Common Fixed Point Theorem of Comatible Mappings in Metric Space

R K Gujetiya¹, Mala Hakwadiya^{2,*}, Dheeraj Kumari Mali²

¹Department of Mathematics, Govt. P. G. College, Neemuch, India ²Pacific Academy of Higher Education, and Research University Udaipur, Rajasthan, India *Corresponding author: manuvi9the@gmail.com

Received June 23, 2014; Revised July 19, 2014; Accepted July 24, 2014

Abstract In this paper we prove a common fixed point theorem of compatible mappings of type (R). Our result modify the result of M. Koireng Meitei [4].

Keywords: fixed point, complete metric space, compatible mappings

Cite This Article: R K Gujetiya, Mala Hakwadiya, and Dheeraj Kumari Mali, "Common Fixed Point Theorem of Comatible Mappings in Metric Space." *American Journal of Applied Mathematics and Statistics*, vol. 2, no. 4 (2014): 207-211. doi: 10.12691/ajams-2-4-5.

1. Introduction

The first important result in the theory of fixed point of compatible mappings was obtained by Gerald Jugck in 1986 [2] as a generalization of commuting mappings. Pathak, Chang and Cho [3] in 1994 introduced the concept of compatible mappings of type(P). In 2004 Rohen, Singh and shambhu [5] introduced the concept of compatible mappings of type(R) by combining the definitions of compatible mappings and compatible mappings of type(P). The aim of this paper is to prove a common fixed point theorem of compatible mappings of type(R) in metric space by considering eight self mappings.

2. Preliminaries

Definition 2.1: [2] A metric space is given by a set X and a distance function $d: X \times X \rightarrow \mathbb{R}$ such that

(i) (Positivity) For all $x, y \in X, 0 \le d(x, y)$.

(ii) (Non-degenerated) For all $x, y \in X$,

$$0 = d(x, y) \Leftrightarrow x = y.$$

(iii) (Symmetry) For all $x, y \in X$,

d(x, y) = d(y, x).

(iv) (Triangle inequality) For all $x, y, z \in X$,

$$d(x, y) \le d(x, z) + d(z, y).$$

Definition 2.2: [4] Let S and T be mappings from a complete metric space X into itself. The mappings S and T are said to be compatible if $\lim_{n\to\infty} d(STx_n, TSx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that $\lim_{n\to\infty} Tx_n = \lim_{n\to\infty} Sx_n = t$ for some $t \in X$.

Definition 2.3: [4] Let S and T be mappings from a complete metric space X into itself. The mappings S and T are said to be compatible of type (P) if $\lim_{n\to\infty} d(SSx_n, TTx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that for $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some $t \in X$.

Definition 2.4: [4] Let S and T be mappings from a complete metric space X into itself. The mappings S and T are said to be compatible of type (R) if $\lim_{n\to\infty} d(STx_n, TSx_n) = 0$ and $\lim_{n\to\infty} d(SSx_n, TTx_n) = 0$ whenever $\{x_n\}$ is a sequence in X such that for $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = t$ for some $t \in X$.

Proposition 2.5. [4] Let S and T be mappings from a complete metric space (X, d) into itself. If a pair {S, T} is compatible of type (R) on X and Sz = Tz for $z \in X$, Then STz = TSz = SSz = TTz.

Proposition 2.6. [4] Let S and T be mappings from a complete metric space (X, d) into itself. If a pair {S, T} is compatible of type (R) on X and $\lim_{n\to\infty} Sx_n = \lim_{n\to\infty} Tx_n = z$ for some $z \in X$, then we have

(i) $d(TSx_n, Sz) \rightarrow 0$ as $n \rightarrow \infty$ if S is continuous,

(ii) $d(STx_n, Tz) \rightarrow 0$ as $n \rightarrow \infty$ if T is continuous and

(iii) STz = TSz and Sz = Tz if S and T are continuous at z. Lemma 2.7. [4] Let A, B, S and T be mapping from a metric space(X, d) into itself satisfying the following conditions:

(1)
$$A(X) \subseteq T(X)$$
 and $B(X) \subseteq S(X)$

$$\begin{bmatrix} d(Ax, By) \end{bmatrix}^2 \le k_1 \begin{bmatrix} d(Ax, Sx)d(By, Ty) \\ +d(By, Sx)d(Ax, Ty) \end{bmatrix}$$

$$+ k_2 \begin{bmatrix} d(Ax, Sx)d(Ax, Ty) \\ +d(By, Ty)d(By, Sx) \end{bmatrix}$$

Where $0 \le k_1 + 2k_2 < 1; k_1, k_2 \ge 0.$

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $Tx_1 = Ax_0$ and for x_1 there exists $x_2 \in X$ such that $Sx_2 = Bx_1$ and so on. Continuing this process we can define a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = Tx_{2n+1} = Ax_{2n}$$

and $y_{2n} = Sx_{2n} = Bx_{2n-1}$.

Then the sequence $\{y_n\}$ is Cauchy sequence in X.

Theorem: [4] Let A, B, S and T be mapping from a metric space (X, d) into itself satisfying the following conditions:

(1)
$$A(X) \subseteq T(X)$$
 and $B(X) \subseteq S(X)$

$$\begin{bmatrix} d(Ax, By) \end{bmatrix}^2 \le k_1 \begin{bmatrix} d(Ax, Sx)d(By, Ty) \\ +d(By, Sx)d(Ax, Ty) \end{bmatrix}$$

$$+ k_2 \begin{bmatrix} d(Ax, Sx)d(Ax, Ty) \\ +d(By, Ty)d(By, Sx) \end{bmatrix}$$

Where $0 \le k_1 + 2k_2 < 1; k_1, k_2 \ge 0.$

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $Tx_1 = Ax_0$ and for x_1 there exists $x_2 \in X$ such that $Sx_2 = Bx_1$ and so on. Continuing this process we can define a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = Tx_{2n+1} = Ax_{2n}$$

and $y_{2n} = Sx_{2n} = Bx_{2n-1}$.

Then the sequence $\{y_n\}$ is Cauchy sequence in X.

(4) One of A, B, S or T is continuous.

(5) [A, S] and [B, T] are compatible of type (R) on X. Then A, B, S and T have a unique common fixed point in X.

3. Main Result

Lemma 3.1: Let C, D, E, F, K, M, P and V be self maps of a complete metric space (X, d) satisfying the following conditions:

(1) $C(X) \subseteq DPV(X)$ and $E(X) \subseteq FKM(X)$

(2)
$$\left[d(Cx, Ey) \right]^{2} \leq \alpha_{1} \left[d(Cx, FKMx) d(Ey, DPVy) + d(Ey, FKMx) d(Cx, DPVy) + d(Ey, FKMx) d(Cx, DPVy) + \alpha_{2} \left[d(Cx, FKMx) d(Cx, DPVy) + d(Ey, DPVy) d(Ey, FKMx) \right] \right]$$

Where $0 \le \alpha_1 + 2\alpha_2 < 1; \alpha_1, \alpha_2 \ge 0.$

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $DPVx_1 = Cx_0$ and for x_1 there exists $x_2 \in X$ such that $FKMx_2 = Ex_1$ and so on continuing this process we candefine a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = DPVx_{2n+1} = Cx_{2n}$$

and $y_{2n} = FKMx_{2n} = Ex_{2n-1}$

Then the sequence $\{y_n\}$ is a Cauchy sequence in X. **Proof:** By condition (2) and (3), we have

Hence $\{y_n\}$ is Cauchy sequence.

Theorem 3.2: Let C, D, E, F, K, M, P and V be self maps of a complete metric space (X, d) satisfying the following conditions: (1) $C(X) \subset DPV(X)$ and $E(X) \subset FKM(X)$

(1)
$$C(R) \subseteq DI^{*}(R)^{*}$$
 and $D(R) \subseteq IIRR(R)^{*}$
(2) $\begin{bmatrix} d(Cx, Ey) \end{bmatrix}^{2} \leq \alpha_{1} \begin{bmatrix} d(Cx, FKMx) d(Ey, DPVy) \\ +d(Ey, FKMx) d(Cx, DPVy) \end{bmatrix}$
 $+\alpha_{2} \begin{bmatrix} d(Cx, FKMx) d(Cx, DPVy) \\ +d(Ey, DPVy) d(Ey, FKMx) \end{bmatrix}$

Where $0 \le \alpha_1 + 2\alpha_2 < 1$; $\infty_1, \infty_2 \ge 0$.

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $DPVx_1 = Cx_0$ and for x_1 there exists $x_2 \in X$ such that $FKMx_2 = Ex_1$ and so on continuing this process we candefine a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = DPVx_{2n+1} = Cx_{2n}$$
 and $y_{2n} = FKMx_{2n} = Ex_{2n-1}$.

Then the sequence $\{y_n\}$ is a Cauchy sequence in X.

(4) One of C, E, FKM, DPV is continuous.

(5) [C, FKM] and [E, DPV] are compatible of type (R) on X.

Then C, D, E, F, K, M, P and V have a unique common fixed point in X.

Proof: By lemma 3.1, $\{y_n\}$ is Cauchy sequence. and since X is complete so there exists a point $z \in X$ such that $\lim y_n = z$ as $n \to \infty$.

Consequently subsequences Cx_{2n} , $FKMx_{2n}$, Ex_{2n-1} and $DPVx_{2n+1}$ converges to z. Let FKM be continuous. Since C and FKM are compatible of type (R) on X. Then by proposition 2.6, We have $(FKM)^2x_{2n} \rightarrow FKMz$ and $(C)(FKM)x_{2n} \rightarrow FKMz$ as $n \rightarrow \infty$.

Now by condition (2), we have

 $\left[d\left(CFKMx_{2n}, Ex_{2n-1}\right)\right]$

$$\leq \alpha_{1} \begin{bmatrix} d \Big(CFKMx_{2n}, (FKM)^{2} x_{2n} \Big) d \Big(Ex_{2n-1}, DPVx_{2n-1} \Big) \\ + d \Big(Ex_{2n-1}, (FKM)^{2} x_{2n} \Big) d \Big(CFKMx_{2n}, DPVx_{2n-1} \Big) \end{bmatrix} \\ + \alpha_{2} \begin{bmatrix} d \Big(CFKMx_{2n}, (FKM)^{2} x_{2n} \Big) d \Big(CFKMx_{2n}, DPVx_{2n-1} \Big) \\ + d \Big(Ex_{2n-1}, DPVx_{2n-1} \Big) d \Big(Ex_{2n-1}, (FKM)^{2} x_{2n} \Big) \end{bmatrix}$$

$$\begin{split} & \left[d \Big(CFKMx_{2n}, y_{2n-1} \Big) \right]^2 \\ & \leq \alpha_1 \Biggl[\frac{d \Big(CFKMx_{2n}, (FKM)^2 x_{2n} \Big) d \Big(y_{2n}, y_{2n-1} \Big) \\ & + d \Big(y_{2n}, (FKM)^2 x_{2n} \Big) d \big(CFKMx_{2n-1}, y_{2n-1} \Big) \Biggr] \\ & + \alpha_2 \Biggl[\frac{d \Big(CFKMx_{2n}, (FKM)^2 x_{2n} \Big) d \big(CFKMx_{2n}, y_{2n-1} \Big) \\ & + d \big(y_{2n}, y_{2n-1} \big) d \Big(y_{2n}, (FKM)^2 x_{2n} \Big) \Biggr] \end{split}$$

Letting $n \to \infty$, we have

$$\begin{split} \left[D(FKMz,z) \right]^2 &\leq \alpha_1 \begin{bmatrix} d(FKMz,FKMz)d(z,z) \\ +d(z,FKMz)d(FKMz,z) \end{bmatrix} \\ &+ \alpha_2 \begin{bmatrix} d(FKMz,FKMz)d(FKMz,z) \\ +d(z,z)d(z,FKMz) \end{bmatrix} \\ \begin{bmatrix} d(FKMz,z) \end{bmatrix}^2 &\leq \alpha_1 \begin{bmatrix} d(z,FKMz)d(FKMz,z) \end{bmatrix} \\ \begin{bmatrix} d(FKMz,z) \end{bmatrix}^2 &\leq \alpha_1 \begin{bmatrix} d(z,FKMz)d(FKMz,z) \end{bmatrix} \end{split}$$

Which is a contradiction. Hence

$$FKMz = z \tag{3.1}$$

Now by putting x = z and $y=x_{2n-1}$ in condition (2), then we have

$$\begin{split} & \left[d(Cz, Ex_{2n-1}) \right]^2 \\ & \leq \alpha_1 \begin{bmatrix} d(Cz, FKMz) d(Ex_{2n-1}, DPVx_{2n-1}) \\ & + d(Ex_{2n-1}, FKMz) d(Cz, DPVx_{2n-1}) \\ & + \alpha_2 \begin{bmatrix} d(Cz, FKMz) d(Cz, DPVx_{2n-1}) \\ & + d(Ex_{2n-1}, DPVx_{2n-1}) d(Ex_{2n-1}, FKMz) \end{bmatrix} \\ & \left[d(Cz, y_{2n}) \right]^2 \\ & \leq \alpha_1 \begin{bmatrix} d(Cz, FKMz) d(y_{2n}, y_{2n-1}) \\ & + d(y_{2n}, FKMz) d(Cz, y_{2n-1}) \\ & + d(y_{2n}, FKMz) d(Cz, y_{2n-1}) \\ & + d(y_{2n}, y_{2n-1}) d(y_{2n}, FKMz) \end{bmatrix} \end{split}$$

Letting $n \to \infty$, we have

$$\begin{bmatrix} d(Cz,z) \end{bmatrix}^2 \leq \alpha_1 \begin{bmatrix} d(Cz,z)d(z,z) \\ +d(z,z)d(Cz,z) \end{bmatrix} + \alpha_2 \begin{bmatrix} d(Cz,z)d(CDz,z) \\ +d(z,z)d(z,z) \end{bmatrix} \\ \begin{bmatrix} d(Cz,z) \end{bmatrix}^2 \leq \alpha_2 \begin{bmatrix} d(Cz,z)d(Cz,z) \end{bmatrix} \\ \begin{bmatrix} d(Cz,z) \end{bmatrix}^2 \leq \alpha_2 \begin{bmatrix} d(Cz,z) \end{bmatrix}^2$$

Which is a contradiction. Hence

$$Cz = z.$$
 (3.3)

Now since Cz = z, by condition (1) $z \in DPV(X)$. Also DPV is self map of X, so there exists a point $u \in X$ such that

$$z = Cz = DPVu. (3.4)$$

Moreover by putting Cz = z and $x_{2n-1} = u$ in condition (3.2), we obtain

$$\begin{split} \left[d(z,Eu)\right]^2 &\leq \alpha_1 \begin{bmatrix} d(z,FKMz)d(Eu,DPVu) \\ +d(Eu,FKMz)d(z,DPVu) \end{bmatrix} \\ &+ \alpha_2 \begin{bmatrix} d(z,FKMz)d(z,DPVu) \\ +d(Eu,DPVu)d(Eu,FKMz) \end{bmatrix} \\ \left[d(z,Eu)\right]^2 &\leq \alpha_1 \left[d(z,z)d(Eu,z)+d(Eu,z)d(z,z)\right] \\ &+ \alpha_2 \left[d(z,z)d(z,z)+d(Eu,z)d(Eu,z)\right] \\ &\left[d(z,Eu)\right]^2 &\leq \alpha_2 \left[d(z,Eu)\right]^2 \end{split}$$

Which is a contradiction. Hence Eu = z, i.e., z = DPVu = Eu. By condition (5), we have

$$[d(DPV(Eu), E(DPVu))] = 0.$$

Hence d(DPVz, Ez) = 0 i.e., DPVz = Ez. Now

$$\begin{split} \left[d(z, DPVz) \right]^2 &= \left[d(Cz, Ez) \right]^2 \\ &\leq \alpha_1 \begin{bmatrix} d(Cz, FKMz) d(Ez, DPVz) \\ +d(Ez, FKMz) d(Cz, DPVz) \\ +\alpha_2 \begin{bmatrix} d(Cz, FKMz) d(Cz, DPVz) \\ +d(Ez, DPVz) d(Ez, FKMz) \end{bmatrix} \\ \left[d(z, DPVz) \right]^2 &\leq \alpha_1 \begin{bmatrix} d(z, z) d(DPVz, DPVz) \\ +d(DPVz, z) d(z, DPVz) \\ +d(DPVz, DPVz) d(DPVz, z) \end{bmatrix} \\ \left[d(z, DPVz) \right]^2 &\leq \alpha_1 \begin{bmatrix} d(DPVz, z) d(z, DPVz) \\ +d(DPVz, DPVz) d(DPVz, z) \end{bmatrix} \\ \left[d(z, DPVz) \right]^2 &\leq \alpha_1 \begin{bmatrix} d(DPVz, z) d(z, DPVz) \end{bmatrix} \\ \begin{bmatrix} d(z, DPVz) \end{bmatrix}^2 &\leq \alpha_1 \begin{bmatrix} d(DPVz, z) d(z, DPVz) \end{bmatrix} \end{split}$$

Which is a contradiction.

Hence
$$z = DPVz$$
, i.e., $z = DPVz = Ez$. (3.5)

Now to prove Vz = z, put x = z and y = Vz in (1) and using (3.1), (3.3) and (3.5), we have

$$\begin{split} & \left[d\big(Cz, E\big(Vz\big)\big) \right]^2 \\ & \leq \alpha_1 \begin{bmatrix} d\big(Cz, FKM\big(Vz\big)\big)d\big(E\big(Vz\big), DPV\big(Vz\big)\big) \\ & + d\big(E\big(Vz\big), FKMz\big)d\big(Cz, DPV\big(Vz\big)\big) \\ & + \alpha_2 \begin{bmatrix} d\big(Cz, FKMz\big)d\big(Cz, DPV\big(Vz\big)\big) \\ & + d\big(E\big(Vz\big), DPV\big(Vz\big)\big)d\big(E\big(Vz\big), FKMz\big) \end{bmatrix} \\ & \left[d\big(z, Vz\big) \right]^2 \\ & \leq \alpha_1 \Big[d\big(z, Vz\big)d\big(Vz, Vz\big) + d\big(Vz, z\big)d\big(z, Vz\big) \Big] \\ & + \alpha_2 \Big[d\big(z, z\big)d\big(z, Vz\big) + d\big(Vz, Vz\big)d\big(Vz, z\big) \Big] \\ & + \alpha_2 \Big[d\big(z, Vz\big) \Big]^2 \leq \alpha_1 \Big[d\big(z, Vz\big) \Big]^2 \end{split}$$

Which is a contradiction.

Hence z = Vz. Since DPVz = z, implies that DPz = z. Now to prove Pz = z, put x = z and y = Pz in (1) and using (3.1), (3.3) and (3.5), we have

$$\begin{split} & \left[d(Cz, E(Pz)) \right]^2 \\ & \leq \alpha_1 \begin{bmatrix} d(Cz, FKM(Pz)) d(E(Pz), DPV(Pz)) \\ & + d(E(Pz), FKMz) d(Cz, DPV(Pz)) \end{bmatrix} \\ & + \alpha_2 \begin{bmatrix} d(Cz, FKMz) d(Cz, DPV(Pz)) \\ & + d(E(Pz), DPV(Pz)) d(E(Pz), FKMz) \end{bmatrix} \\ & \left[d(z, Pz) \right]^2 \\ & \leq \alpha_1 \left[d(z, Pz) d(Pz, Pz) + d(Pz, z) d(z, Pz) \right] \\ & + \alpha_2 \left[d(z, z) d(z, Pz) + d(Pz, Pz) d(Pz, z) \right] \\ & \left[d(z, Pz) \right]^2 \leq \alpha_1 \left[d(z, Pz) \right]^2 \end{split}$$

Which is a contradiction.

Hence Pz = z. Since DPz = z, implies that Dz = z. Now to prove Mz = z, put x = Mz and y = z in (1) and using (3.1), (3.3) and (3.5), we have

$$\begin{split} & [d(C(Mz), Ez)]^2 \\ & \leq \alpha_1 \Biggl[\frac{d(C(Mz), FKM(Mz))d(Ez, DPVz)}{+d(Ez, FKM(Mz))d(C(Mz), DPVz)} \Biggr] \\ & + \alpha_2 \Biggl[\frac{d(C(Mz), FKM(Mz))d(C(Mz), DPVz)}{+d(Ez, DPVz)d(Ez, FKM(Mz))} \Biggr] \\ & \left[\frac{d(Mz, z)}{2} \Biggr]^2 \\ & \leq \alpha_1 \Biggl[\frac{d(Mz, Mz)d(z, z) + d(z, Mz)d(Mz, z)}{+\alpha_2 \Bigl[\frac{d(Mz, Mz)d(Mz, z) + d(z, z)d(z, Mz)}{+\alpha_2 \Bigl]} \Biggr] \\ & \left[\frac{d(Mz, z)}{2} \Biggr]^2 \le \alpha_1 \Biggl[\frac{d(Mz, z)}{2} \Biggr]^2 \end{split}$$

Which is a contradiction.

Hence Mz = z. Since FKMz = z, implies that FKz = z. Now to prove Kz = z, put x = Kz and y = z in (1) and using (3.1), (3.3) and (3.5), we have

$$\begin{split} & [d(C(Kz),Ez)]^2 \\ &\leq \alpha_1 \Bigg[\frac{d(C(Kz),FKM(Kz))d(Ez,DPVz)}{+d(Ez,FKM(Kz))d(C(Kz),DPVz)} \Bigg] \\ &\quad + \alpha_2 \Bigg[\frac{d(C(Kz),FKM(Kz))d(C(Kz),DPVz)}{+d(Ez,DPVz)d(Ez,FKM(Kz))} \Bigg] \\ & [d(Kz,z)]^2 \\ &\leq \alpha_1 \Big[d(Kz,Kz)d(z,z) + d(z,Kz)d(Kz,z) \Big] \\ &\quad + \alpha_2 \Big[d(Kz,Kz)d(Kz,z) + d(z,Z)d(z,Kz) \Big] \\ & [d(Mz,z)]^2 \leq \alpha_1 \Big[d(Kz,z)d(z,Kz) \Big] \\ & [d(Mz,z)]^2 \leq \alpha_1 \Big[d(Kz,z) \Big]^2 \end{split}$$

Which is a contradiction.

Hence Kz = z. Since FKz = z, implies that Fz = z. Thus Cz = Dz = Ez = Fz = Kz = Mz = Pz = Vz = z. Therefore z

is common fixed point of C, D, E, F, K, M, P and V. Similarly we can prove this any one of C, D, E, F, P and V is continuous.

4. Uniqueness

Suppose w be another common fixed point of C, D, E, F, K. M, P and V. Then we have

$$\begin{bmatrix} d(z,w) \end{bmatrix}^2 = \begin{bmatrix} d(Cz,Ew) \end{bmatrix}^2$$

$$\leq \alpha_1 \begin{bmatrix} d(Cz,FKMz)d(Ew,DPVw) \\ +d(Ew,FKMz)d(Cz,DPVw) \end{bmatrix}$$

$$+ \alpha_2 \begin{bmatrix} d(Cz,FKMz)d(Cz,DPVw) \\ +d(Ew,DPVw)d(Ew,FKMz) \end{bmatrix}$$

$$\begin{bmatrix} d(z,w) \end{bmatrix}^2$$

$$\leq \alpha_1 \begin{bmatrix} d(z,z)d(w,w) + d(w,z)d(z,w) \end{bmatrix}$$

$$+ \alpha_2 \begin{bmatrix} d(z,z)d(x,w) + d(w,w)d(w,z) \end{bmatrix}$$

$$\begin{bmatrix} d(z,w) \end{bmatrix}^2 \leq \alpha_1 \begin{bmatrix} d(z,w)d(z,w) \end{bmatrix}$$

$$\begin{bmatrix} d(z,w) \end{bmatrix}^2 \leq \alpha_1 \begin{bmatrix} d(z,w)d(z,w) \end{bmatrix}$$

Which is a contradiction.

Hence z = w. Therefore z is a unique common fixed point of C, D, E, F, K, M, P and V.

Corollary: Let C, D, E, K, M and V be self maps of a complete metric space (X, d) satisfying the following conditions:

(1)
$$C(X) \subseteq DV(X)$$
 and $E(X) \subseteq KM(X)$
 $\left[d(Cx, Ey)\right]^{2}$
(2) $\leq \alpha_{1} \left[d(Cx, KMx)d(Ey, DPVy) + d(Ey, KMx)d(Cx, DVy)\right]$
 $+ \alpha_{2} \left[d(Cx, KMx)d(Cx, DVy) + d(Ey, Vy)d(Ey, KMx)\right]$

Where $0 \le \alpha_1 + 2\alpha_2 < 1$; $\infty_1, \infty_2 \ge 0$.

(3) Let $x_0 \in X$ then by (1) there exists $x_1 \in X$ such that $DVx_1 = Cx_0$ and for x_1 there exists $x_2 \in X$ such that $KMx_2 = Ex_1$ and so on continuing this process we candefine a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = DVx_{2n+1} = Cx_{2n}$$

and $y_{2n} = KMx_{2n} = Ex_{2n-1}$.

Then the sequence $\{y_n\}$ is a Cauchy sequence in X. (4) One of C, E, KM, DV is continuous.

(5) [C, KM] and [E, DV] are compatible of type (R) on X.

Then C, D, E, K, M and V have a unique common fixed point in X.

5. Conclusion

In this paper, we have presented common fixed point theorem for eight mappings in metric spaces through concept of compatibility.

Acknowledgement

The Authors are thankful to the anonymous referees for his valuable suggestions for the improvement of this paper.

References

- Singh, B. and Chauhan, M.S., "On common fixed points of four mappings", *Bull. Cal. Math. Soc.*, 88, 451-456, 1996.
- [2] Jungck, G. "Compatible maps and common fixed points", Inter. J. Math. And Math. Sci., 9, 771-779, 1986.
- [3] Pathak, H.K., Chang, S.S. and Cho, Y.J., "Fixed point theorem for compatible mappings of type (P)", *Indian J. Math.* 36(2), 151-166, 1994.
- [4] Koireng Meitei, M., Ningombam, L. and Rohen, Y. "common fixed point theorem of compatible mappings of type(R)", *Gen.Math. Notes*, 10(1), 58-62, May 2012.
- [5] Rohen, Y., Singh, M.R. and Shambhu, L., "Common fixed points of compatible mapping of type (C) in Banach Spaces", *Proc. of Math.Soc.*, 11(2), 42-50, 2011.