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Abstract  Water is a very important natural resource that no creation can exist without it. Hence it has become a 
responsibility of every person to try and conserve this very precious resource. One of the ways of conservation is by 
building earth dams. However if they are not well managed these dams may end up drying up due to underground 
seepage leading to failure of the dam. In this paper we are concerned with how to calculate the discharge rate 
through a porous medium, the velocity of the discharge and finally the total discharge using Darcy’s law. This study 
will also describe a computer based model that accepts input and calculate the amount of discharge per given time. 
From Darcy’s law it is shown that, the discharge rate depends among other factors the porosity of the medium. So 
from the study we were able to determine which medium is able to hold water rather than supporting percolation. 
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1. Introduction 
Darcy’s law is a simple proportional relationship 

between instantaneous discharge rate through a porous 
medium, the viscosity of the fluid and the pressure drop 
over a given distance. It forms the scientific basis of fluid 
permeability used in earth sciences particularly in 
hydrogeology. It is based on the flow of water through 
beds of sand. An application of Darcy’s law is to water 
flow through an aquifer. We can apply this law to the 
water flow under the bed of a dam; Darcy’s law along 
with the equation of conservation of mass is equal to the 
ground water flow equation. 

Darcy’s law is valid for laminar flow in pores of a filter 
medium and seepage is normally a laminar flow in most 
cases, for example in sandy and clay soils. So in this case 
we are going to consider the case of a laminar flow. A 
laminar flow is sometimes referred to as the streamline 
flow. It occurs when a fluid flows in parallel layers with 
no disruption between the layers. There are no cross 
currents perpendicular to the direction of flow, no eddies 
or swirls of fluids. Laminar flow occurs at low Reynolds 
numbers where viscous forces are dominant and is 
characterized by smooth constant fluid motion. 

2. Literature Review 

The first contributor to underground water movement 
was [3] who studied the determination of laws of flow of 
water through sand. Darcy conducted experiments relating 
to water’s flow through sand, which resulted in the 
development of Darcy’s Law. [3] published the law in 
1856 in a report, Les fontainespubliques de la ville de 
Dijon. [3] discovered that the flow through the pipe is 
proportional to the head differential, and is also 
proportional to a coefficient related to the nature of the 
sand. This coefficient is what we now understand as 
hydraulic conductivity. 

[10] described how to prepare an upstream flow of a 
dam; Remove the pervious and decaying matter by 
breaking up the natural soils and by stepping up the sides 
of the ravine. One of his axioms is that water abhors an 
angle. The stepping toothed trenches need not necessarily 
be made by means of inclined and horizontal planes but 
should be wedge shaped so that the pressure of fluid in 
settling will wedge the material tighter together to fill 
every cavity. 

[9] states that the rate of infiltration of soil depends 
upon its porosity which governs the functional to flow, 
and the slope and length of the filamentary channels along 
which the water may be considered to pass. It is therefore 
evident that the direct rate of infiltration in a 
homogeneous soil must decrease from the top to the 
bottom of the puddle trench. The best section for a puddle 
trench is thus a wedge, such as an open exacation.  

[11] tried to calculate what height of dam is 
recommended for a given volume of water the dam should 
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hold. [11] argued that the height of the dam depends with 
the storage required in the reservoir. For construction 
materials he suggested that; the materials should 
preferably be taken from the reservoir site, different parts 
of the sides of the valley should be examined so that the 
most suitable soils are located. However some water will 
seep through the dam, even if it is constructed of good 
materials, and well-compacted. This seepage reduces the 
strength of the dam. [11] recommends the crest width and 
slopes to provide a stable, 3m-h embankment making 
extra seepage protection unnecessary. A safer, but 
technically difficult, solution is to include a rock to drain, 
to collect seepage water. This should extend up to a third 
of the height of the dam, and a graded sand and gravel 
filter must be placed between the dam fill material and the 
drain to prevent fine clay particles being washed out. The 
filter must be designed according to the particle size of the 
dam material and the drain, following, for example, 
recommendations in Schwab et al, p488-490. 

Darcy´s filtration law and continuity equation are 
applied to the solution of seepage by classical methods. 
For the calculation of the seepage through the body of the 
Starina dam, Myslivec’s relation [1] for a heterogeneous 
dam with a vertical centric seal was applied. In order to 
calculate seepage through the subsoil, a derived relation 
by [6] for subsoil bearing a vertical sealing element was 
applied. The total seepage through the body and subsoil of 
the Starina dam determined by a classical calculation 
method is 4.33 l.s-1. 

[5] studied detection of seepage paths in earth dams 
using self-potential and electrical resistivity methods. A 
case of two of the four Saddle dams of the Som-Kamla-
Amba project, Rajasthan State, India; which is founded on 
heterogeneous rock mass was taken. Electrical resistivity 
method was used to delineate zones favorable for seepage, 
whereas, self-potential (SP) method was used to delineate 
the seepage paths. SP measurements showed negative 
anomaly of the order of 10–20 mV in amplitude, 
indicating low seepage, coinciding with the seepage 
measurements made by the project authorities. [7] 
presented a practical finite difference method for 
unconfined seepage, which can be easily implemented in 
spreadsheets. The finite difference equations are based on 
the concepts of extended pressure and flux conservation. 
The proposed method eliminates the formation of matrix 
systems at the expenses of slower convergence rate for 
large problems. It has not only educational but also 
practical values as it applies to various engineering 
problems. A spreadsheet application of three-dimensional 
seepage modeling with an unknown free surface has been 
carried out. One of the main advantages of this study is 
that only one finite difference equation has been applied to 
the solution domain instead of derivation of additional 
finite difference equation to impervious boundary 
conditions, inclined interfaces, etc. 

[8] six experiments were done in the laboratory of 
GeoDelt to investigate the possibility and effectiveness of 
Biosealing for seepage prevention, four with nutrition 
injection and two without, serving as contrast experiments. 
Biosealing refers to a natural biological process for self-
detection and sealing of seepage in water impermeable 
barriers. BioSealing is based on the principle that 
biological activity can be stimulated by injection of 
nutrition in the soil. Analyses of the experimental results 

show that BioSealing is an effective way to reduce the 
seepage discharge and to decrease the soil permeability. 

[2] conducted non destructive evaluation of seepage. 
During the summer of 2007 seepage was identified at the 
foot of the dam at high reservoir conditions. After long 
droughts, 2010 proofed to be a wet year and the reservoir 
levels rose to where it was in 2007. Seepage was observed 
about 30 feet downstream from where it was in 2007. The 
Willowstick was contracted to perform a geophysical 
investigation of seepage through the Vermilion Valley 
dam. The results of their investigation were presented, as 
well as proposed upgrades to the filter system at 
Vermilion Valley Dam. While the Willowstick survey did 
not directly identify the source of the boil, it did identify 
seepage paths that likely intercept the herringbone drain 
and thus provide the source for the seeping boil. This 
information will be important in the drain improvement 
program that continues at Vermilion Valley Dam. In the 
case of Vermilion Valley Dam, even though the seepage 
information did not lead directly to the source of the 
seepage, the information obtained from the Willowstick 
survey yielded insight into conditions for which the drains 
were installed and whether these drains need to be 
modified or augmented in order to allow continued safe 
and efficient operation of the dam. 

For simulation [4] used software based on the finite 
elements technique that is able to simulate and analyze 
isometric distribution water through soils and rocks. They 
used the software (seep/w) to simulate and investigate 
seepage through dams. Continuity phase of the liquid, 
Darcy equation behavior of seep zone and UN isotropic 
are the assumptions utilized in the equations. In a porous 
environment analysis with different boundary conditions 
effectively been used. In computational program two 
dimensional analyses were successfully carried out with 
the assumption of uniform seepage at critical section. [11] 
recorded different hydraulic gradient coefficients by the 
flow rates at different layers of the dam. 

2.1. Statement of the Problem 
When a dam is constructed on a porous medium where 

the underlying soil is unsaturated the water may percolate 
into medium due to mounting pressure by the water 
behind the dam. Due to pressure difference (gradient) at 
different points of the fluid path in the medium, the fluid 
will flow leading to drainage of water. We therefore 
intend to calculate the flow rate of water along the path, 
the flow velocity and the total discharge. We need to study 
the porosity of different soils and pressure drop over a 
given distance along the fluid path. 

2.2. Objectives of the Study 
The objectives of the study are; 
i) To determine the total seepage of water through a 
porous medium and compare the same through different 
materials.  
ii) To determine the pore velocity of the fluid through 
the medium. 

2.3. Application of Study 
The study of seepage in earth dams is a very important 

consideration as far as the environment around us is 



145 American Journal of Applied Mathematics and Statistics  

 

concerned. It is because it assists in minimizing loss of 
water in the dam especially in arid and semi arid areas 
where the there is no regular inflow to the dam. It will also 
assist in controlling the removal and carrying away of soil 
particles (soil erosion). Excessive seepage pressure or soil 
saturation can threaten the stability of the downstream 
slope of the dam or the abutment slopes and hence water 
reservoir can collapse any time leading to total loss. 
Darcy’s law application is to water flow through an 
aquifer and it is also used extensively in petroleum 
engineering to determine the flow through permeable 
media the most simple of which is for one dimensional 
homogeneous rock formation with a fluid of constant 
viscosity. 

2.4. Equations governing the Flow 
In this section the equations governing hydrodynamics 

and more specifically underground fluid flow are outlined. 
Also in the chapter are the assumptions made during the 
course of the study and consequences arising from these 
assumptions. The equation of continuity, momentum and 
energy are stated together with their derivation. Darcy’s 
law equation which describes the flow through a porous 
media is also stated and derived followed by a model 
description of seepage under a dam. We will also derive 
underground water flow equation from equation of 
continuity and application on Darcy’s law. We will then 
using Crank Nicholson numerical method which uses 
finite differences generate a tri-diagonal matrix. The 
underground water flow equation is some sort of diffusion 
equation. Lastly we apply the Wolfram Mathematica 
software to solve the generated matrix. 

2.4.1. Assumptions and Approximations 
The following assumptions have been made; 
i. The fluid flow under consideration is a laminar flow. 
ii. The fluid is incompressible (the change in density is 
negligible). 
iii. The medium through which the seepage of the fluid 
is taking place is porous. 
iv. The fluid is inviscid (fluid not viscous). 
v. The flow is in the x-direction only. 

2.4.2. Consequences as a Result of the Assumptions 
We have made an assumption that the fluid under 

considerations is incompressible but in the real sense it is 
not because of the difference in temperature in different 
parts of the porous material. However the change is very 
insignificant that it will bring very small changes to our 
calculations.  

We have also assumed the seepage is only in one 
direction. In reality the flow of water or any fluid might 
not be in the x direction only. Some of the fluid particles 
will take the y and even the z directions. This will bring 
some errors to the final result of total seepage as the flow 
is only in one dimension. 

2.5. The Governing Equations 
There are three equations that govern the flow, namely; 
Equation of conservation of mass 

 ( ) 0q
t
ρ ρ∂
+ ∇ ⋅ =

∂
  (1) 

Equation (1) is the general equation of conservation of 
mass of a fluid flow whose velocity q ui vj wk= + +

 . If the 
fluid is incompressible and the fluid flow is steady 
equation (1) becomes 

 . 0q∇ =
  

Equation of energy 

 2
V

TK T C
t

ρ µϕ∂
∇ = +

∂
 (2) 

Equation (2) is the equation of energy of a non- viscous 
incompressible fluid with constant coefficient of 
conductivity. 

Ground water flow equation 

 
2

2
h ha
t x

∂ ∂
=
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 (3) 

This is the 1D underground water flow equation which 
resembles 1D heat equation (diffusion equation). We can 
say that this is a diffusion equation as water move with a 
very slow velocity from a region of high to low 
concentration. 

2.6. Numerical Solution 

2.6.1. The Crank Nicolson Method 
We have applied the Crank Nicolson numerical method 

to solve arising equation. It is a finite difference method 
used for numerically solving heat equation and similar 
partial differential equations like in our case here the 1D 
ground water flow equation. It is a second order method in 
time, implicit in time and is numerically stable. It solves 
both the accuracy in stability problem. The difference 
equation for the ground water flow equation is; 
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Thus ( ) ( ) ( ) ( ) ( ), 1 , 1, , 1,2i j i j i j i j i jh h a h h h+ + −
 − = − +  . 

Or 

( ) ( )

( )
( ) ( ) ( )

( ) ( )

, 1 ,

1,1, , 1, 1
2

, 1 1, 1

2

22

i j i j

i ji j i j i j

i j i j

h h

t
h h h ha

h hx

+

−+ + +

+ − +

−

∆
− + + 

 =
− + ∆  

. 

Or 

( ) ( )

( )
( ) ( ) ( )

( ) ( )

, 1 ,

1,1, , 1, 1
2

, 1 1, 1

2

22

i j i j

i ji j i j i j

i j i j

h h

h h h ha t
h hx

+

−+ + +

+ − +

−

− + + ∆  =
− + ∆  

. 

Let 
( ) ( )2 22 2s

a t k t
Sx x

α ∆ ∆
= =

∆ ∆
. 

Therefore we get; 
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Putting the terms containing j+1 on the left hand side 
and putting the others on the right hand side we get; 
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And collecting the like terms together we come up with 
the following equation 

 ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1, 1 , 1 1, 1

1, , 1,

1 2

1 2
i j i j i j

i j i j i j

h h h
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The following graph shows how the scheme works 

 

Figure 1. Crank Nicholson Scheme work 

The equation above can be rewritten as a set of 
simultaneous equations which generates a tridiagonal 
matrix as shown below 

 

0 0 01 2
0 01 2

1 2 00
1 20 0

0 1 20 0

α α
αα α
α αα

α α α
α α

+ −
−− +
+ −−
− + −

− +

 

2.6.1. Solving the Tridiagonal Matrix 
The solution to above triadiagonal matrix gives us the 

value of ‘h’ at different values of ‘b’ and ‘α’. Let the 
simultaneous equations be written as difference equation. 
And in the meantime time let –α=a=c, and 1+2α=b, then 

 1 1j j j j j j ja h b h c h d+ −+ + =  (i) 

Introducing new unknowns ej and fj along with an 
equation 

 j j j jh e h f= +  (*) 

And writing with shifted index we get 

 1 1 1j j j jh e h f− − −= +  (ii) 

And substituting for the value of hj-1in equation (i) we 
get  

 ( )1 1 1j j j j j j j j ja h b h c e h f d+ − −+ + + =  (iii) 

Then rearranging to make hj the subject of the formulas  
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Comparing this equation with equation (*) we simply 
express the introduced unknowns in terms of a, b and c. 
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2.6.2. Boundary Conditions 
In order to find a solution to this problem we must have 

the boundary conditions. First, the boundary condition for 
the left hand side must be given. The most general 
possible end condition is a linear relation given as; 

 0 0 1 0h e h f= +  

Which is similar to the equation (*) above. This boundary 
condition must give us both e0 and f0 with e0 and all aj, bj 
and cj we can use equation (iv) to compute all the ej. 

Similarly the right hand boundary condition can be 
given as a general two point boundary condition 

 1 1n n right n nc h e h d− − + =  (vi) 

This include a special case the zero value and the zero 
slope boundary condition. Equation (vi) can be compared 
to equation (iii). 

 1 1 1n n n nh e h f− − −= +  

You realize that both hn and hn-1 are unknowns but in 
equations (vi) and (vii) we have two equations. The first 
step is to take the value of hn and used it in equation (iii) 
to solve for hn-1, hn-2, hn-3 etc. 

2.6.3. Equations Used in Calculation 
The main objective of this study is to calculate the 

velocity of the seepage and finally the amount of seepage 
at certain time and distance. The following are our guiding 
equations. 

 
2

2
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t x

∂ ∂
=
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 (i) 

Which is the underground water flow equation in one 
dimension. Where; 

 
s

ka
S

=  

And K is the permeability of the porous media and Ss is 
the specific storage or actually the amount of water that is 
available for seepage. 

 
( ) ( )2 22 2s
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Sx x
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∆ ∆
 

Where  
t∆ is the change in time and 
x∆ is the change in distance in the x direction 

x
hq
t

∆
=
∆

the mass flux 

And the pore velocity is given by the relation  
xq

V
n

= where n is the porosity of the porous material. 

Solution to the above equations will give us the value of 
α which will be used in solving the matrix. The solution to 
the matrix gives the value of total seepage in the x-
direction given by h. 

2.6.4. Underground Water Flow Equation Solution by 
MATLAB 

This code in MATLAB uses the above equations to find 
the value of α which is used in the matrix to solve for total 
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seepage and the seepage velocity at any one point. The 
seepage calculation is only in the positive x-direction. 

//Matlab code that solve underground water flow 
equation 

//via the Crank Nicholson scheme 
//Developed by Vincent Koros during the month of 

March 2012 
//dt=change in time,dx=change in distance in the 

positive x direction 
//Ss=specific storage,k=permeability,n=porosity 
//'b','c' and 'd' are the terms of the matrix  
if(dx<=0|dt<0)  
'Either dx or dt NOT a valid Value.Input it again!!!' 
else 
//initialise the specific storage to 200 
ss=200; 
//solve for 'a' which is later used to solve for alpha 
a=k/ss; alpha=(a*dt)/(2*dx^2); 
//iniatialise the terms of the matrix and develop the 

matrix A 
b=1+2*alpha; c=-alpha;d=c; 
A=[b,c,0,0,0;c,b,d,0,0;0,c,b,d,0;0,0,c,b,d;0,0,0,c,b;]; 
//calculate a constant 'm' which is used to iniatialise the 

right hand vector 
m=c/b; 
w=10; x=w+m*w; y=x+m*x; z=y+y*m;r=z+z*m; 
B=[w;x;y;z;r] 
//solve the matrix A 
soln=A\B 
//calculates the mass flux and incorporates porosity to 

calculate pore velocity 
q2=(soln(2,1)-soln(3,1))/dt 
v2=q2/n 
q3=(soln(3,1)-soln(4,1))/dt 
v3=q3/n 
q4=(soln(4,1)-soln(5,1))/dt 
v4=q4/n 
end 

3. Analysis of the Results 
This section covers the analysis of the results obtained 

from our calculation. It has been done by drawing tables 
of one variable against another and translating them in 
graphs. It also involves the discussion of the results. 

Assuming a specific storage of 200 litres available for 
seepage 

Table 1. The Effect of permeability k=5, x∆ = 0.1 and t∆ =0.1 on 
Total Seepage 

X=0 0 0.1 0.2 0.3 0.4 0.5 

N=0 0 8.8898 9.697 9.863 9.9225 9.9502 

N=1 0 8.8984 9.6972 9.863 9.9225 9.9502 

N=2 0 8.0937 9.4202 9.7315 9.8467 9.9012 

N=3 0 7.2386 9.1361 9.5984 9.7704 9.852 

N=4 0 5.9727 8.6211 9.3441 9.6218 9.7552 

Effect of permeability k=5, x∆ = 0.1 and t∆ =0.1 on Total Seepage.  

 
Figure 2. Change of Seepage with distance 

As the value of the change in distances increases the 
value of the total seepage also increases. This implies that 
increasing the distances at which seepage happens 
eventually increases the total seepage. This is in fact 
seepage at a time interval 0.1. 

Table 2. The effect of permeability k=5 x∆ = 0.1 and t∆ =0.5 on 
Total Seepage 

X=0 0 0.1 0.2 0.3 0.4 0.5 

N=0 0 6.2101 8.6505 9.3508 9.6241 9.7561 

N=1 0 6.3562 8.6646 9.3528 9.6245 9.7562 

N=2 0 5.1168 7.7509 8.816 9.2881 9.5294 

N=3 0 3.7184 6.7741 8.2548 8.9415 9.2977 

N=4 0 2.2421 5.3594 7.3303 8.3264 8.87 

Effect of permeability k=5, x∆ = 0.1 and t∆ =0.5 on Total Seepage  

 

Figure 3. Change of Seepage with distance 

This graph is similar to the first one where it is noted 
that the value of seepage changes directly proportionally 
with respect to change in distance. But in this case the 
change in time is 0.5 contrary to the first case. 
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Table 3. The effect of permeability k=0.05 x∆ = 0.1 and t∆ =0.1 on 
Total Seepage 
X=0 0 0.1 0.2 0.3 0.4 0.5 

N=0 0 9.9875 9.9969 9.9986 9.9992 9.9995 

N=1 0 9.9875 9.9969 9.9986 9.9992 9.9995 

N=2 0 9.9751 9.9938 9.9972 9.9984 9.999 

N=3 0 9.9626 9.9906 9.9958 9.9987 9.9985 

N=4 0 9.9378 9.9844 9.9931 9.9961 9.9975 

Effect of permeability k=0.05, x∆ = 0.1 and t∆ =0.1 on Total Seepage  

 

Figure 4. Change of Seepage with distance 

This case is for a porous material with a permeability 
value of 0.05. The graph clearly shows that the amount of 
seepage varies directly proportionally with change in 
distance. But the change of seepage between two adjacent 
points is very small compared to the other two above 
graphs. 

Table 4. The effect of permeability k=0.05, x∆ = 0.1 and t∆ =0.5 on 
Total Seepage 
X=0 0 0.1 0.2 0.3 0.4 0.5 

N=0 0 9.9375 9.9844 9.9931 9.9961 9.9975 

N=1 0 9.9375 9.9844 9.9931 9.9961 9.9975 

N=2 0 9.8769 9.9689 9.9861 9.9922 9.995 

N=3 0 9.8156 9.9533 9.9792 9.9883 9.9925 

N=4 0 9.6955 9.9224 9.9654 9.9805 9.9875 

Effect of permeability k=0.05, x∆ = 0.1 and t∆ =0.5 on Total Seepage 

 

Figure 5. Change of Seepage with distance 

This graph is quite similar to the one represented in 
Figure 3. It shows direct proportionality between seepage 
and change in distance. But the changes are taking place at 
a constant change in time of 0.5. 

Table 5. The effect of porosity on pore velocity  

 t=0 0.1 0.2 0.3 0.4 0.5 

V1 0 0.3317 0.33 0.3284 0.3268 0.3252 

V2 0 0.3321 0.3308 0.3296 0.3284 0.3271 

V3 0 0.6613 0.656 0.6507 0.6455 0.6404 

The effect of porosity n=0.375and permeability k=0.05 on the pore 
velocity 

 

Figure 6. Change of pore velocity with change in time. 

The graph above of pore velocity shows that as the 
change in time becomes more and more big the value 
velocity approaches zero. This means that it reaches a 
point in time when the fluid does not flow at all. It also 
shows the effect of porosity to fluid velocity. 

Table 6. The effect of porosity on pore velocity  

 t=0 0.1 0.2 0.3 0.4 0.5 

V1 0 14.6301 10.2038 7.4992 5.7278 4.5071 

V2 0 15.5456 11.0484 8.2281 6.3697 5.0849 

V3 0 23.0177 13.999 9.5189 6.9671 5.3684 

The effect of porosity n=0.55 and k=5 on the pore velocity 

 

Figure 7. Change of pore velocity with change in time. 
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The graph shows very similar results to that of the 
graph in Figure 5. But it is worth noting that in this case 
the porosity of the medium is 0.6. Values of pore velocity 
in these two cases (graph five and six) shows that a highly 
porous material has a higher pore velocity compared to a 
less porous material. 

4. Conclusions and Recommendations 

4.1. Conclusions 
We have tried to calculate the total seepage of water 

through a porous medium under the base of a dam. 
However the calculation was only based on the seepage in 
the x direction (one dimensional). But it gives a clear 
picture of seepage under a dam. Analysis shows effect of 
permeability on seepage through a porous a material 
though because of time and resources we were not able to 
show clear comparison between materials of different 
permeability. But very important our results could show 
the effect of changing distance through which the seepage 
is taking place. We noticed that increasing the distance 
will increase the seepage. This project merely gave us 
predictions of total seepage under a dam from the fact that 
we have considered a1D flow and it might not give the 
accurate value of seepage under a dam. However there are 
other methods which include construction of flow nets 
that produces more accurate values as compared to our 
approach. We have also seen the effect of porosity on the 
seepage velocity, that to get the actual seepage velocity in 
a porous material porosity has to be taken into 
consideration. This was to account for the fact that only a 
fraction of total storage is available for flow and that 
different materials with different porosity exhibit different 
pore velocities.  

4.2. Recommendations  
To deal with the problem of seepage under a dam, good 

management of the dam should be taken into account. 
This involves choosing the best materials to construct the 
dam a far as seepage control and dam stability is 
concerned. Regular inspection of the base and the walls of 
the dam should be considered. To calculate seepage more 
accurately, I recommend that; 

First, we not only consider the seepage under the dam 
to calculate the total seepage but also consider calculating 
seepage through the walls of the dam because it will not 
be good practice to assume that seepage only occur under 
the dam. It can occur in other parts of the dam 

Secondly, for accuracy of calculating seepage we 
should try solving the problem in 2D or even if possible 

solve the 3D underground water flow equation to account 
for the flow in the y and z-directions and consider using 
advanced software to handle the complex calculations in 
three dimension. 

Also we do recommend that further research trying to 
solve the problem via the Crank Nicholson scheme try use 
an NxN matrix than to limit the solution to may be 5x5 
matrix like in our case here. This will provide a clear trend 
of seepage and finally give more accurate results. 

Last but not least is incorporating the use of flow nets 
that employs streamlines and equipotential lines to 
calculate the seepage under a dam. This will improve 
accuracy of the results. 
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