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Abstract  Model averaging is an alternative to model selection and involves assigning weights to different models. 
A natural question that arises is whether there is an optimal weighting scheme. Various authors have shown their 
existence in others methodological frameworks. This paper investigates the derivation of optimal weights for model 
averaging using square error loss. It is shown that though these weights may exist in theory and depend on model 
parameters; once estimated they are no longer optimal. It is demonstrated using an example of linear regression that 
model averaging estimators with these estimated weights are unlikely to outperform post-model selection and others 
model averaging estimators. We provide a theoretical justification for this phenomenon. 
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1. Introduction 
In most statistical modeling applications, there are 

several models that are a priori plausible. It is quite 
common nowadays to apply some model selection 
procedure to select a single one. Overviews, explanations, 
discussion and examples of such methods may be found in 
the books by Linhart and Zucchini [1], McQuarrie and 
Tsai [2], Burnham and Anderson [3] and Claeskens and 
Hjort [4]. 

An alternative to select a single model for estimation 
purposes is to give weights to all plausible models and to 
work with the resulting weighted estimator. This leads to 
the class of model averaging estimators. Once decided 
upon the weights (these can be the result of a model 
selection criterion such as Akaike’s information criterion 
(AIC), or arising from Bayesian motivations), the problem 
is not so much with the construction of the estimator, as 
with its properties. 

Since model selection corresponds to the special case of 
assigning weight one to the selected model and weight 
zero to all other considered models, the question is equally 
relevant for estimators obtained after model selection. We 
refer to these estimators as post-model selection 
estimators (PMSE). The fact that selection was data-based 
is often ignored in the subsequent analysis and leads to 
invalid inferences. Literature on this topic includes but is 
not limited to Bancroft [5] for pre-test estimators, Breiman 
[6], Hjorth [7], Chatfield [8], Draper [9], Buckland et al. 
[10], Zucchini [11], Candolo et al. [12], Hjort and 
Claeskens [13], Efron [14], Leeb and Pötscher [15], 
Longford [17], Claeskens and Hjort [4], Schomaker et al. 
[18], Zucchini et al. [19], Liu and Yang [20], Nguefack-
Tsague and Zucchini [21], Nguefack-Tsague et al. [26], 
and Nguefack-Tsague [22,23,24,25]. Bayesian model 

averaging can be found in Hoeting et al. [27] and 
Wasserman [28]. Wang et al. [29] provide a review of 
frequentist model averaging estimators. 

Many optimal weighting schemes have evolved 
recently for model averaging. Hansen [30] discusses the 
model averaging in least squares estimation and proposes 
a method that selects the weights by minimizing Mallows’ 
criterion. Furthermore, Hansen [31] suggests to use 
Mallows’ model averaging method to do forecast and 
shows that the Mallows’ criterion is an asymptotically 
unbiased estimator of both the in-sample mean squared 
error and the out-of-sample one-step-ahead mean squared 
forecast error. Hansen [32] studies least squares estimation 
of an autoregressive model with a root close to unity by 
proposing two measures to evaluate the efficiency of the 
estimators: the asymptotic mean squared error and 
forecast expected squared error. Numerical comparison of 
Mallows’ model averaging method with many other 
methods shows that Mallows’ model averaging estimator 
often has smaller risk. Hansen [33] applies the same idea 
for model averaging with autoregressions with a near unit 
root. Since Hansen [30] assumes that the models are 
nested and the weights are discrete, Wan et al. [34] 
relaxed these two assumptions to obtain other versions of 
model averaging by minimizing Mallows criterion. Their 
proofs are based on Li [35]. Liang et al. [36] develop a 
model weighting mechanism that involves minimizing the 
trace of an unbiased estimator of the model average 
estimator’s MSE. Hansen and Racine [37] propose to 
select the weights of least squares model averaging 
estimator by minimizing a deleted-1 cross-validation 
criterion (the jackknife model averaging (JMA)). The 
solutions of the above methods are obtained by quadratic 
programming. Zhang et al. [38] propose a model 
averaging scheme for linear mixed-effects models and 
prove their method to be asymptotically optimal under 
some regularity conditions. 
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Various above optimal weights do not use the most 
common straightforward square error loss function. The 
intention here is to use this loss to derive optimal weights. 
Unlike the others methods, since the risk function of the 
model averaging obtained depends on model parameters, 
comparisons should be made along the parameter space 
with others post-model selection and model averaging 
estimators. The important question to ask is whether 
within this framework optimal weights are really optimal? 
In particular in terms of risk function, is it preferable to 
perform model selection or model averaging? Others 
existing methods (not using the risk function in the 
parameter space) advocate model averaging over model 
selection. The following Section describes conceptually 
model averaging and PMSEs while Section 3 describes 
the concept of optimal weight. Section 4 illustrates the 
point with a simple linear regression model with 
derivation of optimal weights in this case, and Section 5 
provides a theoretical justification for the fact that 
optimality does no longer hold when paramaters are 
estimated. The article ends with concluding remarks. 

2. Model Averaging and Post-Model 
Selection Estimators 

Let M 1= ( , , )KM M  be a set of K  plausible models 
to estimate µ , the quantity of interest. Denote by ˆkµ  the 
estimator of µ  obtained from using model kM . Model 
averaging involves finding non-negative weights, 

1= ( , , )t
Kw w w  that sum to one, and then estimating µ  by  

 
=1

ˆ ˆ= .
K

k k
k

wµ µ∑  (1) 

Clearly, by taking only one of the weights equal to one, 
and the other weights all zero, the model averaged 
estimator reduces to the estimator in a single model. This 
important sub-class of model averaging estimators is 
arrived at by model selection. There the weight of model 

kM  is set to one if and only if the model selection method 
selects model kM , and the weight is zero otherwise. 

Some classical model averaging weights involve 
penalized likelihood values. Let kI  denote an information 
criterion of the form  

 = 2log ,k k kI L s− +  (2) 

with ks  a penalty for model kM  and kL  the maximized 
likelihood value at model kM . Buckland et al. [10] define 
Akaike-type of weights:  

 
=1 =1

exp( / 2) exp( / 2)
= = .

exp( / 2) exp( / 2)
k k k

k K K
l l l l l

s L I
w

s L I
− −

Σ − Σ −
 (3) 

In particular, if we use the Akaike information criterion 
(AIC, Akaike [39]) with = 2k ks q , two times the number 
of parameters of model kM , (3) simplifies to  

 a ,
=1

exp( / 2)
= .

exp( / 2)
k

ic k K
l l

AIC
w

AIC
−

Σ −
 (4) 

Extensive application of the Akaike weights can be found 
in Burnham and Anderson [3]. Candolo et al. [12] apply 
these weights to the linear regression example. 

When the Bayesian information criterion (BIC, 
Schwarz [40]) is used, with = log( )k ks n q  and n  the 
sample size, the resulting weights are 

 b ,
=1

exp( / 2)
= .

exp( / 2)
k

ic k K
l l

BIC
w

BIC
−

Σ −
 (5) 

With equal prior weights to each of the models kM , 
this may be interpreted as an approximation to the 
posterior probability of model kM  given the data. 

In the context of regression and classification, LeBlanc 
and Tibshirani [41] propose to use a non-penalized 
likelihood value, resulting in =1= / .K

k k l lw L LΣ  Hjort and 
Claeskens [13] use the smooth focused information 
criterion (FIC) and other model averaging schemes to 
study this type of model averaged, or compromise 
estimators, together with their limiting distributions and 
risk properties. Model averaging in semiparametric 
regression with AIC or BIC type weights is studied by 
Claeskens and Carroll [42]. For details discussion on 
model averaging and its applications, see e.g. [43-46]. Zou 
and Yang [47] apply model averaging for time series 
while, Yuan and Yang [48] explain under which 
conditions should one apply model averaging. Shan and 
Yang [49] apply model averaging for quantile estimation 
while Liu and Yang apply it in longitudinal data analysis. 
If one is able to find closed form expressions of the model 
selection probabilities = ( ( ))k kp E I M is selected  (Note 
that the expectation of a Bernoulli variable is the 
probability of success, say π ) for each model kM  then 
an obvious weighting scheme is to use an estimator of 
these probabilities. 

There is also a special case of model averaging 
estimator where only zero/one weights apply, post-model 
selection estimator (PMSE, [15,16]). We use a model 
selection criterion to decide on a selected model k̂M , and 

use this model to estimate the parameter of interest by ˆˆkµ , 
that is, the estimator of µ  in the selected model. Using 
the notation introduced above, we may write PMSE ˆˆkµ  as  

 
ˆ

=1

ˆ
=1

= ( ) ,

ˆ ˆ= ( ) .

K

kk
k
K

kk
k

M I model k is selected M

I model k is selectedµ µ

∑

∑
 

It is important to stress that since the model selection 
method depends on the actual data, the selected model 

k̂M  is random as well. This implies that even when the 

same set of models M and the same selection criterion are 
used, different samples can lead to different models ( k̂M ) 
being selected. The selected model depends also on the 
selection procedure and the set of models M. 

3. Optimal Model Averaging Estimator 
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A question that arises is whether one can select the 
weights so as to optimize the performance of this averaged 
estimator, in terms of some specified measure, say a loss 
function L . Finding the optimal weights involves solving 
the following optimization problem over 1= ( , , )Kπ π π :  

 =1

=1

ˆ( , ),min

0, = 1,

K

true k k
k

K

k k
k

E L

such that k and

π
π µ µ

π π≥ ∀

∑

∑
 (6) 

where the expectation is taken with respect to the true 
model trueM , which may, or may not, be in the set of 
competing models, M. If the true model is known then, at 
least in theory, it is possible to find the optimal weights, if 
they exist. However, the optimal weights, obtained by 
minimizing (6), depend on the parameters of trueM , 
which are unknown and thus have to be estimated. Using 
estimates for the kπ  may lead to weights that are no 
longer optimal. 

Since the optimal weight (if exists) depends on the 
parameters, Hjort and Claeskens [13] suggest to minimize 
the estimated risk. A closed-form solution for optimal 
weights in general is unlikely to exist when the models are 
complexes, but the intention here is to investigate the lung 
run properties of model averaging estimator when a close-
form solution exists. 

4. Ilustration with Simple Linear 
Regression 

4.1. Problem Set-Up 
Consider a simple linear regression model in which x  

is a covariate and Y  is the response variable, given by  

 0 1= , = 1, , ,i i iY x i nβ β ε+ +   (7) 

where the 2: (0, )i Nε σ , σ  known (for simplicity). 
The OLS estimators are given by 

 =1
1 2

=1

( )( )ˆ = ;
( )

n
i i i

n
i i

x x y y
x x

β
Σ − −

Σ −
 

 
2

0 1 0 1 2
=1

ˆ ˆ ˆ ˆ= and Cov ( , ) = .
( )n

i i

xy x
x x
σβ β β β −

−
Σ −

 

For simplicity of computations, suppose = 0x , without 
loss of generality, since linear regression model (7) can be 
parametrised as  

 0 1= ( ) , = 1, , ,i i iY x x i nλ λ ε+ − +   (8) 

where 0 0 1= xλ β β+  and 1 1=λ β . 

Thus, under = 0x , 0
ˆ = yβ  and Cov 0 1

ˆ ˆ( , ) = 0β β , also 

0β̂  and 1̂β  are normally distributed, therefore 0β̂  and 1̂β  
are independant. 

Let x+  be a future value of the covariate. The aim is to 
estimate the mean = ( | )E Y xµ + . 

Consider two models 
0 0: =M µ β  and  

1 0 1: =M xµ β β ++ . 
2

0 =v
n
σ ; 1v =Var

2

1 2
=1

ˆ( ) = n
i ix
σβ

Σ
. Let 0 0

0 1/2
0

ˆ
=Z

v
β β−

, 

then 0 : (0,1)Z N  and 1/2
0 1 0 0

ˆ = ( )v Z bβ + , where 

0
0 1/2

0
=b

v
β

 (standardized intercept). Let 1 1
1 1/2

1

ˆ
=Z

v
β β− , 

then 1 : (0,1)Z N , 1/2
1 1 1 1
ˆ = ( )v Z bβ + , where 1

1 1/2
1

=b
v
β  

(standardized slope). 

4.2. Post-model Selection Estimators 
Consider a selection criterion of the form (2) where 
=k ks hq , 2 = 2q , 1 = 1q , { : > 0}h R h∈ . 1M  is chosen 

if 1/2
1 1| |Z b h+ ≥ . 

PMSE estimator can be written as  

 
1/2

0 0 1 1
,

1/2
0 1 1 1 1

ˆˆ = (| |< )
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k h
I Z b h

x I Z b h

µ β

β β +

+

+ + + ≥
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where 0I  and 1I  are, respectively, indicator functions 
under 0M  and 1M  with 0 1 = 1I I+ . 

It follows that  
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0 1
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where  

 
1/2

1 1 1 1 1
1/2 1/2 1/2
1 1 1 1 1 1 1

ˆ= (| | )

= ( ) (| | ) = h

h I Z b h
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with 1/2
1 1 1 1 1= ( ) (| | )hA Z b I Z b h+ + ≥ . 

The expression (11) is equivalent to 

 
1/2

1 1
1 1/2

1 1 1

0 | |<
=

ˆ | | .
h

Z b h

Z b h
β

β

 +


+ ≥

  (12) 

We used simulated data to investigate the properties of 
different PMSEs, namely 510  samples of size = 20n , 

with 2 = 1σ , 2= 1
1i

ix
n

−
+

, = 1,2, ,i n , 0 = 0β , and 

= 0.5x+ . The reported results are not sensitive to the 
choice of these selected values and data; in particular, 
increasing the sample size, has minimal impact on the 
results. All expectations here were taken with respect to 
the full model, 1M . As the risk functions are symmetric 
around zero we only display the graphs for 1 > 0b . All 
computations are performed with the software R [50]. 

For some classical selection procedures, values of h  
are given by 
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Nguefack-Tsague and Zucchini [21] show that for 
Mallows’Cp [51], PMSE is given by  

 
1/2

ˆ 0 0 0,

1/2 2
1 1 1 1 1

ˆ = ( )

( ) ( (1, 2, ) > 2).

k Cp v Z b

x v Z b I F n b

µ

+

+

+ + −
 (14) 

with F  as the non central Fisher distribution, namely 
2
1(1, 2, )F n b− . 

4.3. Model Averaging 
For any weighting scheme 0w  and 1w  for model 0M  

and model 1M , 0 1 = 1w w+ , the model averaging 
estimator is  

 0 0 1 1

0 0 1 0 1 0 1

ˆ ˆ ˆ=
ˆ ˆ ˆ ˆ ˆ= ( ) = (1 ) ,

MA w w

w w x w x

µ µ µ

β β β β β+ +

+

+ + + −
 (15) 

where 0 =w w . 
Using formulae of Akaike weights and likelihood 

weights given in (4), (3) and (5), we have 
1 0 0 1= 2(log log ) 2AIC AIC L L− − +  and 

( )0 1
a ,1 ( )0 1

=
1

AIC AIC

ic AIC AIC
ew

e

−

−+
. Akaike weights are then given 

by  

 

1 2( ) 11 12
a ,1 1 2( ) 11 12
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1

Z b
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Z b
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and BIC weights by  

 

1 log( )2( )1 12 2
b ,1 1 log( )2( )1 12 2

= .

1

nZ b

ic nZ b

ew

e

+ −

+ −
+

 (17) 

More generally here, weights using penalized information 
criterion of the from (2) where =k ks hq  are given by  

 

1 2( )1 12 2
h,1 1 2( )1 12 2

= .

1

hZ b

hZ b

ew

e

+ −

+ −
+
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Thus for non-penalized information criterion, likelihood 
weights are given by  

 

1 2( )1 12
h,1 1 2( )1 12

= .

1

Z b

Z b

ew

e

+

+
+

 (19) 

4.4. Optimal Weight for Simple Linear 
Regression 

Consider the loss here to be the square error, therefore 
the measure for the optimal weight is the mean square 
error. 
Proposition 1. Under Equations (7) and (15) the optimal 

weighting scheme is * * 1
0 2

1 1
= =

vw w
v β+

 and 

2 2
* * 1 1
1 2 2

1 1 1
= 1 = = .

1
bw w

v b
β

β
−

+ +
 

Proof: 
2 2
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where 2
0 0 1 1

ˆ ˆ= [( ) ( )]A E xβ β β β+− + −  is constant i.e 
does not depend on w . 
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w
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, therefore *w  is a 

minimum.  
Corollary 1. The model averaging estimator based on 
estimates of the optimal weights is  

 
* * *

0 1
* *

0 0 1

ˆ ˆ ˆ ˆ ˆ= (1 )

ˆ ˆ ˆˆ ˆ= (1 )( )
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where *
2

1 1

1ˆ = .
1 ( )

w
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Proof. From Proposition 1, *w  depends on the unknown 
parameter 1β , need to be estimated. 

* 1
2 2
1 1 1 1

1= = .
1 /

vw
v vβ β+ +

 Thus 

*
2 2

1 1 1 1

1 1ˆ = =
ˆ1 / 1 ( )

w
v Z bβ+ + +

. Replacing the weights in 

Equation (15) yields the result. 
Figure 1 shows for each PMSE, its risk and the risks of 

various weighting scheme. It shows that none of the 
weighting schemes (including the optimal weights) is 
better than any PMSE over the whole range of 1b . 
Optimal weight scheme is even worse for larger 1b . 
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Figure 1. Risks functions for classical PMSEs together with model averaging estimators, optimal weight, Akaike weight, BIC-weight, and likelihood 
weight; based on 100 000 samples of size = 20n , with 2 = 1σ , 

2
= 1

1i
i

x
n

−
+

, = 1, 2, ,i n , 0 = 0β , and = 0.5x+  

5. Why Optimal Is Not Optimal? 
 Consider the regression model  

 = ( ) ( = 1,2, , ),i i iY f x i nε+   (20) 

where 1 2= ( , , , )i i i ipx x x x  is the value of a p-

dimensional design variable at the ith observation, iY  is 
the response, f  is the true regression function and the 
random errors iε  are assumed to be independent and 

normally distributed with mean 0 and variance 2σ . 
For simplicity, let assume that the model is parametric 

and can be written in vector form as  

 = ( , ) ,k kY f x θ ε+  (21) 

where for each model kM , the family 
F = { ( , ), }M k k k kk f x θ θ ∈Θ  is a linear family of 

regression functions with kθ  of finite dimension km . 

Assumption 1 (Yang [48], pp.941). There exist two 
models 1M  and 2M M∈  such that: 

(a) 1 1 1 11F = { ( , ), }M f x θ θ ∈Θ  is a linear subspace of 

2 2 2 22F = { ( , ), }M f x θ θ ∈Θ ; 

(b) there exists a function 2( ) FMxφ ∈  orthogonal to 

1FM  at the design points, with 1 2
=1 ( )n

in xφ− ∑  bounded 
between two positive constants, at least for large enough 
n ; 

(c) there exists a function 0 1FMf ∈  such that 0f  is not 

in any family FMk , for kM M∈ , that does not contain 

1FM . 

Consider a model averaging method τ . Let kπ  be the 
resulting data-dependent weight for model kM  satisfying 

0kπ ≥  and =1 = 1K
kk π∑ . The regression estimator is thus 
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=1
ˆ ˆ( ) = ( , )K

k k kkf x f xπ θ∑ . Let 

1 2
=1

ˆ( , , ) = ( ( ) ( ))n
i iiR f n n E f x f xτ − −∑ . 

Definition 1. A model averaging method τ  is said to be 
consistent in weighting if, when the true model *k

M M∈ , 

we have that * 1
k

π →  as n →∞ .  

Theorem 1 (Theorem 2 of Yang [48], pp.943). Under 
Assumption 1, if any model averaging method τ  is 
consistent in weighting, then we must have  

 
F 2

( , , ) .sup
f M

n R f nτ
∈

→ ∞  (22) 

Theorem 1 clearly explains why within this framework, 
none of the weight can be expected to dominate all the 
others in terms of risk function. 

6. Concluding Remarks 
The aim of this paper has been to show that tough many 

optimal model averaging schemes have evolved recently, 
they may fail to exist under square error loss when 
different estimators are compared in the parameter space 
using the risk function. We show this by deriving the 
optimal weighting scheme and demonstrated that these 
weights are no longer optimal when the parameters are 
estimated. In particular within this framework model 
averaging is not preferable to model selection. The 
example used is very simple but is enough to illustrate the 
problem. 
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