx
α

d Ex ,DPVx d Ex ,FKMz

d Cz, y

d Cz,FKMz d y , y
α

d y ,FKMz d Cz, y

d C
α

−  

≤
+

 
 
+  

  

 
 
  

+

 
 
  

+

≤
+

( ) ( )
( ) ( )

2n-1

2n 2n-1 2n

z,FKMz d Cz, y

d y , y d y ,FKMz

 
 
+  

(3.2) 

Letting n ∞→ , we have 

 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

2
1

2

2
2

2 2
2

d Cz, z d z, z
d Cz, z α

d z, z d Cz, z

d Cz, z d CDz,z
α

d z, z d z, z

d Cz, z α d Cz, z d Cz, z

d Cz, z α d Cz, z

≤   +

 
 
+  

≤  

 
 
 



 

+

  

≤      

 

Which is a contradiction. Hence  

 Cz z.=  (3.3) 

Now since Cz z= , by condition (1) z DPV(X).∈  Also 
DPV is self map of X, so there exists a point u X∈  such 
that  

 z Cz DPVu.= =  (3.4) 

Moreover by putting Cz = z and 2n 1x u− =  in condition 
(3.2), we obtain 

 
( )

( ) ( )
( ) ( )
( ) ( )
( ) ( )

2
1

2

d z,FKMz d Eu,DPVu
d z,Eu α

d Eu,FKMz d z,DPVu

d z,FKMz d z,DPVu
α

d Eu,DPVu d Eu,FKMz

 
≤  


   +

 
 
+

+














 

 ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2
1

2

d z,Eu α d z, z d Eu, z d Eu, z d z, z

α d z, z d z, z d Eu, z d Eu, z

+   ≤   
++   

 

 ( ) ( )2 2
2d z,Eu α d z,Eu      ≤  

Which is a contradiction. 
Hence Eu = z, i.e., z = DPVu = Eu. 
By condition (5), we have  

 [d(DPV(Eu), E(DPVu))] = 0.  

Hence d(DPVz, Ez) = 0 i.e., DPVz = Ez.  
Now 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2 2

1

2

d z,DPVz d Cz,

d Cz,FKMz d ,DPVz
α

d ,FKMz d Cz,DPVz

d Cz,FKMz d Cz,DPV

Ez

Ez

E

z
α

d ,DPVz d ,FKMz

z

Ez Ez

   =

 
≤  

 

   

+

 
 
+

+






 

 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( )

2
1

2

2
1

2
1

2

d z, z d DPV ,DPVz
d z,DPVz α

d DPVz,z d z,DPVz

d z, z d z,DPVz
α

d DPVz,DPVz d DPVz,z

d z,DPVz α d DPVz,z d z,DPVz

d z,DPVz α d z,DP z

z

V

 
≤  

  

+

≤   

≤

   +

 
 
+  

  

    

 

Which is a contradiction.  

 Hence z = DPVz, i.e., z = DPVz = Ez.  (3.5) 

Now to prove Vz = z, put x = z and y = Vz in (1) and 
using (3.1), (3.3) and (3.5), we have  

 

( )( )
( )( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )( )

( ) ( )( ) ( )( )

2

1

2

d Cz,E Vz

d Cz,FKM Vz d Vz ,DPV Vz
α

d Vz ,FKMz d Cz,DPV Vz

d Cz,FKMz d C

E

z,DPV Vz
α

d Vz ,DPV Vz d Vz ,FKME z

E

E

 
 
 

  

≤
+

 
 




+
+ 

 

 

( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2

1

2
2

1
2

d z,Vz

α d z,Vz d Vz,Vz d Vz, z d z,Vz

α d z, z d z,Vz d Vz,Vz d Vz, z

d z,Vz α d z,Vz

  
≤ +

+ 

 



≤


+
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Which is a contradiction. 
Hence z = Vz. Since DPVz = z, implies that DPz = z. 
Now to prove Pz = z, put x = z and y = Pz in (1) and 

using (3.1), (3.3) and (3.5), we have  

 

( )( )
( )( ) ( ) ( )( )

( )( ) ( )( )
( ) ( )( )

( ) ( )( ) ( )( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2

1

2

2

1

2
2 2

1

d Cz,E Pz

d Cz,FKM Pz d Pz ,DPV Pz
α

d Pz ,FKMz d Cz,DPV Pz

d Cz,FKMz d Cz,DPV Pz
α

d Pz ,DPV Pz d Pz ,FKMz

d z,Pz

α d z,Pz d Pz,Pz d Pz, z d z,Pz

α d z, z d z,Pz d Pz,Pz d Pz, z

d z,Pz α d z

E

E

E E

,Pz

  

≤
+

 
 
 + 

  
≤ +

+

 
 
  

+

  
  +

    ≤

 

Which is a contradiction. 
Hence Pz = z. Since DPz = z, implies that Dz = z. 
Now to prove Mz = z, put x = Mz and y = z in (1) and 

using (3.1), (3.3) and (3.5), we have  

 

( )
( ) ( )( ) ( )

( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )
( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

2

1

2

2

1

2
2 2

1

[d(C Mz ,Ez)]

d C Mz ,FKM Mz d z,DPVz
α

d z,FKM Mz d C Mz ,DPVz

d C Mz ,FKM Mz d C Mz ,DPVz
α

d z,DPVz d z,FKM Mz

d Mz,z

α d Mz,Mz d z, z d z,Mz d Mz,z

α d Mz,Mz d Mz,z d z, z d z,Mz

d Mz,z α d Mz

E

E

E

,z

E

 
 
  

+

 

≤
+

 
 
 + 

  
≤ +

+  

≤     





+

 

Which is a contradiction. 
Hence Mz = z. Since FKMz = z, implies that FKz = z. 
Now to prove Kz = z, put x = Kz and y = z in (1) and 

using (3.1), (3.3) and (3.5), we have  

 

( )
( ) ( )( ) ( )

( )( ) ( )( )
( ) ( )( ) ( )( )

( ) ( )( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

2

1

2

2

1

2
2

1

[d(C Kz ,Ez)]

d C Kz ,FKM Kz d z,DPVz
α

d z,FKM Kz d C Kz ,DPVz

d C Kz ,FKM Kz d C Kz ,DPVz
α

d z,DPVz d z,FKM Kz

[d(Kz, z)]

α d Kz,Kz d z, z d z,Kz d Kz, z

α d Kz,Kz d Kz, z d z, z d z,Kz

d Mz,z α d Kz, z d z,Kz

E

E

E E

≤
+

 
 
 + 

≤ +

+  

≤ 

 
 
  

+

 




+

  

( ) ( )2 2
1d Mz,z α d Kz, z



≤      

 

Which is a contradiction. 
Hence Kz = z. Since FKz =z, implies that Fz = z.Thus 

Cz = Dz = Ez = Fz = Kz = Mz = Pz = Vz = z. Therefore z 

is common fixed point of C, D, E, F, K, M, P and V. 
Similarly we can prove this any one of C, D, E, F, P and V 
is continuous.  

4. Uniqueness  
Suppose w be another common fixed point of C, D, E, 

F, K. M, P and V. Then we have  

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( )

( )

2 2

1

2

2

1

2
2

1
2

d z, w d Cz,Ew

d Cz,FKMz d Ew,DPVw
α

d w,FKMz d Cz,DPVw

d Cz,FKMz d Cz,DPVw
α

d w,DPVw d w,FKMz

[d(z, w)]

α d z, z d w, w d w,z d z, w

α d z, z d z, w d w, w d w,z

d z, w α d z, w d z, w

d z, w

E

E E

 
 
  

+

  

=      

≤
+

 
 
+  

≤ +

+  

≤      

≤ 

+

 ( ) 2
1α d z, w  

 

Which is a contradiction. 
Hence z = w. Therefore z is a unique common fixed 

point of C, D, E, F, K, M, P and V. 
Corollary: Let C, D, E, K, M and V be self maps of a 
complete metric space (X, d) satisfying the following 
conditions:  
(1) C(X) DV(X) E(X) KM(X)and⊆ ⊆  

(2) 

( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

1

2

d Cx,Ey

d Cx,KMx d Ey,DPVy
α

d ,KMxEy

E E

d Cx,DVy

d Cx,KMx d Cx,DVy
α

d y,Vy d y,KMx

 
 
 

  

≤
+

 
 
+



 
+



 

Where 1 2 1 20 α α 1; , 02 .≤ < ∝ ∝ ≥+  
(3) Let 0x X∈  then by (1) there exists 1x X∈  such that 

1 0DVx Cx=  and for 1x  there exists 2x X∈  such that 

2 1KMx Ex=  and so on.continuing this process we 
candefine a sequence n{y }  in X such that  

 2n 1 2n 1 2n

2n 2n 2n 1

y DVx Cx
y KMx Ex .and

+ +

−

= =
= =

 

Then the sequence n{y }  is a Cauchy sequence in X. 
(4) One of C, E, KM, DV is continuous. 
(5) [C, KM] and [E, DV] are compatible of type (R) on X. 

Then C, D, E, K, M and V have a unique common fixed 
point in X.  

5. Conclusion 
In this paper, we have presented common fixed point 

theorem for eight mappings in metric spaces through 
concept of compatibility. 
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