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Abstract  The numerical treatment of singular perturbation problems is currently a field in which active research is 
going on these days. Singular perturbation problems in which the term containing the highest order derivative is 
multiplied by a small parameter ε , occur in a number of areas of applied mathematics, science and engineering 
among them fluid mechanics (boundary layer problems) elasticity (edge effort in shells) and quantum mechanics. In 
this paper, we consider few numerical methods for singularly perturbed boundary value problems developed by 
numerous researchers between 2006 to 2013. A Summary of the result of some recent methods is presented and this 
leads to conclusion and recommendations regarding methods to use on singular perturbation problem. 
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1. Introduction 
As Science & technology develop, many practical 

problems, such as the mathematical boundary layer theory 
or approximation of solution of various problems 
described by differential equations involving large or 
small parameters have become increasingly complex and 
therefore require the use of asymptotic methods. However, 
the theory of asymptotic analysis for differential operators 
has mainly been developed for regular perturbations 
where the perturbations are subordinate to the unperturbed 
operator. In some problems, the perturbations occur over a 
very narrow region across which the dependent variable 
undergoes very rapid changes. These narrow regions are 
frequently adjacent to the boundaries of the domain of 
interest because a small parameter multiplies the highest 
derivative. Consequently, they are usually referred to as 
boundary layers in fluid mechanics, edge layers in solid 
mechanics, skin layer in electrical applications, shock 
layers in fluid and solid mechanics, transition points in 
quantum mechanics, WKB problems, the modeling of 
steady and unsteady viscous flow problems with large 
Reynolds numbers and convective heat transport problems 
with large peclet numbers. 

In a continuation of the survey presented in [1,2,3], we 
review methods (not all but few of them) developed by 
numerous researchers from 2006 to 2013 to deal with one-
dimensional singular perturbation problems. These 
problems considered include linear, non-linear reaction-
diffusion, delay differential equations. The numerical 
techniques reviewed in this survey include finite-

difference methods, spline approximation methods and 
computational methods for boundary value techniques.  

This paper contains the following sections: 
Section 2: Linear singular perturbation boundary value 

problems  
Section 3: Non-linear singular perturbation boundary 

value problems 
Section 4: Parameterized singular perturbation 

boundary value problems 
Section 5: Delay differential equations 
Section 6: Integral equations 
Section 7: Discussion and further development. 

2. Linear Singular Perturbation Boundary 
Value Problems 

The basic aim of this study is to introduce and describe 
a patching approach based on a novel combination of the 
variational iterative method (VIM) [4] and adaptive cubic 
spline collocation scheme for the solution of a class of 
self-adjoint singularly perturbed second-order two-point 
boundary value problems that model various engineering 
problems. The domain of the problem is decomposed into 
two subintervals: the VIM is implemented in the vicinity 
of the boundary layer while in the outer region the 
resulting problem is tackled by applying an adaptive cubic 
spline collocation scheme (ASS), which comprises the use 
of mapping/transformation redistribution functions or 
constructed grading functions. Numerical results, 
computational comparisons, appropriate error measures 
and illustrations are provided to testify the convergence, 
efficiency and applicability of the method. Performance of 
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this method is examined through test examples that reveal 
that the current approach converges to the exact solution 

rapidly and with ( )4h  accuracy and that the 

convergence is uniform across the domain. The proposed 
technique yields numerical solutions in very good 
agreement with and/or superior to existing exact and 
approximate solutions. 

In [5], a numerical method is proposed for solving 
singularly perturbed turning point problems exhibiting 
twin boundary layers based on the reproducing kernel 
method (RKM). The original problem is reduced to two 
boundary layers problems and a regular domain problem. 
The regular domain problem is solved by using the RKM. 
Two boundary layers problems are treated by combining 
the method of stretching variable and the RKM. The 
boundary conditions at transition points are obtained by 
using the continuity of the approximate solution and its 
first derivatives at these points. Two numerical examples 
are provided to illustrate the effectiveness of the present 
method. The results compared with other methods show 
that the present method can provide very accurate 
approximate solutions. 

In [6], a reliable algorithm is presented to develop 
approximate analytical solutions of fourth order singularly 
perturbed two-point boundary value problems in which 
the highest order derivative is multiplied by a small 
parameter. In this method, first the given problem is 
transformed into a system of two second order ODEs, 
with suitable boundary conditions and a zeroth-order 
asymptotic approximate solution of the transformed 
system is constructed. Then, the reduced terminal value 
system is solved analytically using the differential 
transform method. Some illustrating examples are solved 
and the results are compared with the exact solutions to 
demonstrate the accuracy and the efficiency of the method. 
It is observed that the present method approximates the 
exact solution very well not only in the boundary layer, 
but also away from the layer. 

In [7], author describes a Liouville-Green transform to 
solve a singularly perturbed two-point boundary value 
problem with right end boundary layer in the interval [0,1]. 
They reply Liouville-Green transform into original given 
problem and finds the numerical solution. Then they 
implemented this method on two linear examples with 
right end boundary layer which nicely approximate the 
exact solution. 

In [8], author will present a new scheme for 
discretization of singularly perturbed boundary value 
problems based on finite difference methods. This method 
is a combination of simple upwind scheme and central 
difference method on a special non-uniform mesh 
(Shishkin mesh) for the space discretization. Numerical 
results show that the convergence of method is uniform 
with respect to singular perturbation parameter and has a 
higher order of convergence. 

In [9], One question always strikes in every numerical 
analyst’s mind: ‘‘Why we need higher-order methods?’’ 
Not only because they converge faster than the lower 
order methods but also that they provide highly accurate 
results in fewer number of steps. Whenever the high order 
accuracy is/was expected, many researchers try/tried in 
various different ways to design the higher-order methods. 
Out of the main two approaches to obtain higher-order 

methods; the first one is to use the methods based on the 
idea of acceleration of convergence whereas the other, 
considered in this paper, is to use the higher-order 
methods directly. 

Here author explore the idea of deriving some higher 
order schemes (specially those which uses variable step 
sizes ) by considering the following self-adjoint singularly 
perturbed two point boundary value problem 

 ( )( ) ( ) ( )
[ ] ( ) ( )0 1

,

0,1 , 0 , 0

Ly a x y b x y f x

x y y

ε

η η

′′≡ − + =

∈ = =
 (1) 

where 0 1,η η  are given constants and 0 1.ε< ≤  Further, 
( ), ( ) ( )f x a x and b x  are sufficiently smooth functions 

satisfying the conditions 

 ( ) ( )0, 0.a x a b x b≥ > ≥ >  (2) 

Authors systematically describe how to derive a method of 
higher order for the numerical solution of singularly 
perturbed ordinary differential equations. First they apply 
this idea to derive a fourth-order method for a self-adjoint 
singularly perturbed two point boundary value problem. 
This method is uniformly convergent on a piecewise 
uniform mesh of Shishkin type. After developing and 
analyzing a fourth-order method, it is explained with 
appropriate details, how can one obtain the methods of 
order higher than four which looks straightforward but has 
not been seen in the literature so far. Besides these, the 
fourth-order ε-uniformity in the theoretical estimate has 
been justified by some numerical experiments. 

In [10], author present a parameter robust 
computational method for solving an initial value problem 
(IVP) for a system of first order singularly perturbed 
ordinary differential equations of the form 
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 ( ) ( )0
, 0  1 1 ,i iu u for i nε = =  (4) 

Where ( ),1 ,2 ,, .,
T

nu u u uε ε ε ε= …  and ( ) ( )1 Ω ,uε ℘  

Ω [0, ]X=  and  .
d

D denotes
dx

 The functions 

( ) ( )2, Ω ,ij ia f ∈℘  , 1, 2 , ,i j n= ……  satisfy the following 
inequalities: 
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i) ( ) ( )1, , 1(1)n
ii ijj j ia x a x i n= ≠> =∑   (5) 

ii) ( ) ( )0, , 1 1 ,iia x i j n i j< = ≠  

Both are [ ]0, .x X∀ ∈  
We introduce the positive number 

 { }1 2 11 1 1min , .. , ,n n n
j j jj j ja a aα = = == ……∑ ∑ ∑  (6) 

and author assume henceforth that the singular 
perturbation parameter ε  satisfies 0 1.ε<   Without 
loss of generality we take X = 1. We introduce the notation 

 ( ] ( ) [ ]0Ω 0,1 , Ω 0,1 Ω 0,1 .and= = =  

For a vector u with n components we use the vector 
norm 

 max , 0(1)i
i

u u i n= =  

and for a continuous function v defined on Ω  we use the 
continuous maximum norm 

 max ( ) ,
x

v v xΩ ∈Ω
=  

Appropriate numerical methods for generalizations of 
problems of the form Eqs. (3)–(6) were presented in [11]., 
In this paper, it is proved that it gives essentially first 
order parameter uniform convergence in the maximum 
norm. Numerical results are presented in support of the 
theory. 

In [12], author consider a class of singularly perturbed 
two-point singular boundary value problem of the form: 

 ( ) ( ) ( ) ( ) , 0 1,ku u x g x u x f x x
x

ε ′′ ′− + + = ≤ ≤  (7) 

Subject to the boundary conditions 

 ( ) ( )0 1,0 , 1u uγ γ= =  (8) 

where ( )) g x0 1, ( ,f xε<   are bounded continuous 

functions in ( ) ( )0,1 , 0g x >  and 0, 1,γ γ  are finite constants. 
This class of problems occurs frequently in many areas of 
science and engineering, for example, fluid mechanics, 
quantum mechanics, optimal control, chemical-reactor 
theory, aerodynamics, reaction diffusion process, 
geophysics, etc. Different numerical methods have been 
proposed by various authors for singularly perturbed two-
point boundary value problems [13-20]. Spline methods 
for solution of singularly perturbed boundary value 
problems are given in [21,22,23,24]. Mohanty et al. 
[25,26,27,28] used various methods based on tension 
spline and compression spline methods on a uniform and 
non-uniform mesh. The use of variable mesh with finite 
order of accuracy for the solution of above two-point 
boundary value problem was studied by Stojanovic [29]. 
In this paper, author develop a numerical technique for a 
class of singularly perturbed two-point singular boundary 
value problems on an uniform mesh using polynomial 
cubic spline. The scheme derived in this paper is second-
order accurate. The resulting linear system of equations 
has been solved by using a tri-diagonal solver. Numerical 
results are provided to illustrate the proposed method and 
to compared with the methods in [30]. 

In [31], construction and analysis of non-standard finite 
difference methods for a class of singularly perturbed 
differential equations is considered. This special class 
consists of two types of problems: (i) those having 
solutions with layer behavior and (ii) those having 
solutions with oscillatory behavior. Since no fitted mesh 
method can be designed for the latter type of problems, 
other special treatment is necessary, which is one of the 
aims being attained in this paper. The main idea behind 
the construction of our method is motivated by the 
modeling rules for non-standard finite difference methods, 
developed by Mickens. These rules allow one to 
incorporate the essential physical properties of the 
differential equations in the numerical schemes so that 
they provide reliable numerical results. Note that the usual 
ways of constructing the fitted operator methods need the 
fitting factor to be incorporated in the standard finite 
difference scheme and then it is derived by requiring that 
the scheme be uniformly convergent. The method 
presented in this paper is fairly simple as compared to the 
other approaches. Several numerical examples are given to 
support the predicted theory. 

In [32], consider a fourth-order finite-difference method 
for singularly perturbed one-dimensional reaction-
diffusion problem of below form: 

 ( ) ( ) ( )
[ ] ( ) ( )

2 ,

0,1 , 0 , 1 ,

y x b x y f x

x I y A y B
ε ε

ε ε

ε ′′− + =
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 (9) 

where ε  is the perturbation parameter, 0 1ε< < . For 
simplicity, it is assumed that b and f are sufficiently 
smooth, i.e. , ( )b f C I∞∈  and 

 ( ) 2 0,b x x Iβ> > ∈  (10) 

but, of course, these conditions can be somewhat 
relaxed, cf. [33]. The condition (10) is a standard stability 
condition, which implies that (9) has a unique solution 

( ).y C Iε
∞∈  

In [34], a finite difference scheme for a class of linear 
singularly perturbed boundary value problems with two 
small parameters is considered. The problem is discretized 
using a Bakhvalov-type mesh. It is proved under certain 
conditions that this scheme is fourth-order accurate and 
that its error does not increase when the perturbation 
parameter tends to zero. Numerical examples are 
presented which demonstrate computationally the fourth 
order of the method. 

In [35], semi- linear problem of below type is 
considered: 

 ( ) ( )
[ ] ( ) ( )

2 , 0,

0,1 , 0 , 1

u x b x u

x I u A u B

ε ′′− + =

∈ = = =
 (11) 

was considered under assumption 

 ( ) 2, 0, , ,ub x u x I uβ> > ∈ ∈  (12) 

A classical finite-difference scheme on a non-uniform 
mesh is used to solve (11) numerically. The discretization 
mesh is of Bakhvalov-type, which generalizes the idea 
from [36]. This enables the second order convergence 
uniform in ε . The semilinear problem of (11), (12) was 
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considered in [37] with the following constraint on b in 
addition to (12): 

 
( ) ( )

( ){ }2

, , , ,

,min 5 2 0

ub x u Q x x I

u Q xβ

≤ ∈

∈ − >
 

In this paper, the method discretizes the problem (11) 
on a special nonequidistant mesh of Bakhvalov-type that 
is dense in the boundary layers. It uses a nonequidistant 
generalization of the fourth order three point finite-
difference scheme, known as the Hermite or Numerov scheme. 
The uniform in ε - fourth order convergence is proved. The 
main contribution of this paper is to construct a new 
uniform fourth order difference scheme for the boundary 
value problem (9). We extend the results given in [38] to 
the case of singularly perturbed problem (9) on nonequidistant 
mesh. Here, numerical solution of the boundary-value 
problem ( ) ( ) ( ) ( )– ,y x p x y b x y f xε′′ ′+ + =  ( )0 ,y A=  

( )1y B=  on equidistant mesh was considered. Here 
author shall talk about finite difference schemes on special 
nonequidistant meshes. The reason for using these meshes 
is our aim to place more mesh points in the region of the 
boundary layers. Two-point boundary value problem are 
often conveniently solved with finite-difference methods 

that are accurate to ( )21 nϑ , where n  is number of 

subintervals. The principal attractive feature of the 
second-order methods is that the central difference 
approximations that are used ultimately lead to a 
tridiagonal matrix problem which may be efficiently 
solved using a direct elimination method. After solving 
the problem by this method, the truncation error is smaller 

than ( )21 nϑ  traditionally which have been developed by 

direct inclusion of higher-order differences in the 
approximations at each mesh point. This method produces 
a system of equations which is not tridiagonal and hence 

is more difficult to solve than the ( )21 nϑ  schemes. In 

this paper author present a new tridiagonal fourth order 
method. It is assumed that the functional coefficients of 
the differential equation are known analytical functions 
and each function is simple enough so that analytical 
differentiation is feasible. 

In [39], a new computational method is suggested to 
solve the following third-order singularly perturbed 
boundary-value problem with a boundary layer at the left 
of the underlying interval in the reproducing kernel space: 
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where ( ) [ ] ( ) ( ) ( )1
20 1, 0,1 , , ,f x W a x b x c xε< ∈  are 

sufficiently smooth function and ( ) , 0.a x α α≥ − >  In this 
method, first the given third-order singularly perturbed 
boundary-value problem is transformed into a system of 
two ODEs subject to suitable initial and boundary 
conditions and a zeroth-order asymptotic expansion for 
the solution of the given problem is constructed. Then the 
reduced terminal value problem is solved analytically in 

the reproducing kernel space. This method is effective and 
easy to implement. A numerical example is studied to 
demonstrate the accuracy of the present method. Results 
obtained by the method are found to be in good agreement 
with the exact solution not only in the boundary layer, but 
also away from the layer. 

In [40], consider the following class of self-adjoint 
singularly perturbed two-point boundary value problems 
in the conservation form : 

 ( ) ( )( ) ( ) ( ) ( ) ,
0 1

Lu a x y x b x y x g x

where x

ε ′′≡ − + =

≤ ≤ ，
 (14) 

subject to 

 ( ) ( )0 , 1 , , ,y yα β α β= = ∈  (15) 

where ε  is a small positive parameter and a(x), b(x) and 
g(x) are smooth functions that satisfy 

 ( ) ( ) ( )* 0, 0, * 0.a x a a x b x b′≥ > ≥ ≥ >  

Under these conditions, the operator L admits a 
maximum principle [41]. Such problems have non-smooth 
solutions as 0ε →  with singularities related to boundary 
layers [42] and arise in various fields of science and 
engineering, for instance, fluid mechanics, quantum 
mechanics, optimal control, chemical-reactor theory, 
aerodynamics, reaction-diffusion process, geophysics etc. 
There are two kinds of approaches to deal with such 
problems: the first one is fitted mesh method which 
consists of choosing finer meshes in the layer region(s), 
and another is fitted operator method in which meshes 
remain uniform and the difference operator reflects the 
singularly perturbed nature of the differential operator. 
These kinds of problems using one or both of the 
strategies have been discussed in [43,44]. Earlier author 
have discussed such problems using B-spline with 
Shishkin mesh [45]. One of the drawbacks with the 
Shishkin mesh method is that, it requires a priori 
knowledge of the location and width of the boundary 
layers, therefore it motivates us to look for some adaptive 
methods. Recently, Lubuma and Patidar [46] have given a 
non-standard finite difference scheme to deal with such 
problems using the second approach (fitted operator). 

Wavelet optimized finite difference [47] works by 
using an adaptive wavelet to generate irregular grids 
which is then exploited for the finite difference method 
(Lagrange finite difference in our case) and therefore it 
comes under fitted mesh methods. In singular perturbation 
problems we have shocks as boundary layers. For such 
kinds of problems, a solution can be smooth in most of the 
solution domain with a small area where the solution 
changes quickly. When solving such problems 
numerically, one would like to adjust the discretization to 
the solution. In terms of mesh generation (first approach), 
we want to have many points in an area where the solution 
has strong variations and few points in the area where the 
solution has weak variations. With a very small 
perturbation parameter ε  a large jN  (total no. of mesh 
points at jth level) is required to obtain accurate solution. 
For a good approach of the numerical solution, at least one 
of the collocation points should lie in the boundary layer. 
For example, if the problem possesses a boundary layer of 
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width ( )Ο ,ε  then on a uniform grid with 1Ο( )jN −  

spacing between the points we need 1Ο( )jN −=   which 
is not practically possible when 1  Many attempts 
have been done to develop numerical methods for 
specially designed grids that contain more points in and 
around the layers from time to time. Many authors 
developed a successful upwind central difference scheme 
on a piecewise uniform mesh. Wavelets have been making 
their presence in the field of many pure and applied areas 
of science and engineering [48]. Wavelets detect 
information at different scales and at different locations 
throughout the computational domain. Wavelets can 
provide bases in which the basis functions are constructed 
by dilating and translating a fixed function known as the 
mother wavelet (first generation wavelets). The mother 
wavelet can be seen as a high pass filter in the frequency 
domain. One of the key strength of the wavelet methods is 
data compression. An efficient basis is one in which a 
given set of data can be represented with as few basis 
elements as possible. Suppose we have wavelet 
representation of a function 

 ( ) ( ),j j j j
k k k kk c x d xϕ ψ+∑  (16) 

where ( )j
k xϕ  are scaling function and j

kψ  are wavelets. 

The coefficients of the scaling functions ,j
kc  deal with 

smoother part of the function, while the wavelet 
coefficients j

kd  contain information of the function's 
behavior on successive finer scales. The most common 
way of compressing such a representation is thresholding. 
We generally delete all wavelet coefficients of magnitude 
less than some threshold, say .τ  If the total number of 
coefficients in the original representation are ,jN  we 

have sN  significant coefficients left after the thresholding. 
Note that by thresholding a wavelet representation, we 
have a way to find an adaptive feature and we can also use 
this representation to compute function values at any point. 

Author design a wavelet optimized finite difference 
(WOFD) scheme for solving self-adjoint singularly 
perturbed boundary value problems. The method is based 
on an interpolating wavelet transform using polynomial 
interpolation on dyadic grids. Small dissipation of the 
solution is captured significantly using an adaptive grid. 
The adaptive feature is performed automatically by 
thresholding the wavelet coefficients. Numerical examples 
have been solved and compared with non-standard finite 
difference schemes. The proposed method performs the 
non-standard finite difference for studying singular 
perturbation problems for small dissipations (very small ε) 
and effective grid generation. Therefore, the proposed 
method is better for studying the more challenging cases 
of singularly perturbed problems. 

In [49], a new boundary value technique, which is 
simple to use and easy to implement, is presented for a 
class of linear singularly perturbed two-point boundary 
value problems with a boundary layer at one end (left or 
right) point of the underlying interval. As with other 
methods, the original problem is partitioned into inner and 
outer solution of differential equations. The method is 
distinguished by the following fact: the inner region 

problem is solved as a two-point boundary layer 
correction problem and the outer region problem of the 
differential equation is solved as initial-value problem 
with initial condition at end point. Some numerical 
experiments have been included to demonstrate the 
applicability of the proposed method. 

In [50], a new method is presented for the following 
singularly perturbed problem: 

 ( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

,0 1,
0 0, 1 0,

u x a x u x b x u x g x x
u u

ε ′′ ′ + + = < <
 = =

(17) 

where ( ) ( )0 1, ,a x b xε<   and ( )g x  are assumed to be 

sufficiently smooth, and ( ) 0,a x ≥∝> ∝  is a constant. 
Under the above assumption, (17) has a solution with a 
boundary layer at 0.x =  Here author only consider 
( ) ( )0 1 0,u u= =  since the boundary conditions ( )0 ,u =∝  

( )1 ,u β=  can be reduced to (0) (0) (1) 0.u u u= = =  In this 
paper, a reproducing kernel method (RKM ) is presented 
for solving a class of singularly perturbed boundary value 
problems. Firstly the original problem is reformulated as a 
new boundary value problem whose solution does not 
change rapidly via a proper transformation; then the 
reproducing kernel method is employed to solve the 
boundary value new problem. Numerical results show that 
the present method can provide very accurate analytical 
approximate solutions. 

In [51], a finite difference scheme for a class of linear 
singularly perturbed boundary value problems with two 
small parameters is presented. The problem is discretized 
using a Bakhvalov- type mesh. It is proved under certain 
conditions that this scheme is fourth-order accurate and 
that its error does not increase when the perturbation 
parameter tends to zero. Numerical examples are 
presented which demonstrate computationally the fourth 
order of the method. 

3. Non-linear Singular Perturbation 
Boundary Value Problems 

The singularly perturbed boundary value problems 
(BVPs, for short) to nonlinear ordinary differential 
equations, which have important applications in fluid 
dynamics, have been studied in [52,53,54]. The existence 
and asymptotic estimates of solutions for singularly 
perturbed boundary value problem to third-order nonlinear 
differential equations were discussed in many papers in 
recent years. Many techniques arose in the studies of this 
kind of problem. For example, Howes [55] has considered 
problems of type 

 ( ) ( ) ( ) ( ) ( )2 , , ,y f y y g x y y a A y b B y b Cε ′′ ′ ′= + = = = (18) 

and discussed the existence and asymptotic estimates of 
the solutions by the method of descent. J.H.He [56] 
coupled the iteration method with the perturbation method 
to solve the well-known Blasius equation, and proved the 
obtained approximate analytic solutions are valid for the 
whole solution domain. Zhao [57] has discussed a more 
general class of a third-order singularly perturbed 
boundary value problems of the form 
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 ( ) ( ) ( ) ( ), , , , 0 0, 1 0, 1 0y f x y y y y yε ε′′′ ′ ′ ′= = = =  (19) 

and discussed the existence of solution and obtained 
asymptotic estimates using the theory of differential 
inequalities. Feckan [58] has studied high order problems 
and his approach was based on the nonlinear analysis 
involving fixed-point theory, Leray–Schauder theory, etc. 
Du et al. [59] discussed the existence, uniqueness and 
asymptotic estimates of solutions of the following multi-
point singularly perturbed boundary value problem 

 ( ) ( ) ( ) ( )( ), , , , 0,

0 1,0 1,

x t f t x t x t x t
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ε ε
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≤ ≤ < 
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By employing of an asymptotic numerical method, 
Valarmathi and Ramanujam [60] have considered 
singularly perturbed third-order ordinary differential 
equations of Convection–Diffusion type. However, the 
boundary value problems in the above-mentioned 
references are all scalar and rare works are done for 
singular perturbation of nonlinear systems. Here, we 
considered few nonlinear singular perturbation problems. 

In [61], we discuss singular perturbations of third-order 
nonlinear ordinary differential equations with full 
nonlinear boundary conditions. The emphasis here is that 
the nonlinear term depends on the first, second order 
derivatives and the boundary conditions are full nonlinear 
that is where the main novelty of this work lies. By 
applying the upper and lower solutions method, as well as 
analysis technique, the existence, uniqueness results for 
the singularly perturbed boundary value problem are 
established and asymptotic estimates of solutions is also 
obtained. 

In [62], author study the following singularly perturbed 
nonlinear systems: 

 ( )2 , , , ,0 1,0 1x f t x x x tε ε′′′ ′ ′′= < < <   (22) 

together with the boundary conditions 

 
( )

( ) ( )
( ) ( )

'
1 2

' ''
1 2

0,

0, 0,

1, 1,

x A

P x P x B

Q x Q x C

ε

ε ε

ε ε

=
 ′′− =


+ =

 (23) 

where 
(A) ε is a small positive parameter, x, f, A, B and C are n-
vectors, the ith component of A satisfies 

 ( )0 1,2, ,iA i n≥ = ………  

(B) ( ) ( )1 1, , , ,j j jn j j jnP diag p p Q diag q q= …… = ……  

1 20, 0, 0,ji ji i ip q p p≥ ≥ + >  

 ( )1 2 0 1, 2; 1, 2, .., .i iq q j i n+ > = = ……  

These two conditions will be assumed to hold 
throughout the paper. 

To apply the method of descent to study BVP (22) and 
(23), we need to discuss the singularly perturbed second- 

order Volterra type integro-differential boundary value 
problem 

 ( )2 , , , ,0 1,0 1,x f t Tx x x tε ε′′′ ′= < < <   (24) 

 ( ) ( ) ( ) ( )1 2 1 20, 0, , 1, 1, .P x P x B Q x Q x Cε ε ε ε′ ′− = + = (25) 

Author first study the problem 

 ( ), , , ,0 1,x f t Tx x x t′′ ′= < <  (26) 

 ( ) ( ) ( ) ( )1 2 1 20 0 , 1 1 ,P x P x B Q x Q x C′ ′− = + =  (27) 

where [ ]( ) ( )1 1, ., ,n nTx t T x T x= ……  

[ ]( ) ( )
0

,i i i i
t

T x t A x s ds+= ∫  1, 2, .i n= ……  

This paper deals with the existence of solutions to a 
singularly perturbed boundary value problem for third-
order nonlinear differential systems. The authors construct 
an appropriate generalized lower solution–upper solution 
pair, a concept that is defined in this paper, and employ 
the method of descent, Nagumo conditions, algebraic 
boundary layer functions and Volterra type integral 
operator to guarantee the existence of solutions of the 
problem. The method gives uniformly valid asymptotic 
estimate of the solutions. The differential systems have 
nonlinear dependence on all over order derivatives of the 
unknown. 

In [63], consider the singular perturbation problem 
(SPP) in the quasilinear form 

 
( ) ( )
( ) ( )

, ,

  ,  , 0,

u f x u u g x u

for x a b and f x u

ε ′′ ′= +

≠
 (28) 

 ( ) ( ) ,a bu a v and u b v= =  (29) 

where the positive constant 1ε   is the singular 
perturbation parameter, and ( ),  ( , )f x u and g x u  are 1c  
in the domain. Assume that the right hand side 

( ) ( )( , , ) , ,x u u f x u u g x uϕ ′ ′≡ +  of Eq. (28) satisfies a 
generalized Nagumo condition, Chang and Howes [64]. 
This simply means that every solution ( )u u x=  satisfying 

( ) ( ) ( )x u x xβ∝ ≤ ≤  on a subinterva [ , ]J a b  has a 
bounded derivative, that is, there exists a constant 

( , )N N β= ∝  such that ( )u x N′ ≤  on . ( )J x∝  and ( )xβ  

are functions of 2 ([ , ])C a b . A new method is developed 
by detecting the boundary layer of the solution of a 
singular perturbation problem. On the nonboundary layer 
domain, the singular perturbation problem is dominated 
by the reduced equation which is solved with standard 
techniques for initial value problems. While on the 
boundary layer domain, it is controlled by the singular 
perturbation. Its numerical solution is provided with finite 
difference methods. This finite difference method is 
developed up to sixth order. The numerical error is 
maintained at the same level with a constant number of 
mesh points for a family of singular perturbation problems. 
Numerical experiments support the analytical results. 

In [65], a method based on initial value technique is 
proposed for solving non-linear two-point singularly 
perturbed boundary value problems for second order 
ordinary differential equations (ODEs) with a boundary 
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layer at one (either left or right) end. The original 
singularly perturbed boundary value problem is reduced to 
an initial value problem approximated by its outer solution 
(asymptotic approximation). The new initial value 
problem is solved by proposed non-linear single step 
explicit scheme followed the idea given in [66]. The 
proposed scheme has been shown to be of order two. To 
demonstrate the applicability of the proposed scheme 
several (linear and non-linear) problems have been solved. 
It is observed that the present scheme approximate the 
exact solution very well. 

Consider the following nonlinear singularly perturbed 
boundary value problem [67]: 
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( )
( ) [ ]

, ,
, , 0,1 ;

, , ,
z y

dz f z y t
dt z y t D D

dy g z y t
dt

ε = × ×
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  (30) 
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 + = <
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  (31) 

where z  and f  are both M  -dimensional vectors y  and 
g  are both m -dimensional vectors and Dz  and Dy  are 

domains in MR  and mR  respectively. Let ,kI o
a

o o
 

=  
 

 

where (0 )kI k M≤ ≤  is a kth  order identity matrix, and 
.Mb I a= −  

In this paper, author show differentiability of solutions 
with respect to the given boundary value data for 
nonlinear singularly perturbed boundary value problems 
and its corresponding asymptotic expansion of small 
parameter. This result fills the gap caused by the 
solvability condition in Esipova’s result so as to lay a 
rigorous foundation for the theory of boundary function 
method on which a guideline is provided as to how to 
apply this theory to the other forms of singularly perturbed 
nonlinear boundary value problems and enlarge 
considerably the scope of applicability and validity of the 
boundary function method. A third-order singularly 
perturbed boundary value problem arising in the theory of 
thin film flows is revisited to illustrate the theory of this 
paper. Comparing to the original result, it is found that the 
imposed potential condition is completely removed by the 
boundary function method to obtain a better result. 
Moreover, an improper assumption on the reduced 
problem has been corrected. 

In [68], author present an approximate method (Initial 
value technique) for the numerical solution of quasilinear 
singularly perturbed two point boundary value problems 
in ordinary differential equations having a boundary layer 
at one end (left or right) point. It is motivated by the 
asymptotic behavior of singular perturbation problems. 
The original problem is reduced to an asymptotically 
equivalent first order initial value problem by 
approximating the zeroth order term by outer solution 
obtained by asymptotic expansion, and then this initial 
value problem is solved by an exponentially fitted finite 
difference scheme. Let NY  be the numerical 
approximation, N  be the number of mesh elements used, 
y  be the solution of the continuous problem and 

Ω Ωmax ( )xy y x=   be the maximum pointwise norm, the 
error constant C  be independent of any perturbation 
parameters and the mesh parameter N . A numerical 
method is said to be parameter-uniform of order p  if 

 
Ω

, 0,N p
pNy y C N p−− ≤ >  

where ΩN  is the discretization of Ω  (domain of the 
problem), the constant pC  is independent of any 
perturbation parameters and the mesh parameter .N  In 
other words, the numerical approximations NY  converge 
to y  for all values of ε  in the range 0 1.ε<   

It is well known that standard discretization methods 
for solving singular perturbation problems which are 
unstable and fail to give accurate results when the 
perturbation parameter ε  is small. Therefore, it is 
important to develop suitable numerical methods for these 
problems, whose accuracy does not depend on the 
parameter value ε , i.e. methods that are convergent ε -
uniformly [69,70]. There are essentially two strategies to 
design schemes which have small truncation errors inside 
the layer region (s). The first approach which forms the 
class of fitted mesh methods consists in choosing a fine 
mesh in the layer region (s). The second approach is in the 
context of the fitted operator methods in which the mesh 
remains uniform and the difference schemes reflect the 
qualitative behavior of the solution (s) inside the layer 
region (s). A nice discussion using one or both of the 
above strategies can be found in many singular 
perturbation books. Some numerical examples are given to 
illustrate the given method. It is observed that the 
presented method approximates the exact solution very 
well for crude mesh size h. 

There are a lot of physical problems that can be 
depicted by nonlinear ordinary differential equations 
(ODEs) involving some parameters. A particular interest 
is the solution behavior of those physical problems with 
one or more of the parameters being quite small. For 
example, for the steady-state Burgers equation [71]: 

 ( ) ( ) ( ) 0, 1 1,w z w z w z zε ′′ ′− = − < <  (32) 

 ( ) ( )1 0, 1 1w w− = = −  (33) 

the parameter 1/ Rε =  can be very small, when the 
Reynolds number R is very large. 

When the boundary conditions are imposed to such type 
ODEs, the resulting problems are usually called the 
singularly perturbed boundary value problems (SPBVPs). 
Theoretically, the solutions of SPBVPs have to exactly 
satisfy the boundary conditions, but numerically this may 
be a quite difficult task, because a strong singularity exists 
within the boundary layer. 

The Lie-group is a differentiable manifold, endowed 
with a group structure that is compatible with the 
underlying topology of manifold. The main purpose of 
Lie-group solver is providing an algorithm that can retain 
the orbit generated from numerical solution on the 
manifold which is associated with the Lie-group. The 
retention of Lie-group structure under discretization is 
vital in the recovery of qualitatively correct behavior in 
the minimization of numerical error [72]. 
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Here, author propose a novel Lie-group shooting 
method for the solution of 

 ( ) ( ) ( ) ( )1 2, , 0,0 1u x h x u u x h x u xε ′′ ′+ + = < <  (34) 

 ( ) ( )0 , 1u uα β= =  (35) 

where ε  is a small parameter, ( )1 ,h x u  and ( )2 ,h x u  are 
given functions, a and b are given constants, and [0,1]  is a 
normalized spatial interval of our problem. The prime 
denotes the differential with respect to x. This problem is 
a second-order nonlinear SPBVP. For the problems which 
are not defined in the above range, a suitable rescale of the 
spatial coordinate can bring them into a problem defined 
in the range of [0,1]x∈ . As a demonstration, by letting 

2 1,z x= −  the above steady-state Burgers equation (32) 
can be written as 

 ( ) ( ) ( )2 0,0 1,u x u x u x xε ′′ ′− = < <  

 ( ) ( )0 0, 1 1,u u= = −  

where ( ) ( )2 1 .u x w x= −  
Now, author can transform Eqs. (34) and (35) into a 

mathematically equivalent first-order ODEs system: 

 1 2,u u′ =  (36) 

 ( ) ( )'
2 1 1 2 2 1

1 , , ,u h x u u h x u= − +  
 (37) 

 ( ) ( )1 20 , 1  .u uα β= =  (38) 

Eqs. (36)–(38) constitute an (u, x)-BVP, where 
( ) ( ) ( )1 2( , )u x u x u x=  denotes the system dependent 

variables in the x-domain. In order to overcome a highly 
singular behavior very near to the boundary as being not 
easy to treat by numerical method, we adopt a coordinate 
transformation from an x-domain to a t-domain via a 
rescaling technique, which can reduce the singularity 
within the boundary layer. Then, we construct a Lie-group 
shooting method (LGSM) to search a missing initial 
condition through the finding of a suitable value of a 
parameter [ ]0,1 .r∈  Moreover; we can derive a closed-
form formula to express the initial condition in terms of r, 
which can be determined properly by an accurate 
matching to the right-boundary condition. Numerical 
examples are examined, showing that the present approach 
is highly efficient and accurate. 

In [73], a boundary value method for solving a class of 
nonlinear singularly perturbed two point boundary value 
problems with a boundary layer at one end is proposed. 
Using singular perturbation analysis the method consists 
of solving two problems; namely, a reduced problem and a 
boundary layer correction problem. Author use Pade’ 
approximation to obtain the solution of the latter problem 
and to satisfy the condition at infinity. Numerical 
examples will be given to illustrate the method. 

4. Parameterized Singular Perturbation 
Boundary Value Problems 

In [74], consider the following singular perturbation 
BVP depending on a parameter: 

 ( ) ( ) ( ], , 0, Ω 0, ,u x f x y x lε λ′ + = ∈ =  (39) 

 ( ) ( )0 ,u A u l B= =  (40) 

where ε  is a small positive parameter, A  and B  are given 
constants. The function ( ), ,f x y λ  is assumed to be sufficiently 

differentiable function in { }( )2Ω Ω Ω 0x× = =∪  and 

 *0 ,f a
u

α ∂
< ≤ ≤ < ∞

∂
 

 1 10 .fm M
λ
∂

< ≤ ≤ < ∞
∂

 

By a solution of (39) and (40) we mean a pair 
( ){ } 1, (Ω)u x Cλ ×   for which problem (39)–(40) is 

satisfied. For 1ε   the function ( )u x  has a boundary 
layer of thickness ( )O ε  near 0.x =  Problems with a 
parameter have been considered for many years. For a 
discussion of existence and uniqueness results and for 
applications of parameterized equations see, [75-81] and 
references therein. In reference [82], some approximating 
aspects of this kind of problems has been considered. But 
algorithm designed for above-mentioned papers are only 
concerned with the regular cases (i.e., when the boundary 
layers are absent). The numerical analysis of singular 
perturbation cases has always been far from trivial 
because of the boundary layer behavior of the solution. 
Such problem undergo rapid changes within very thin 
layers near the boundary or inside the problem domain 
[83,84,85,86,87]. It is well known that standard numerical 
methods for solving such problems are unstable and fail to 
give accurate results when the perturbation parameter ε  is 
small. Therefore, it is important to develop suitable 
numerical methods to these problems, whose accuracy 
does not depend on the parameter value ε , i.e., methods 
that are convergence ε -uniformly. For the various 
approaches on the numerical solution of differential 
equations with steep, continuous solutions, author may 
refer to the monographs just given above. Here author 
analyze a finite difference scheme on a special mesh of the 
Bakhvalov type (a B-mesh) for the numerical solution of 
the BVP (39)–(40) and give a uniform first-order error 
estimates in a discrete maximum norm. Numerical results 
are presented that demonstrate the sharpness of theoretical 
analysis. 

In [88], consider the following singularly perturbed 
boundary value problem with a parameter: 

 ( ) [ ], , 0, 0,1 ,dy f x y x
dx

ε λ+ = ∈  (41) 

 ( ) ( )0 , 1 ,y A y B= =  (42) 

where ε  is a small positive parameter, A and B are given 
constants. Throughout this paper, it is assumed that 

 ( ) [ ]( )3 2, , 0,1 ,f x y Cλ ×   

 ( ) ( ) [ ] 2
0, , 0, , , 0,1f x y a x y

y
λ λ∂

≥ > ×
∂

   
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 ( ) ( ) [ ] 2, , 0, , , 0,1 ,f x y x y
y

λ λ∂
≠ ×

∂
   

From the solution of (41)–(42), author gets a pair 
( ){ } [ ]1, 0,1 ),y x Cλ ×   for which (41)–(42) is satisfied. 

Under these assumptions, (41)–(42) has a solution y = y(x), 
in general, displays a boundary layer of width  

 ( ) 0 1.at x forϑ ε ε= <<  

In this paper a novel approach is presented for solving 
parameterized singularly perturbed two-point boundary 
value problems with a boundary layer. By the boundary 
layer correction technique, the original problem is 
converted into two non-singularly perturbed problems 
which can be solved using traditional numerical methods, 
such as Runge–Kutta methods. Several non-linear 
problems are solved to demonstrate the applicability of the 
method. Numerical experiments indicate the high 
accuracy and the efficiency of the new method. 

In [89], consider the subsequent singular perturbation 
boundary value problem depending on a parameter k: 

 ( ) ( ) ( ], , 0, 0,1 ,u t g t u tε λ′ + =   (43) 

 ( ) ( )0 , 1 ,u A u B= =  (44) 

where a prime denotes derivative with respect to t, ε  is a 
small parameter, A and B are some prescribed constants. 
Under the assumption on ,u g  and λ  as stated in [90], 
problems (43) and (44) have a unique solution pair 

( ){ , }u t λ . For 1ε =  the problem considered is known as 
unperturbed, whereas for 1ε   it is so-called singularly 
perturbed. We should remark that although the two end 
points enter into the problem in exactly the same manner 
so that the boundary layers are possible both near 0t =  
and near 1,t =  we consider the present problem only with 
a boundary layer of width Ο( )ε  near the point 0.t =  It 
should also be reminded that the parameter k has no 
connection with the eigenvalue of the nonlinear 
differential equation under consideration, since there are 
two unknowns in (43) that can be determined exactly by 
the conditions given in (44). Here, a novel approach is 
presented for approximate solution of parameterized 
unperturbed and singularly perturbed two-point boundary 
value problems. The problem is first separated into a 
simultaneous system regarding the unknown function and 
the parameter, and then a methodology based on the 
powerful Homotopy Analysis Technique is proposed for 
the approximate analytic series solutions, whose 
convergence is guaranteed by optimally chosen 
convergence control parameters via square residual error. 
A convergence theorem is also provided. Several 
nonlinear problems are treated to validate the applicability, 
efficiency and accuracy of the method. Vicinity of the 
boundary layer is shown to be adequately treated and 
satisfactorily resolved by the method. Advantages of the 
method over the recently proposed conventional finite-
difference method or Runga–Kutta methods are also 
discussed. 

In [91], a singularly perturbed semi-linear boundary 
value problem with two-parameters is considered. The 
problem is solved using exponential spline on a Shishkin 

mesh. The convergence analysis is derived and the method 
is convergent independently of the perturbation 
parameters. Numerical results are presented which support 
the theoretical results. 

5. Delay Differential Equations  
A singularly perturbed delay differential equation is an 

ordinary differential equation in which the highest 
derivative is multiplied by a small parameter and 
involving at least one delay term. In the past, less attention 
had been paid for the numerical solution of singularly 
perturbed delay differential equations. But in recent years, 
there has been a growing interest in the numerical 
treatment of such differential equations. This is due to the 
versatility of such types of differential equations in the 
mathematical modeling of processes in various application 
fields, for e.g., the first exit time problem in the modeling 
of the activation of neuronal variability [92], in the study 
of bistable devices [93], evolutionary biology [94], in a 
variety of models for physiological processes or diseases 
[95], to describe the human pupil-light reflex [96] and 
variational problems in control theory [97] where they 
provide the best and in many cases the only realistic 
simulation of the observed phenomena. For the numerical 
treatment of the first order singularly perturbed delay 
differential equations, one can see the thesis by Tian [98]. 
Lange and Miura [99] gave an asymptotic approach to 
solve boundary value problems for the second order 
singularly perturbed differential difference equation with 
small shifts. 

To approximate the solution of such boundary value 
problems, we consider the two cases on the basis of size of 
the delay (i) when the delay is of small order of the 
singular perturbation parameter and (ii) when the delay is 
of capital order of the singular perturbation parameter. In 
the first case, the numerical schemes proposed in [100] 
work nicely, but they fail in the second case, i.e., when the 
delay is of capital order of the singular perturbation 
parameter. This happens because there, we use Taylor’s 
series to approximate the term containing the delay which 
is valid provided the delay is of ( )ο ε  but may lead to a 
bad approximation in the case when the delay is of Ο( )ε . 
Here, we propose a generic numerical approach to solve 
the boundary value problem for singularly perturbed delay 
differential equations which works nicely in both the cases, 
i.e., whether the delay is of Ο( )ε  or of ( )ο ε . The 
numerical scheme comprises a standard upwind finite 
difference scheme on a special type of mesh to tackle the 
delay argument. The restriction on the coefficient of the 
reaction term was relaxed. The stability and error analysis 
for the proposed scheme is given in both the cases, when 
the sign of the coefficient of the reaction term is negative 
or positive. An extensive amount of computation work has 
been carried out to demonstrate the method and to show 
the effect of delay on the boundary layer behavior (which 
is exhibited due to the presence of the singular 
perturbation parameter) of the solution of the problem. 

In [101], a boundary value problem for second order 
singularly perturbed delay differential equation is 
considered. When the delay argument is sufficiently small 
to tackle the delay term, the researchers used Taylor’s 
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series expansion and presented an asymptotic as well as 
numerical approach to solve such type boundary value 
problem. But the existing methods in the literature fail in 
the case when the delay argument is bigger one because in 
this case, the use of Taylor’s series expansion for the term 
containing delay may lead to a bad approximation. 

Here, author present a numerical scheme for solving 
such type of boundary value problems, which works 
nicely in both the cases, i.e., when delay argument is 
bigger one as well as smaller one. To handle the delay 
argument, a special type of mesh is constructed so that the 
term containing delay lies on nodal points after 
discretization. The proposed method is analyzed for 
stability and convergence. To demonstrate the efficiency 
of the method and how the size of the delay argument and 
the coefficient of the delay term affect the layer behavior 
of the solution, several test examples are considered. 

In [102], the numerical study of the boundary value 
problems for nonlinear singularly perturbed differential-
difference equations with small delay is discussed. 
Quasilinearization process is used to linearize the 
nonlinear differential equation. After applying the 
quasilinearization process to the nonlinear problem, a 
sequence of linearized problems is obtained. To obtain 
parameter-uniform convergence, a piecewise-uniform 
mesh is used, which is dense in the boundary layer region 
and coarse in the outer region. The parameter-uniform 
convergence analysis of the method has been discussed. 
The method has shown to have almost second-order 
parameter-uniform convergence. The effect of small shift 
on the boundary layer(s) has also been discussed. To 
demonstrate the performance of the proposed scheme, two 
examples have been carried out. The maximum absolute 
errors and uniform rates of convergence have been 
presented to the reader. 

In [103], author study the boundary value problem 
(BVP) for the delay differential equation (DDE): 

 ( ) ( ) ( ) ( ) ( ) ( ) , Ωu x a x u x b x u x r f x xε ′′ ′+ + − =   (45) 

subject to the interval and boundary conditions, 

 ( ) ( ) ( )0, Ω ; ,u x x x u l Bϕ= =  (46) 

where ( ] ( )1 2 1 2Ω Ω Ω , Ω 0, , Ω , ,r r l= ∪ = =  [ ]Ω 0, ,l=  

0Ω [ ,0]r= −  and 0 1ε< ≤  is the perturbation parameter, 

( ) ( )0, , ( )a x b x f xα≥ >  and ( )xϕ  are given sufficiently 
smooth functions satisfying certain regularity conditions 
to be specified and ( 2 )r l r<  is a constant delay, which is 
independent of ε  and B  is a given constant. For small 
values of ε  the function u(x) has a boundary layer near 

0.x =  The numerical method presented here comprises a 
fitted difference scheme on a uniform mesh. This 
approach has been derived on the basis of the method of 
integral identities with the use of interpolating quadrature 
rules with the weight and remainder terms in integral form. 
This results in a local truncation error containing only first 
order derivatives of exact solution and hence facilitates 
examination of the convergence. In this paper, author state 
some important properties of the exact solution and 
discretize the domain by finite difference method. The 
error analysis for the approximate solution is presented. 
Uniform convergence is proved in the discrete maximum 

norm. Author also formulates the iterative algorithm for 
solving the discrete problem and present numerical results 
which validate the theoretical analysis computationally. 
The paper ends with a summary of the main conclusions. 
Throughout the paper, C denotes a generic positive 
constant independent of ε  and the mesh parameter. Some 
specific, fixed constants of this kind are indicated by 
subscripting C . 

In [104], consider an initial value problem (IVP) for the 
nonlinear second-order singularly perturbed delay 
differential equation in the interval [ ]0,I T : 

 ( ) ( ) ( ) ( )( ): , , ( ) 0, ,Lu u t a t u t f t u t u t r t Iε ′′ ′+ + − =  (47) 

 ( ) ( ) 0,  u t t t Iϕ=   (48) 

 ( )0 ,u A ε′ =  (49) 

Where ( ] { }110, , : ,m
p p p ppI T I I t r t r−== = = < ≤∪  

1 p m≤ ≤  ,sand r sr=  for 0 s m≤ ≤  and 0 [ ,0]I r= −  
(for simplicity we suppose that /T r  is integer; i.e., 
T mr= ). 0 1ε<   is the perturbation parameter, 
( ) 0,a t ≥∝>  ( ), , ,f x u v  and ( )tϕ  are given sufficiently 

smooth functions satisfying certain regularity conditions 
in 2,I I ×  and 0I  to be specified, A  is a constant and 
r is a constant delay, which is independent of .ε  Moreover 

 * *.andf fb c
u v
∂ ∂

≤ ≤
∂ ∂

 (50) 

In this work author present a completely exponentially 
fitted difference scheme on a uniform mesh for the IVP 
(47) and (48). The difference scheme is constructed by the 
method of integral identities with the use of exponential 
basis functions and interpolating quadrature rules with 
weight and remainder terms of integral form [105,106]. 
This method of approximation has the advantage that the 
schemes can also be effective in the case where the 
continuous problem is considered under certain restrictions. 
Some important properties of the exact solution are stated 
which will be needed for the analysis of the appropriate 
numerical solution. Here, author also presented the 
difference scheme and obtained uniform error estimates 
for the truncation terms and an appropriate solution on a 
uniform mesh. Numerical results are also presented. 

In [107], consider a general boundary value problem for 
the linear second-order delay differential equation of the 
below form: 

 ( ) ( ) ( )

( ) ( ) ( )

2

02
1,e i e i

u x x u x

u x a u x

σ µ

λ λ λ

′′ ′+ −

+ − − + = −
 (51) 

where the values 1x x≡  and 2x x≡  corresponds to the 
inhibitory reversal potential and to the threshold value of 
membrane potential for action potential generation, 
respectively. Here σ  and 0µ  are variance and drift 
parameters, respectively, u  is the expected first-exit time 
and the first-order derivative term ( )xu x′−  corresponds to 
exponential decay between synaptic inputs. The 
undifferentiated terms correspond to excitatory and 
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inhibitory synaptic inputs, modeled as Poisson process 
with mean rates eλ  and iλ , respectively, and produce 
jumps in the membrane potential of amounts ea  and ia  
respectively, which are small quantities and could be 
dependent on voltage. The boundary condition is 

 ( ) ( )1 20, , .u x x x x≡ ∉  

Here, author describe a numerical method based on 
fitted operator finite difference scheme for the boundary 
value problems for singularly perturbed delay differential 
equations with turning point and mixed shifts. Similar 
boundary value problems are encountered while 
simulating several real life processes for instance, first exit 
time problem in the modeling of neuronal variability. A 
rigorous analysis is carried out to obtain priori estimates 
on the solution and its derivatives for the considered 
problem. In the development of numerical methods for 
constructing an approximation to the solution of the 
problem, a special type of mesh is generated to tackle the 
delay term along with the turning point. Then, to develop 
robust numerical scheme and deal with the singularity 
because of the small parameter multiplying the highest 
order derivative term, an exponential fitting parameter is 
used. Several numerical examples are presented to support 
the theory developed in the paper. 

In [108], author present a numerical study of a class of 
boundary value problems of singularly perturbed 
differential difference equations (SPDDE) which arise in 
computational neuroscience in particular in the modeling 
of neuronal variability. The mathematical modeling of the 
determination of the expected time for the generation of 
action potential in the nerve cells by random synaptic 
inputs in dendrites includes a general boundary-value 
problem for singularly perturbed differential difference 
equation with shifts. The problem considered in this paper 
exhibit turning point behavior which add to the complexity in 
the construction of numerical approximation to the 
solution of the problem as well as in obtaining theoretical 
estimates on the solution. Exponentially fitted finite 
difference scheme based on Il’in-Allen-Southwell fitting 
is used on a specially designed mesh. Some numerical 
examples are given to validate convergence and 
computational efficiency of the proposed numerical 
scheme. Effect of the shifts on the layer structure is 
illuminated for the considered examples. 

In [109], a finite difference method is presented for 
singularly perturbed differential-difference equations with 
small shifts of mixed type (i.e., terms containing both 
negative shift and positive shift). Similar boundary value 
problems are associated with expected first exit time 
problems of the membrane potential in the models for the 
neuron. To handle the negative and positive shift terms, 
we construct a special type of mesh, so that the terms 
containing shift lie on nodal points after discretization. 
The proposed finite difference method works nicely when 
the shift parameters are smaller or bigger to perturbation 
parameter. An extensive amount of computational work 
has been carried out to demonstrate the proposed method 
and to show the effect of shift parameters on the boundary 
layer behavior or oscillatory behavior of the solution of 
the problem. 

6. Integral Equations 
Differential equations with integral boundary 

conditions constitute a very interesting and important class 
of problems and have been studied for many years. For a 
discussion of existence and uniqueness results and for 
applications of problems with integral boundary 
conditions see, below problem and the references therein:  

This work [110] is concerned with singularly perturbed 
integral equations on the interval I = (a, b). Let ε  be a 
small positive parameter. The perturbed equation is a 
Fredholm equation of the second kind defined as below: 

 ( ) ( ) ( ) ( ), .
b
a

u x K x y u y dy f x+ =∫   (52) 

By setting 0,=  the unperturbed equation is obtained 
as follows: 

 ( ) ( ) ( ),
b
a

K x y u y dy f x=∫   (53) 

which is a Fredholm equation of the first kind. Consider 
kernels K(x, y) defined on [a, b] × [a, b] which have the 
form 

 ( ) ( )
( )

1

2

, , ,
,

, , .
K x y y x

K x y
K x y x y

 <=  <
 

It is assumed that 1 2( , ) ( , )K x y and K x y  are smooth 
on the [a, b] × [a, b]. Here, several different types of kernels 
are considered. In particular kernels K(x, y) is considered 
which either have a jump discontinuity along the diagonal 

 ( ) ( ) ( )1 2, , ,K x x K x x a x− +− =  (54) 

Or a jump in the nth derivative 

 ( ) ( ) ( )1 2, | , | ,
n n

x y x yn nK x y K x y a x
y y

= =
∂ ∂

− =
∂ ∂

 (55) 

where a(x) ∈ C∞  [a, b] and a(x) ≠ 0 for x ∈ [a, b]. This is 
an ellipticity condition.  

Suppose integral equation (52) has a kernel which 
satisfies the ellipticity condition (EC). Suppose reduced 
equation (53) has a unique solution, then the perturbed 
equation has a unique solution in a Sobolev space which is 
particularly defined for this problem. The second theorem 
gives the principal term in the asymptotic development of 
the solution and error estimates. The solution to (52) is a 
product of transition function and the solution to the 
unperturbed equation which has delta masses at the 
endpoints but is otherwise smooth. The transition function 
tends to 1 in the interior of the interval [0, 1] and has 
boundary layer terms (decaying exponentials possibly 
with oscillation) which may become singular at the 
endpoints, x = 0 or x = 1 as ε  →0. 

The purpose of this paper is to form a bridge between 
the work of Lange and Smith [111,112] and Eskin [113]. 
Lange and Smith in above reference use an additive 
multivariable technique to obtain solutions to singularly 
perturbed Fredholm equations. On the other hand, Eskin 
uses techniques from pseudo-differential calculus to 
obtain proofs of the existence and uniqueness of solutions 
and describe the asymptotic behavior of the solutions to a 
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wide class of singularly perturbed elliptic pseudo-
differential equations defined on manifolds. This work 
treats only one-dimensional equations on an interval and 
provides a rigorous, largely self-contained presentation of 
the main results in a simple, straight-forward manner 
accessible to the applied mathematician. There are several 
new points introduced in this paper. In particular, the 
index of factorization is not uniquely defined in the one-
dimensional case. A new criterion is found to define this 
index. Also variable order norms are used to describe the 
solution. Although such norms have appeared before, they 
have not been used in this context. In addition, the case of 
Volterra operators is not present in above given reference. 
The contents of the paper provides the reformulation of 
the problem, and contains the main theorems about the 
existence and uniqueness of solutions to (52) and (53) for 
each type of kernel and the asymptotic behavior of the 
solutions. 

In [114], consider the following singular perturbation 
problem (BVP) with integral boundary condition 

 ( ) ( ], 0,  0, , 0u f t u t I T Tε ′ + = = >  (56) 

 ( ) ( ) ( ) ( )
0

0 ,
T

u u T b s u s ds dµ= + +∫  (57) 

where 0 1ε< ≤  is the perturbation parameter, l and d are 
given constants. b(t) and f(t,u) are assumed to be 
sufficiently continuously differentiable functions in 

{ 0}I I t= =∪  and I ×  respectively and moreover 

 0.f
u
∂

≥∝>
∂

 

Note that the boundary condition (57) includes periodic 
and initial conditions as special cases. For 1ε <<  the 
function u(t) has a boundary layer of thickness ( )O ε  near 
t = 0. 

We consider a uniform finite difference method on 
Shishkin mesh for a quasilinear first order singularly 
perturbed boundary value problem (BVP) with integral 
boundary condition. Author prove that the method is first 
order convergent except for a logarithmic factor, in the 
discrete maximum norm, independently of the perturbation 
parameter. The parameter uniform convergence is 
confirmed by numerical computations. 

7. Discussion and Further Development 
In the present paper various methods for solving 

singularly perturbed boundary value problems are briefly 
discussed. It contains and analyzes huge amount of the 
literature related to problems of differential equations of 
different orders. Some problems are parameter dependent. 
Discretization technique is useful for solving linear or 
nonlinear systems of equation with a large number of 
unknowns. Iterative methods are commonly used to solve 
these systems. It should be noted that iterative method is 
more powerful than discretization technique. Careful must 
be taken when analyzing the dependence on this parameter 
of those constants that arise in consistency, stability and 
error estimates. Tailored finite point method gives high 
accurate results on a very coarse mesh in comparison to 
traditional finite element method or finite difference 

method. Exponential B-spline collocation method is 
second order uniformly convergent and gives more 
accuate results comparative to B-spline collocation 
method. Higher order cubic B-spline collocation method 
produces a spline function which is useful to obtain the 
solution at any point of the interval whereas the finite 
difference method gives the solution only at the selected 
nodal points. The extension of non-standard finite 
difference schemes can be applied in different type of 
singularly perturbed problems including turning point and 
non-linear problems. On the basis of above discussion, 
new researchers can improve the accuracy while solving 
the singularly perturbed boundary value problems. 
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