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1. Introduction 
Inference of ( )R P X Y= <  is used in various 

applications e.g. stress-strength reliability, statistical 
tolerancing, measuring demand-supply system 
performance, measuring heritability of a genetic trait, bio-
equivalence study etc. It is observed especially in military 
and medical sciences that the system designers, reliability 
practitioners and experts in medical field seek to assign 
high probability to the event that the system/unit remains 
operable at its minimum strength encountering maximum 
stress at that time epoch. To meet this objective, it seems 
reasonable to define ( )R P X Y= <  with 

1 2max( , ,..... )kX X X X=  and 1 2min( , ,..... )kY Y Y Y= . 
Now the cumulative distribution function of X  is 

given by  
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if '
iX s are independent and identical, and the cumulative 

distribution function of Y is given by  
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if '
iY s are independent and identical. 

Here we assume that iX  and , 1(1)iY i k=  follow 
independent Weibull distributions with common shape 
parameter and the probability density functions are given 
by 

 ( ) ( )1
1 1, 0, , 0x

Xif x e x
αλααλ λ α−= > >  

and 

 ( ) ( )2
2 2, 0, , 0y

Yig y e y
αλααλ λ α−= > >  

respectively. 
Then  
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and the probability density function is 
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and the probability density function is 
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∫ (1.1) 

If k=1 i.e. in case of stress-strength reliability for 

component only, 1

1 2
R

α

α α
λ

λ λ
=

+
 and its inferential aspects 

have been studied in McCool (1991) and Mukherjee and 

Maiti (1998), if 1α =  also, then 1

1 2
R λ

λ λ
=

+
. It is just 

exponential case and the case is studied by a host of 
authors. If 1α =  only, then the situation reduces to 
exponential case of a system with k  identical components 
and then 
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In this article, we have attempted estimation problem of 
R  for Weibull family of distributions. We have found out 
maximum likelihood estimate (MLE) of R  for complete 
samples. An emphasis has been given for finding out 
lower confidence limits (lcls) as this is the one of practical 
importance-practioners want to assert that the system is at 
least attained this limit. We use delta method and 
bootstrap method to find out lcls. We also derive Bayes 
estimate of R using MCMC approach. 

The paper is organized as follows. Section 2 is devoted 
for finding out MLE and lcls of R . Bayes estimation of 
R has been discussed in section 3. Simulation results have 
been discussed in section 4. Data analysis has been 
presented in Section 5 and section 6 concludes. 

2. Inference about R 

2.1. Maximum Likelihood Estimation of R 
To compute the MLE of R , we have to obtain the 

MLEs of 1λ and 2λ . Suppose ( )1 2, ,........, mX X X  is a 

random sample from 1( , )Xf λ α  and ( )1 2, ,........, nY Y Y  is a 
random sample from 2( , )Xg λ α . Hence, the underlying 
log-likelihood function is  
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Then the MLE of 1λ  is to be obtained from the relation 
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and that of 2λ  is from 
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and the MLE of α is to be obtained by solving the 
equation 
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An estimate R̂ of R  is to be obtained from ( )1.1  

replacing 1 2,λ λ  and α  by ( ) ( )1 2
ˆ ˆˆ ˆ,λ α λ α  and α̂  

respectively. 
We have already mentioned that when 1α = , it reduces 

to exponential case. We will concentrate further inference 
in this situation only. Under such situation, the estimates 
of 1λ  and 2λ  are of the form 
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respectively. 
Let us write  
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Now, the asymptotic variance-covariance matrix of 

( )1 2
ˆ ˆ,λ λ  is given by  
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asymptotic variance of R̂  as 
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Assuming 
( )

ˆ
ˆ

R R
S R∆

−  as a standard normal variate a lower 

confidence bound to R can be constructed. 
Remark 2.1 ( )ˆS R∆  is to be obtained by replacing the 

parameters by their ML estimators. 

2.2. Bootstrap Lower Confidence Limits 
In this subsection, we propose to use two lower 

confidence limits based on the parametric bootstrap 
methods; (i) percentile bootstrap method (we call it from 
now on as Boot-p) based on the idea of Efron (1982, 
1988), (ii) bootstrap-t method (we refer it as Boot-t from 
now on) based on the idea of Hall (1988). We illustrate 
briefly how to estimate lower confidence limits of R
using both methods. 
Boot-p Methods: 

Step 1: From the sample { }1,......., mx x and 

{ }1,...... ,ny y  compute 
( )

ˆ
ˆ

R R
S R∆

−  and 2λ̂ . 

Step 2: Using 1̂λ generate a bootstrap sample 

{ }* *
1 ,........., mx x  and similarly using 2λ̂  generate a 

bootstrap sample { }* *
1 ,......., ny y . Based on { }* *

1 ,........., mx x  

and { }* *
1 ,......., ny y  compute the bootstrap estimate of R  

using (1), say *ˆ .R   
Step 3 : Repeat step 2, NBOOT times. 
Step 4: Let *ˆ( ) ( ),G x P R x= ≤  be the cumulative 

distribution function of *ˆ .R  

Define ( ) 1ˆ ( )Boot pR x G x−
− =  for a given x . The 

approximate ( )100 1 %η−  lower confidence limits of R  is 

given by ( )ˆ 1Boot pR η− − . 
Bootstrap-t Methods: 

Step 1: From the sample { }1,......., mx x  and 

{ }1,...... ,ny y  compute 
( )

ˆ
ˆ

R R
S R∆

−  and 2λ̂ .  

Step 2: Using 1̂λ generate a bootstrap sample 

{ }* *
1 ,........., mx x  and similarly using 2λ̂  generate a 

bootstrap sample { }* *
1 ,......., ny y . Based on { }* *

1 ,........., mx x  

and { }* *
1 ,......., ny y  compute the bootstrap estimate of R  

using (1), say *R̂  and the following statistic: 

 
( )
( )
*

*
*

ˆ ˆ

ˆ

m R R
T

V R

−
=  

Compute ( )*ˆV R  using Remark 2.1. 

Step 3 : Repeat step 2, NBOOT times. 
Step 4: From the NBOOT *T  values obtained, 

determine the lower bound of the ( )100 1 %η−  
confidence limits of R  as follows: Let 

*ˆ( ) ( ),H x P T x= ≤  be the cumulative distribution 

function of *T̂ . For a given ,x  define 
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Here also, ( )ˆV R  can be computed as mentioned in 

Remark 2.1. The approximate ( )100 1 %η−  lower 

confidence limit of R is given by ( )ˆ 1Boot tR η− − . 

3. Bayes Estimation of R 
In this section, we obtain the Bayes estimation of R  

under assumption that the shape parameters 1 2,λ λ  and α  
are random variables. We mainly obtain the Bayes 
estimate of R under the squared error loss by Gibbs 
sampling technique. It is assumed that 1 2,λ λ  and α have 
independent gamma priors with the parameter 1λ ~ 

( )1 1,Gamma a a , 2λ ~ ( )2 2,Gamma a a  and α ~ 

( )3 3,Gamma a a . Based on the above assumptions, we 
have the likelihood function of the observed data as 
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Therefore, the joint density of the data, 1 2,λ λ  and α
can be obtained as 

 
( ) ( )
( ) ( ) ( )

1 2 1 2

1 2

, , , | , ,L data L dataλ λ α λ λ α

π λ π λ π α

= ×
 

where ( ).π  is the prior distribution. Therefore, the joint 
posterior density of 1 2,λ λ  and α  given data is 
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Since these equations cannot be obtained analytically, 
we adopt the Gibbs sampling technique to compute the 
Bayes estimate of .R  

The posterior pdfs of 1 2,λ λ  and α  are as follows: 
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To generate random numbers from these distributions, 
we use the Metropolis-Hastings method with appropriate 
proposal distributions. Therefore, the algorithm of Gibbs 
sampling is as follows: 

Step 1: Start with an initial guess ( )0 0 0
1 2, ,λ λ α . 

Step 2: Set 1t = . 
Step 3: Using Metropolis-Hastings, generate 1

tλ  from 

1fλ with appropriate proposal distribution. 

Step 4: Using Metropolis-Hastings, generate 2
tλ  from 

2fλ with appropriate proposal distribution. 

Step 5: Using Metropolis-Hastings, tα  from fα with 
appropriate proposal distribution. 

Step 6: Compute tR  from the expression of R . 
Step 7: Set 1.t t= +  
Step 8: Repeat step 3-6, T times. 
Note that in steps 3-5, we use the Metropolis-Hastings 

algorithm with ( )1tq ξ −  proposal distribution as follows: 

Let 1tx ξ −= . 
Generate y  from proposal distribution .q  

Let ( ) ( ) ( ) ( ) ( ){ }, min 1, / . / .p x y f y f x q x q yα α=   

Accept y with probability ( ),p x y  or accept x  with 

probability ( )1 , .p x y−  
In case of exponential distributions (i.e. 1α = ), we have 

the posterior pdfs of 1λ  and 2λ  are as follows: 
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Now the appropriate posterior mean and posterior 
variance of R become 

 ( )
1

1ˆ |
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E R data R
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and  
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= −∑  respectively. 

4. Simulation and discussion  
In this section we present some results based on Monte 

Carlo simulations to compare the performance of R  for 
different values of 1, 2,3.k =  Also the values of 

1 2, , ,m n λ λ  and α  are mentioned under each table. All 
computations were performed using R-software and these 
are available on request from the corresponding author. 
We consider to draw inference on R  when the baseline 
distribution of extended distribution is known. All the 
results are based on 1000 replications. 

We report the average biases and mean squared errors 
(MSEs) over 1000 replications. We also compute the 95% 
lower confidence limit (lcl) of R  based on asymptotic 
distribution of R̂ , using Boot-p and Boot-t methods. The 
bootstrap lcls are obtained using 1000 bootstrap 
replications in both cases. All the results are reported in 
Table 7, Table 8, Table 9. 

Some of the points are quite clear from this experiment. 
The performances of the MLEs are quite satisfactory in 
terms of biases and MSEs. It is observed that when k
increases then MSEs decreases for low value of R  but 
increase for high value of .R  High value of R  is 
underestimated slightly (i.e. bias is negative), where as 
low value of R is overestimated generally. All lower 
confidence bounds are estimated satisfactorily. 
Particularly, Boot-t lcls perform very well. Based on all 
these, we recommend using the parametric percentile 
bootstrap lcls, particularly Boot-t lcls. 

We do not have any prior information on R , therefore, 
we prefer to use the non-informative prior to compute 
different Bayes estimates. Since the non-informative prior, 
i.e. 1 2 1 2 0a a b b= = = =  provides prior distributions 
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which are not proper, we adopt the suggestion of Congdon 
(2001, pp 20), i.e. choose 1 2 1 2 0.0001,a a b b= = = =  
which are almost like Jeffrey’s prior, but they are proper. 
Under the same prior distributions, we compute Bayes 
estimate of 1λ and 2λ  and have approximate Bayes 
estimates of R under squared error loss function. To 
generate random observations from the posterior 
distributions of 1λ  and 2 ,λ  we use the Metropolis-
Hastings method with proposal distributions ( )1,1N λ  and 

( )2 ,1N λ respectively. The algorithms of Gibbs sampling 
is described in section 3. The burn in sample in each case 
is taken 5000. The results are reported in Table 10, Table 
11, Table 12 with the change of k the averages biases and 
the MSEs do not show clear picture. Therefore, if we do 
not have prior information about 1λ and 2 ,λ then using 
Bayes estimates we may not gain much. Since the MLE is 
consistent and it can be used for constructing lower 
confidence limits also, we recommend using MLEs in this 
case. 

5. Simulated Data Analysis 
In this section we present the analysis of simulated data. 

The data set are presented in Table 1, Table 3 and Table 5. 
The results are summarized in Table 2, Table 4 and Table 
6. 

Table 1. Simulated Data Set 1 215, 25, 2, 0.5, 1,m n λ λ α= = = = =  

1k =  
X=0.1816807, 0.5644605, 0.05036435, 0.00656449, 0.3189166, 
0.1597823, 0.3605449, 0.6339824, 0.01011749, 0.2836022, 0.6458557, 
1.217821, 0.6277124, 0.1900136, 1.014753 
 
Y=1.298510, 0.7384054, 0.1103642, 2.444124, 0.3134927, 0.3663870, 
0.1410308, 3.249928, 7.536066, 1.873777, 0.3976876, 4.933383, 
5.022444, 1.379873, 1.016623, 0.2449651, 0.7953434, 5.571544, 
1.658338, 0.1603021, 1.595187, 0.05412668, 0.7995375, 0.6618942, 
0.2260054 

Table 2. Estimates of R  and lower Confidence Limits 
MLE of R 0.803073 

Bayes estimate of R 0.7959496 

Delta Method estimate of R 0.8035658 

Bootstrap-p estimate of R 0.8020293 

Bootstrap-t estimate of R 0.8000846 

LCL in Delta Method ( )dLCL  0.7816713 

LCL in Bootstrap-p ( )pLCL  0.7406585 

LCL in Bootstrap-t ( )tLCL  0.730892 

Table 3. Simulated Data Set 1 215, 25, 2, 0.5, 1,m n λ λ α= = = = =  
2k =  

X=0.9548599, 0.3978185, 0.8279778, 1.728254, 0.6092846, 2.193243, 
1.505944, 0.7995457, 1.271949, 0.3518478, 0.393324, 0.4160646, 
0.04846204, 0.1825408, 0.3132363 
 
Y=0.4885969, 1.788655, 0.09735831, 1.317049, 3.85566, 1.874552, 
0.2113092, 0.655856, 3.115124, 0.6412166, 0.7822648, 0.3472869, 
0.8432377, 0.9068543, 3.370655, 0.5433124, 0.8411738, 
1.958996,0.1115043, 0.1988442, 1.347204, 1.696238, 0.5008322, 
0.2542893, 0.128458 

Table 4. Estimates of R  and lower Confidence Limits 
MLE of R 0.5343442 

Bayes estimate of R 0.5178546 
Delta Method estimate of R 0.5412183 
Bootstrap-p estimate of R 0.546389 
Bootstrap-t estimate of R 0.5437109 

LCL in Delta Method ( )dLCL  0.5081122 

LCL in Bootstrap-p ( )pLCL  0.372174 

LCL in Bootstrap-t ( )tLCL  0.3623463 

Table 5. Simulated Data Set 1 215, 25, 2, 0.5, 1,m n λ λ α= = = = =  

3k =  
 
X=1.418822, 1.100097, 0.4044287, 0.1266725, 1.411248, 1.556682, 
0.5193744, 0.7009385, 0.982689, 1.353991, 1.916082, 0.424731, 
0.2788498, 0.3117678, 0.2348663 
 
Y=2.046273, 0.3752036, 0.8128688, 0.1674414, 0.5964549, 
1.252022,0.1706026, 0.7781672, 0.06740291, 1.193519, 0.2799181, 
1.848790, 0.2382824, 0.3149041, 0.3736654,0.05219408, 0.3164043, 
0.02093941, 1.118972, 0.08428241, 0.09862126, 
0.0548317,0.04357614,0.01655727,0.7900938 

Table 6. Estimates of R  and lower Confidence Limits 
MLE of R 0.331045 

Bayes estimate of R 0.2942824 
Delta Method estimate of R 0.3369187 
Bootstrap-p estimate of R 0.3550662 
Bootstrap-t estimate of R 0.3582895 

LCL in Delta Method ( )dLCL  0.3039611 

LCL in Bootstrap-p ( )pLCL  0.15292558 

LCL in Bootstrap-t ( )tLCL  0.1024406 

The true values of R for the simulated data sets in Table 
1, Table 3 and Table 5 are 0.8, 0.5333333 and 0.3324675 
respectively (see Table 7, Table 8 and Table 9 for 1 2λ = , 

2 0.5λ = ). We observe that, in all the cases, the MLE of R 
is very close to the true value. One should note that in real 
life data situation, the true value of R is not possible to get 
and hence comparison of biases and MSEs are not 
possible. However, in the present scenario, one can get 
almost the true picture from the simulation results 
presented in section 4. From Table 7, Table 8 and Table 9 , 
it is ensured that the MLEs of R has minimum biases and 
MSEs comparing the values corresponding to 1 2λ = , 

2 0.5λ = . It is evident from the analysis of data sets and 
the results presented in Table 2, Table 4 and Table 6 that 
the MLE of R is fairly good compared to the Bayes 
estimate – the fact was also reported in simulation study. 
Some improvements in the case of Bayes estimate of R 
may be expected if the appropriate prior distributions are 
selected when it is available besides non-informative prior. 
In all the data sets, lcl’s in Bootstrap-t are better from 
maximum coverage probability point of view. 

6. Concluding Remark 
In this article, we have discussed inference problem of 

( )R P X Y= <  with 1 2max( , ,..... )kX X X X=  and 

1 2min( , ,..... )kY Y Y Y= . The X  and Y distributions have 
been considered Weibull. We have considered maximum 
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likelihood estimate and Bayes estimate of .R  Comparing 
these two, we recommend to use MLE for .R An emphasis 
has been given on lower confidence limits as this is the 
one of practical importance-practitioners want to assert 
that the system is at least attained this limit. To construct 

lcls, we consider Delta method and two bootstrap methods 
-percentile (Boot-p) and bootstrap-t (Boot-t). We 
recommend using the parametric bootstrap lcls, 
particularly Boot-t lcls. 

Table 7. Simulation results of Extreme distribution. 25, 25, 1, 1m n kα= = = =  

21 ,λλ  R  R̂  MSE Bias ( )dLCL  ( )pLCL  ( )tLCL  

0.5, 4 0.1111111 0.1135962 0.0008171 0.0024851 0.06717577 0.06881608 0.05249087 

0.5, 2 0.2 0.2045146 0.0021304 0.0045146 0.1293211 0.1154656 0.1258536 

0.5, 1 0.3333333 0.3342373 0.0040516 0.0009040 0.2361792 0.2383113 0.2302903 

0.5, 0.7 0.4166667 0.4176976 0.0044618 0.0010309 0.3062456 0.3481601 0.3765411 

0.5, 0.5 0.5 0.5014158 0.0049875 0.0014158 0.3866008 0.3564049 0.4408366 

0.7, 0.5 0.5833333 0.5856562 0.0047464 0.0023228 0.4720385 0.3897911 0.5320068 

1, 0.5 0.6666667 0.6637099 0.0039245 -0.0029567 0.5641103 0.5805 0.0.6340184 

2, 0.5 0.8 0.7976575 0.0020609 _0.0023425 0.7236657 0.7168892 0.7600102 

4, 0.5 0.888889 0.8868172 0.0007826 _0.0020717 0.8405416 0.7950288 0.8201139 

6, 0.5 0.923077 0.9203894 0.0004453 _0.0026875 0.884047 0.8878481 0.8917386 

8, 0.5 0.9411765 0.9387401 0.0002814 -0.0024363 0.912866 0.9282181 0.934747 

10, 0.5 0.952381 0.950444 0.00001817 -0.0019369 0.9491219 0.951334 0.9487624 

12, 0.5 0.96 0.9593142 0.0001324 -0.000685 0.9543751 0.953653 0.958791 

Table 8. Simulation results of Extreme distribution. 25, 25, 1, 2m n kα= = = =  

21 ,λλ  R  R̂  MSE Bias ( )dLCL  ( )pLCL  ( )tLCL  

0.5, 4 0.0065359 0.0083097 4.783 × 10-5 0.0017738 0.002268227 0.001085347 0.001474738 

0.5, 2 0.0222222 0.0269159 0.0021304 0.0003441 0.008973157 0.005397917 0.004357397 

0.5, 1 0.0666667 0.0752649 0.0015669 0.0085983 0.03303469 0.04988657 0.03440165 

0.5, 0.7 0.1096491 0.1177737 0.0030139 0.0081246 0.06027919 0.09364642 0.07319867 

0.5, 0.5 0.1666667 0.1754231 0.0048939 0.0087564 0.09791531 0.1247929 0.1208384 

0.7, 0.5 0.2401961 0.2573227 0.0080461 0.0171266 0.1523984 0.1780068 0.1876356 

1, 0.5 0.3333333 0.3448201 0.0093009 0.0114868 0.2292687 0.2923863 0.3107781 

2, 0.5 0.5333333 0.5370427 0.0090017 0.0037094 0.4270614 0.4326371 0.3696069 

4, 0.5 0.7111111 0.70733867 0.0054977 -0.0037244 0.6173199 0.5958696 0.5419874 

6, 0.5 0.7912088 0.7878744 0.0034205 -0.0033344 0.715463 0.7222103 0.7254289 

8, 0.5 0.8366013 0.832172 0.0024920 -0.0044293 0.8068216 0.8223224 0.8188247 

10, 0.5 0.8658009 0.8628244 0.0017320 -0.0029765 0.8515252 0.8497543 0.8428659 

12, 0.5 0.8861538 0.8820422 0.0014025 -0.0041117 0.880598 0.8751033 0.879289 

Table 9. Simulation results of Extreme distribution. 25, 25, 1, 3m n kα= = = =  

21 ,λλ  R  R̂  MSE Bias ( )dLCL  ( )pLCL  ( )tLCL  

0.5, 4 0.0003418 0.0007536 2.319 × 10-6 0.0004118 9.798 × 10-6 0.0002123167 5.342 × 10-5 

0.5, 2 0.0021978 0.0049632 0.0001557 0.0027653 0.001604674 0.001061839 0.0001979209 

0.5. 1 0.0119047 0.0186784 0.0004833 0.0067736 0.004293301 0.004584146 0.002540799 

0.5, 0.7 0.0258478 0.0377235 0.0020825 0.0118757 0.01189554 0.02185004 0.01466073 

0.5, 0.5 0.05 0.0609959 0.0027359 0.0109959 0.02455426 0.0348501 0.04705408 

0.7, 0.5 0.0896029 0.1035574 0.0046264 0.0139545 0.04642489 0.06371596 0.05418988 

1, 0.5 0.1523810 0.1740531 0.0097857 0.216722 0.09244965 0.09359726 0.01240031 

2, 0.5 0.3324675 0.3545781 0.0154544 0.0221105 0.2296966 0.1717405 0.2039296 

4, 0.5 0.5443913 0.543986 0.01197589 -0.0119759 0.439521 0.495666 0.3509279 

6, 0.5 0.6564103 0.653129 0.0093561 -0.00328128 0.5611863 0.6457864 0.6114739 

8, 0.5 0.7246351 0.7235012 0.0066902 -0.0011339 0.6384436 0.6682031 0.6618039 

10, 0.5 0.770379 0.7665545 0.0053469 -0.0038245 0.6978315 0.7339302 0.769091 

12, 0.5 0.8031373 0.79752 0.0045354 -0.0056172 0.7751819 0.7884733 0.7729683 
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Table 10. Simulation results on Bayes estimate of R. 25, 25, 1, 1m n kα= = = =  

21 ,λλ  R  BayesR̂  BayesMSE  BayesBias  

0.5, 4 0.00653594 0.0097507 0.0012219 -0.0269989 

0.5, 2 0.2 0.1716103 0.0026374 -0.02838968 

0.5, 1 0.3333333 0.4184339 0.0410979 0.0851006 

0.5, 0.7 0.4166667 0.467789 0.0419940 0.0511223 

0.5, 0.5 0.5 0.5822145 0.0491516 0.0822145 

0.7, 0.5 0.5833333 0.5365633 0.0423323 -0.0467700 

1, 0.5 0.6666667 0.6567367 0.0044769 -0.0099299 

2, 0.5 0.8 0.7203618 0.0252081 -0.0796638 

4, 0.5 0.8888889 0.8726364 0.0014182 -0.0162525 

6, 0.5 0.923077 0.9107002 0.0006347 -0.0123763 

8, 0.5 0.9411765 0.9331756 0.0003161 -0.0080009 

10, 0.5 0.952381 0.9113743 0.0022611 -0.0410066 

12, 0.5 0.96 0.9518523 0.0003059 -0.0081477 

Table 11. Simulation results on Bayes estimate of R. 25, 25, 1, 2m n kα= = = =  

21 ,λλ  R  BayesR̂  BayesMSE  BayesBias  

0.5, 4 0.00653594 0.0097507 3.569 × 10-5 0.0032147 
0.5, 2 0.0222222 0.0279071 0.0005166 0.0056849 
0.5, 1 0.0666667 0.0796617 0.0012755 0.0129951 

0.5, 0.7 0.1096491 0.1545251 0.0053302 0.0448759 
0.5, 0.5 0.1666667 0.249138 0.0151225 0.0824713 
0.7, 0.5 0.2401961 0.2938248 0.0076047 0.0536287 
1, 0.5 0.3333333 0.2986629 0.0407104 -0.0346704 
2, 0.5 0.5333333 0.5174908 0.0075395 -0.0158425 
4, 0.5 0.7111111 0.6814342 0.0072425 -0.0296769 
6, 0.5 0.7912088 0.7813415 0.0037524 -0.0098672 
8, 0.5 0.8366013 0.8042431 0.0027298 -0.0323582 
10, 0.5 0.8658009 0.8863284 0.0009485 0.0205275 
12, 0.5 0.8861538 0.8729647 0.0010199 -0.0131891 

Table 12. Simulation results on Bayes estimate of R. 25, 25, 1, 3m n kα= = = =  

21 ,λλ  R  BayesR̂  BayesMSE  BayesBias  

0.5, 4 0.0003419 0.0049051 8.674 × 10-5 0.0045632 

0.5, 2 0.0021978 0.0037606 8.674 × 10-5 0.0015628 

0.5, 1 0.0119047 0.0086153 0.0001116 -0.0032895 

0.5, 0.7 0.0258478 0.0258799 0.0002330 3.218 × 10-5 

0.5, 0.5 0.05 0.0551663 0.0006893 0.0051663 

0.7, 0.5 0.0896029 0.0577642 0.0016864 -0.0318387 

1, 0.5 0.1523810 0.1183781 0.0035415 -0.0340028 

2, 0.5 0.3324675 0.4490644 0.0201559 0.1165969 

4, 0.5 0.5443913 0.548878 0.0057507 0.0044868 

6, 0.5 0.6564103 0.644167 0.0039817 -0.0122433 

8, 0.5 0.7246351 0.6831095 0.0108551 -0.0415256 

10, 0.5 0.770379 0.7478266 0.0026877 -0.0225523 

12, 0.5 0.8031373 0.7780665 0.0069134 -0.0250707 
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