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Abstract  We study A-Optimal Split Plot designs for the maximum likelihood estimators of variance components. 
The work used the general linear model with one whole plot factor and one sub-plot factor and assumed that both 
factor effects are random variables. Candidates designs with the same number and sizes of whole plot were assigned 
to the level of the whole plot factor in such a way that formed a balanced one way design. Using the variances of the 
maximum likelihood estimator of the variance components, candidates designs were compared for A- optimality. 
The work introduced a method of classifying the five variance components to make comparison and presentation 
meaningful. The resulting optimal designs depend on the true proportional value of the variance components. 
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1. Introduction 
Optimal designs for variance components model have 

been discussed fairly in experiment that are ran in a 
completely random order. For the one way model 
Hammersly (1949), Crump (1954), Anderson& Crump 
(1967) were some of the earliest authors. Hammersly 
(1949) showed that for a fixed N, the variance )( 2

ασVar  
is minimized by allocating an equal number n, of 

observation to each class where 
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this formula may not yield an integer value, it was 
suggested that the closest integer value for n be chosen. 
Crump (1954) and Anderson & Crump (1967) showed 
that for fixed K and N, )( 2
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Other authors are Kussmaul & Anderson (1967), 
Thompson and Anderson (1975), Herrendofer (1979), 
Murkerjue &Huda (1988), Giovagnoli & Sebastiani 
(1989), Norell (2006). Norell (2006) studied design effect 
for the one way random model of the maximum likelihood 
estimators. 

The construction of optimal design for the two way 
crossed models seems to have been considered first by 
Gaylor (1960). He considered the problem of optimal 

designs to estimate variance components using the fitting 
constant method of estimation of variance components for 
the unbalanced data. Bush (1962) and Bush and Anderson 
(1963), HIrotsu(1966), Mostafa (1967) are some of the 
other contributors to the designing experiment using the 
two way random model 
Some pioneering articles that address the problem of 
estimating variance components in a nested classification 
are Bainbridge (1965) Prairie (1962), Prairie and 
Anderson (1962), Bainbridge (1965), they proposed 
designs that systematically spread the information in the 
experiment more equally among the variance components. 
Goldsmith and Gaylor (1970) carried out extensive 
investigation on optimal designs for estimating variance 
components in a completely random nested classification. 
Delgado (1999) defined a class of unbalanced design for 
estimating variance components in the three stage nested 
classification using the ANOVA method of estimation. 

Loeza-Serrano. S and A. Donev (2012) constructed D- 
optimal design for variance components estimation in a 
three stage crossed and nested classification. 

For experiments that include both crossed and nested 
factor in the same model, no assumption of a complete 
random model has been made. Work that design 
experiment for variance components estimation are based 
on the linear mixed effect model. Beverly (1981), 
Ankenman, Liu, Karr, and Picka (2001) and Aviles and 
Pinheiro (2001) are authors that have published work. 
However experiments that complete randomization of 
order of runs is not feasible or might be too expensive to 
use is performed using split plot models. 
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1.1. Split Plot Design 
Split plot designs originally developed by Fisher (1925) 

for use in agricultural experiments are basically the 
modified form of randomized block designs. These 
designs are used in situations where complete 
randomization of runs within block is not possible. These 
designs are used widely in industrial experiments, 
experiments where one set of factors may require a large 
amount of experimental materials(Whole Plot factors) 
while another set of factors might be applied to smaller 
experimental materials (Sub Plot factors). Another 
situation that leads to the use of split plot designs in 
industrial experiments is when there exist one or more 
factors called hard to change factors that are expensive or 
time consuming to change level settings (WP factors) and 
the other factors (SP factors) whose level settings are 
easier to change are called Easy to change factors. 

In general split plot design can be used for any 
experimental situation that involves two different types of 
experimental unit (large and small) randomly assigned 
independently at the two different level 

The optimal design for split-plot experiments has 
received attention by Goos and Vandebroek (2001b, 
2003a, 2004). The work was based on a more complex 
design structure that used the first and second order 
polynomial model to represent the response, but in general 
the work used a linear mixed effect model which assumed 
fixed effects for the settings of the whole plot factors and 
sub-plot factors and two variance components associated 
with the whole plot errors and sub-plot errors. 

The study constructed A- optimal designs for maximum 
likelihood estimators in a split plot experiment with one 
whole plot (WP factors) and one sub plot (SP factor) with 
the assumption of random effect for both factors. 

2. Model and Variance Structure 
The model equation for the split plot design with one 

WP factor (Factor A) and one SP factor (Factor B) can be 
written as 
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ir is the number of whole plot at thi  level of factor A, 

but rrrr a === .....21  since equal number of whole 
plot are allocated to whole plot factor A. There are ar  
whole plot of equal sizes available. 

ijky is the response at the thk  replicate of the thi  level 

of factor A and the thj  level of factor B, µ  is the general 

mean, iα  is the effect of the thi  level of factor A, jβ  is 

the effect of the thj  level of factor B. ij)(αβ  is the 

interaction effect of the thi  level of factor A and the thj  

level of factor B. ikγ  is the error term of the thk  replicate 

of the thi  level of factor A (WP error term), ijke  is the 
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model can be written as 
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is a vector of abk observations, µ  is the overall mean, zi is 
an indicator matrix associated with the ith  variance 

component, iγ  is a vector of normally distributed random 
effects associated with the ith  variance component such 

that ),0( 2 INw ii σ≈ . The variance matrix of 
observations can be written as  
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2.1. Large Sample Variance of the MLE  
Maximum likelihood estimates of variance components 

cannot be obtain explicitly except for some balanced data, 
but their large sample asymptotic dispersion matrix can be 
derived. It is known that the large sample asymptotic 
dispersion matrix of the maximum likelihood estimators 
for any model is the inverse of the information matrix. 
This matrix is the negative of the expected value of the 
second order partial derivatives (Hessian Matrix) with 
respect to the parameters of the log-likelihood function.  

For our data vector ),,( VXNy β≈  the likelihood 
function is 
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Upon taking the log of the likelihood 
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which gives the following  
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(6) 
the model for this work involve only the variance 
components and therefore the information matrix become 
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Using Searle (1970) this reduces to 
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The inverse of v is also obtained using the results of 
Henderson and Searle (1979), 
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The diagonal element are 
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The V’s are the degree of freedom corresponding to 
individual sources of variation.

 The A-Optimal design require the minimization of the 
trace of the variance-covariance matrix, but by studying 
the information matrix, its required to maximize the trace. 

 

3. Design Optimality and Generation 
As stated above we seek the design that maximizes the 

trace of the optimality criterion information matrix of the 
five variance components. Optimal design in a linear 
random effects model depends on the relative size of the 
true values of the variance components; we borrow an 
idea from optimization on theory of nonlinear models and 

use the local optimality. The five variance components 
were classified into two sets, the first set consist of the 
main effects and interaction variance components (MIVC) 

which consist of ,
2
ασ  ,

2
β

σ and 2
αβσ . The second set 

include the whole plot and sub plot error variance 
components (WSEVC) 2

γσ  and 2
eσ . 

The work will initially assign proportional value of 
variance components to the two sets in such a way that the 
sum equals one, and thereafter distribute proportional 
value to each set based on initial allocation. As an 
example 
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The optimality of the design depends on the proportion 
of the true value of the variance components and not the 
total variance components. Proportional value of the 
variance components will be assigned to each of the five 
variance components. We employed this approach to 
make comparison easy and establish a pattern for 
replicable comparison 

A MATLAB code was written in the context of the 
information matrix of section (2.1) in such a way that 
enumerated design for a particular number and sizes of 
whole plot can be compared for A-Optimality based on 
any configuration of the true values of the variance 
components.  

3.1. Design Generation 
We will assigned Rar =  whole plots of equal size 

randomly to the level of the whole plot factor such that 
equal number of whole plots is assigned to individual 
levels of whole plot factor. Each level of the sub plot 
factor is applied once within each whole plot and one 
observation is measured within each sub plot. The 
resulting design structure is balanced.  

Table 1. Design Space for some R 
Number of 
whole plot 

Possible 
Designs 

Number of 
whole plot Possible Designs 

6 [a=3, r=2] 
[a=2, r=3] 15 [a=3, r=5] 

[a=5, r=3] 

8 [a=4, r=2] 
[a=2, r=4] 16 

[a=2, r=8] 
[a=8, r=2] 
[a=4, r=4] 

10 [a=5, r=2] 
[a=2, r=5] 18 

[a=2, r=9] 
[a=9, r=2] 
[a=3, r=6] 
[a=6, r=3] 

12 

[a=6, r=2] 
[a=2, r=6] 
[a=3,r=4] 
[a=4,r=3] 

20 

[a=2, r=10] 
[a=10, r=2] 
[a=4, r=5] 
[a=5, r=4] 

14 [a=7, r=2] 
[a=2, r=7]   

The number of possible designs (design space) equals 

the total number of ways to partition ∑=
a

i
irar  subject to 

ai rrr === .......2  and ara <≤2 . The assignment of 
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Rar =  whole plots to the levels of whole plot factor 
formed a balanced one way design. 

3.1.2 An Algorithm 
1. List the possible design for a fixed number and size 

of whole plot (Generate the design space). 
2. Specify the available information about individual 

variance components. i.e. proportional value available to 
MIVC and WSEVC. Such that MIVC+WSEVC=1. 

3. Redistribute the proportional above to the variance 
components within each set. 

4. Calculate the criterion of optimality(A-optimal) for 
all design in the design space using the MATLAB 
programme code and identify the A-optimal design. 

5. By making no changes to MIVC and based on the A- 
optimal design above, one can obtain the regions where 
some other designs in the design space is optimal. i.e. 
When ra ≤  based on the optimal design identified in (4) 
decreasing the proportional value of 2

γσ  by 0.01 and 

increasing the proportional value of 2
eσ  by 0.01 in 

sequence until another design in the design space is 
optimal. When ra ≥  based on the optimal design obtain 
in (4) increasing the proportional value of 2

γσ  by 0.01 

and decreasing the proportional value of 2
eσ  by 0.01 in 

sequence until another design in the design space is 
optimal.  

Example: Consider the situation where we have 6 
whole plot of size 2, following the steps in the algorithm 
the list of designs in the design space is {a=2, b=2, r=3} 
and {a=3. b=2, r=3}  

MIVC=0.5 and WSEVC=0.5 by (2) and applying (3) 
above individual variance components as  
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Using the MATLAB code the D-optimal is {a=3, b=2, 
r=2}. For this design we increase the proportion value of 
the whole plot error variance components from 0.26 and 
reduce the proportional value of the sub plot error 
variance components from 0.24 in sequence by 0.01, there 
is a change in the D-optimal design at. In general for a 
fixed MIVC, the range of proportional value for which the 
two designs are optimal is given below 

Table 2. Ranges of Optimality for R=6 
Designs Whole plot Sub plot 

{a=2, b=2, 
r=3}. 49.038.0 2 ≤≤ γσ  12.001.0 2 ≤≤ eσ  

{a=3, b=2, 
r=2}. 37.001.0 2 ≤≤ γσ  49.013.0 2 ≤≤ eσ  

4. Conclusion 

We provided a procedure for constructing A- optimal 
design for estimating variance components in a split plot 
model that has one whole plot factor and one sub plot 
factor. The main problem studied is how to assign a given 
number of whole plots to the level of the whole plot factor 
in such a way that a balanced one way design is formed.  

By following the algorithm in section, one can 
construct Local A- Optimal designs for other selected 
number and sizes of whole plot. 

The extension of the work to situations where there is 
an unbalanced one way structure in the assignment of 
whole plot to the whole plot factor is a subject of current 
research by the authors.
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