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Abstract During secondary oil recovery process when water is injected in inclined oil formatted area then 
phenomenon of instability occurs due to viscosity difference of water and oil. The non-linear partial differential 
equation for this instability phenomenon have been obtained. The Homotopy analysis method has been applied to 
this governing equation by using appropriate initial and boundary conditions. The guess value of saturation of 
injected water has been satisfying its initial and boundary conditions. The numerical value and graphical 
presentation are given by using Maple software and it is concluded that the saturation of injected water is increasing 
during instability phenomenon in inclined porous media when length of fingers and time increases. 
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1. Introduction 
Since last few decades, the study of multiphase flow 

through porous media has great important in petroleum 
technology for oil recovery process. In oil recovery 
process oil can recover through three different stages like 
primary, secondary and tertiary or enhanced oil recovery. 
Primary oil recovery is the process in which oil comes out 
from oil formatted area by natural pressure and it produces 
only 10% to 15% of oil by natural pressure of the 
reservoir. Remaining oil can recover by injecting water, 
gas or any chemical. Hence this process is called 
secondary oil recovery process. In this paper, we consider 
the phenomenon of instability occurs during water 
injection in secondary oil recovery process as shown in 
Figure 1 when water is injected in oil formatted area. Due 
to the viscosity difference of water and oil, instead of 
regular displacement of whole front (common interface) 
the protuberances will occurs with irregular fingers in size 
and shape. Hence it is called fingering phenomenon. 
Injection of water is the principal form of the secondary 
oil recovery because supply of water is often plentiful, 
inexpensive and it is usually more stable frontal 
displacement than other form of secondary oil recovery. 
Due to water injection, oil will displace towards the 
production well in this way remaining oil can recover in 
secondary recovery process. In 1972, Bear considered two 
types of frontal displacement when two or more fluids in 
motion occupy the porous media. Firstly: Stable 
displacement and secondly: instable displacement [1]. The 

stability of water flood depends on the mobility ratio 
between oil and water, heterogeneity of the porous 
medium and the interaction of several forces.  

 

Figure 1. Schematic illustration of water injection in an oil reservoir. 
Cross section show the distribution of oil and water before and after the 
water has displaced the oil in porous matrix. 

Instabilities may occur in both miscible and immiscible 
processes, and originate on the interface between two 
fluids (e.g. oil and water).For displacements according to 
the Muskat model [12], in which oil and water flow in 
separate macroscopic regions and gravitational forces are 
absent. Chuoke et al. [3] determined a condition for 
instability is that the mobility of the displacing water be 
higher than that of the displaced oil. He also accounted for 
capillary effects by defining an effective interfacial 



107 American Journal of Applied Mathematics and Statistics  

 

tension between the fluids in a porous medium analogous 
to the interfacial tension in the bulk fluids. The first 
application of the Hele-Shaw cell in viscous fingering 
problems were made by Saffman and Taylor [17]. As both 
the velocity of the fluid in a porous medium and the 
velocity of a fluid in a Hele-Shaw cell obey Darcy’s law, 
Saffman and Taylor suggested that the behavior of a Hele-
Shaw cell could represent flow in a porous medium [17]. 
This phenomenon is analytically discussed first time by 
Schidegger and Johnson [19]. They have defined a 
different approach to this phenomenon in which they have 
called the statistical of fingers as shown in Figure 2. In the 
statistical treatment of fingers only the average cross 
section area occupied by the schematic fingers had been 
considered, while size and shape of the individual fingers 
were neglected and the capillary mean pressure of the 
finger were also ignored. Verma [21] has obtained the 
statistical behavior of fingering in a heterogeneous porous 
media with mean capillary pressure. Patel and Mehta [16] 
have studied this phenomenon by converting the 
governing equation of fingering phenomenon in the form 
of Burger's equation and solution obtained in analytical 
form. Kinjal and Mehta [7] have given a series solution of 
nonlinear partial differential equation for fingering 
phenomenon in heterogeneous as well as in homogeneous 
porous media. Joshi and Mehta (2009) have discussed 
solution of governing equation by the Group Invariant 
method in homogenous porous media [6]. Vyas and Mehta 
have discussed instability phenomenon with magnetic 
field effect [20]. Meher and Mehta [12] have been 
obtained an approximate solution of governing equation of 
instability phenomenon by Adomain Decomposition method. 
Since governing equation of instability phenomenon is 
nonlinear partial differential equation of diffusion type, 
hence it is appropriate to apply Homotopy analysis method 
to find an approximate solution of the problem. 

2. Statement of the Problem 
For the sake of mathematical study, we consider one-

dimensional instability phenomenon for which we choose 
a piece of cylindrical porous matrix from large natural 
field area and take vertical cross-sectional area of this 
small finite incline cylindrical porous matrix as a rectangle. 
Which is incline at small angle θ  with x-axis and its three 
sides are impermeable expect for one end of cylinder 
which is designated as common interface at x = 0 as 
shown in Figure 2. Since the water is injected in oil 
formatted area and water and oil are flowing through 
porous matrix then it will satisfy Darcy's law [5] for low 
Reynolds number. Hence cylindrical pieces of incline 
porous matrix is filled with the oil and water is injected at 
x = 0 hence both will satisfy the equation of continuity. 

 

Figure 2. Formation of fingers in the inclined cylindrical piece of porous 
media 

 

Figure 3. Schematic representation of fingers at level “x” 

 

Figure 4. Schematic representation of injected water at level “x” 

When water is injected at common interface x = 0 then 
instead of regular displacement of the whole front, small 
protuberance will occurs due to the water following 
through interconnected capillaries in the porous matrix 
due to capillary pressure the irregular fingers occurred 
with irregular sizes and shapes. To find the area occupy by 
water in form of saturation of water in different irregular 
fingers as shown in Figure 2 by white dotted fingers. 
Schidegger and Johnson [19] suggested schematic 
presentation of fingers by replacing irregular fingers by 
rectangular fingers for mathematical study as shown in 
Figure 3. But still it is difficult to find the saturation 
occupied in schematic fingers for given length x and time 
t > 0. Hence for one-dimensional study of instability 
phenomenon by taking average cross-sectional area 
occupied by schematic finger is considered as saturation 
of injected water for the length of fingers x for given time 
t > 0 which is rectangular shape as shown by Figure 4. 
Here the injection of water is taking place at x= 0 to native 
formation of oil formatted (dark area) porous media as 
shown in Figure 4. We consider here that saturation of 
water at common interface occupied cross-sectional area 
is very small saturation 0wS . It is also considered for 
mathematical study that the initial saturation at common 
interface as average cross-sectional area is very small 

wcS where 0wc wS S< . The comparative study have been 
carried out for instability phenomenon in homogeneous 
porous matrix with and without inclination. 

This paper presents the instability phenomenon which 
occurs during the displacement process of two immiscible 
fluids through homogeneous porous media in secondary 
oil recovery process. 

3. Mathematical Formulation 
Since water is injected at common interface in inclined 

homogeneous porous matrix contenting oil which will 
displaced by injecting water. Hence water and oil both 
will satisfy Darcy's law given by Bear [1] which gives 
velocities of water and oil respectively as  

 siniw iw
iw iw

iw

k p
V K g

x
ρ θ

µ
∂ = − + ∂ 

 (1) 
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k p
V K g

x
ρ θ

µ
∂ = − + ∂ 

 (2) 

Since in inclined porous matrix gravitational effect g 
and angle of inclination play important role in velocities 
of injected water and native oil so the second terms are 
added in above equations. 

Where iwV  and noV  represents velocity of injected 
water and native oil respectively, K is the permeability of 
the homogenous porous medium, θ  is the angle of 
inclination of porous media measured with the horizontal 
line in positive direction, iwk  and nok  are relative 
permeability of the injected water and native oil, which 
are the function of their saturations iwS  and 

noS , iwp and nop are pressures of injecting water and 
displaced native oil, iwρ  and noρ are constant densities of 
injected water and native oil, g is the acceleration due to 
gravity, iwµ and noµ are the constant kinematic viscosities 
of injected water and native oil. 

Since water and oil are following in a porous matrix 
through interconnected capillaries during the phenomenon 
of instability, due to capillary pressure of water and oil. 
Injected water and displaced native oil which will satisfy 
equation of continuity as given by Scheidegger [18] as 

 0iw iwS V
t x

φ
∂ ∂

+ =
∂ ∂

 (3) 

 0no noS V
t x

φ
∂ ∂

+ =
∂ ∂

 (4) 

Where φ is the porosity of the homogeneous porous 
medium which is considered here as a constant.  

It is also given that the sum of the saturation of the 
injected water and native oil is equal to unity [18] (i.e. 
fully saturated) written as  

 1iw noS S+ =  (5) 

Further for the instability phenomenon it is necessary to 
understand the role of capillary pressure. Hence when less 
viscous water is injected at x = 0 in oil formatted inclined 
porous matrix of length x = L, the water can flow through 
interconnected capillaries made by effective pores and it is 
due to the difference of pressure of native oil and injected 
water. Which is also a function of saturation of injected 
water defined by Scheidegger [18] as 

 ( )c iw no iwp S p p= −  (6) 

But Mehta [13] consider that the injected water linearly 
flowing through small interconnected capillary in 
homogeneous porous media. Hence he consider capillary 
pressure cp as linear function of saturation iwS  given by  

 ;is constantc iwp Sβ= −  (7) 

Here minus sign shows the direction of capillary 
pressure opposite to the saturation of the injected water. 
This relation has been considered by many author 
[6,7,12,16,20] in their research work. Schidegger [18] and 
Bear [1] had defined this relationship between 
permeability and saturation of water and oil respectively 
as 

 
1

iw iw

no no iw

k S
k S Sα

= 
= = − 

  (8) 

where 1.11α =  which is constant. 
Now substituting the value of seepage velocity of 

injected water iwV  and velocity of native oil noV  from 
equation (1) and (2) into the continuity equations of (3) 
and (4) the following coupled partial differential equations 
as 

 siniw iw iw
iw

iw

S k p
K g

t x x
φ ρ θ

µ
 ∂ ∂∂  = +  ∂ ∂ ∂  

  (9) 
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S k p
K g

t x x
φ ρ θ

µ
 ∂ ∂∂  = +  ∂ ∂ ∂  

  (10) 

Eliminating iwp
x

∂
∂

from equations (9) by using relation 

(6) we get 

 siniw iw no c
iw

iw

S k p p
K g

t x x x
φ ρ θ

µ
 ∂  ∂ ∂ ∂    = − +     ∂ ∂ ∂ ∂     

(11) 

Adding equation (10) and (11) and using relation (5) 
and integrating with respect to x we get, 

 ( )
sin

iw no no iw c

iw no iw

iw no
iw no

iw no

k k p k p
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x x
V t

k k
K K g

µ µ µ

ρ ρ θ
µ µ

    ∂ ∂
+ −    ∂ ∂     = − 

  + +  
  

 (12) 

Where V(t) is a constant of integration. 
After simplification of (12), we get 
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Using above value of nop
x

∂
∂

 in equation (11) we get 

( )

( ) sin

no c

no

iwiw no

iwiw no

noiw iw

noiw

no
no iw

no

iw no

iw no

k p
K

xV t
kk k

KK K

kS k
KK

t x

k
K g

k k
K K

µ

µµ µ

φ
µµ

ρ ρ θ
µ

µ µ

∂

∂
− −

+

∂ ∂
+=

∂ ∂

−

−

+

    
        

     
          

    
      
   
   

   
   
   
    



(14) 

Now Oroveanu [15] gave relation of mean pressure by  
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p p
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+
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where p  is the constant mean pressure. 

 1
2

no cp p
x x

∂ ∂
=

∂ ∂
  (16) 

To determine the value of V(t) we use relation (16) in 
equation (13) and after simplification we get,  

 ( )

1
2
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x
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Hence using above value of V(t) in (14) and after 
simplification we get, 

 1 sin
2

iw iw c iw
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iw iw

S k p k
K Kg

t x x
φ ρ θ

µ µ
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(18) 

For more simplification of above equation of motion we 
use relation of cp and ink  from equation (6) and (8) 
respectively in equation (18) we get, 

 sin
2

iw iw iw iw
iw

iw iw

S S K g SK S
t x x x

ρβφ θ
µ µ

∂ ∂ ∂∂  = + ∂ ∂ ∂ ∂ 
  (19) 

Which is non-linear partial differential equation of 
motion for the saturation of injected water during 
instability phenomenon occurring in secondary oil 
recovery process in incline homogeneous porous matrix.  

To solve nonlinear equation (19), it is necessary to 
choose appropriate boundary and initial condition at 
common interface x = 0. As par given statement, we 
consider here that when water is injected at common 
interface x = 0 the saturation of injected water is Sw0 
which is very small for given time t > 0.  

 ( ) 0i.e. 0, at x  0 for t  0iw wS t S= = >  (20) 

It is also considered in statement that the initial 
saturation of injected water is wcS . 

i.e. ( ) 0,0
x
L

iw wc wS x S S e= =  at t = 0 for x > 0, L is 
length of porous matrix where  

 00 wc wS S≤ <   (21) 

4. The Solution with HAM 
To find the solution of non-linear partial differential 

equation (19) for phenomenon of instability together with 
the condition (20)-(21). Choosing dimensionless variable 

 2
iw

x KX and T t
L Lφ µ

= =   

The equation (19) together with condition (20-21) will 
be converted into dimensionless form as 

 
22

2
iw iw iw iw

iw
S S S S

S A
T X XX

ε ε
∂ ∂ ∂ ∂ = + + ∂ ∂ ∂∂  

  (22) 

where 
2
βε = , and siniwA g Lρ θ=  units which is 

constant. 

 ( ) 00, at X 0 for T  0iw wS T S= = >  (23) 

( ) 0 0,0 at T 0 for X  0,0X
iw w wc wS X S e S S= = > ≤ < (24) 

To solve the equation (22) together with condition (23) 
and (24) we use Homotopy analysis method. For this 
method first necessary step is to guess value of saturation 

iwS  which satisfies above conditions (23) and (24) as 

 *
0( , ;q)

2
X m

w
TS X T S e X q = + + 

 
 (25) 

Let the saturation of injected water at common interface 
X = 0 for embedded parameter q = 0 is 0wS  then 

 ( )*
00, ;0 wS T S=  (26) 

Let us consider non-linear partial differential equation 
(22) can be expressed as, 

 ( )* X, ;q 0S T  =   (27) 

Where  is a nonlinear operator, ( )* X, ;qS T  is 
considered as unknown function which represent 
saturation of injected water for any distance X for given 
time 0T ≥  for 0 1q≤ ≤ . We use auxiliary linear operator 

Tℑ = ∂ ∂  and initial first approximation of the saturation 
of injected water for q = 0 will be 

( )0 0X,
2

X
i w

TS T S e X = + 
 

to construct the 

corresponding zeroth-order deformation equation. As the 
auxiliary linear operator which satisfies [ ]1 0Cℑ = , where 
C1 is arbitrary constant. We construct a homotopy as [11], 

 

( ) ( ) ( )

( )
( ) ( )

( ) ( )

*
0

*
0

*

X, ;q ;S X, , X, , ,q

X, ;q X,
1

X, X, ;q

i

i

S T T H T

S T S T
q

q H T S T

 Η  
  ℑ −   = −  

 −   



 

 

 

(28) 

Enforcing the Homotopy (28) to be zero [11],  

 ( ) ( ) ( )*
0X, ;q ;S X, , X, , ,q 0iS T T H T Η =   

Establish the zero-order deformation equation of 
instability phenomenon as [11],  

 
( ) ( ) ( )

( ) ( )

*
0

*

1 X, ;q X,

X, X, ;q

iq S T S T

q H T S T

 − ℑ − 
 =   

 (29) 

Where 0 (X, )iS T  denote initial first approximation of 
the saturation of injected water of the exact solution of the 
saturation of injected water S (X, )iw T which we want to 
find. For which 0≠ is an auxiliary parameter, 

(X, ) 0H T ≠ is an auxiliary function [11], [ ]0,1q∈  is an 
embedding parameter and ℑ is an auxiliary linear operator 
with the property 
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 ( ) ( )* *X, ;q 0 X, ;q 0S T when S T ℑ = =   

Since auxiliary parameter  and auxiliary function 
( ),H X T  is nonzero. 
For 0q = and 1q = we will get respectively, 

 ( ) ( ) ( ) ( )* *
0X, ;0 X, X, ;1 X,i iwS T S T and S T S T= = (30) 

According to (28) as the embedding parameter q 
increases from 0 to 1, solution ( )* X, ;qS T  varies 

continuously from the initial guess ( )0 X,iS T  of the 
saturation of the injected water to the required solution 

( )X,iwS T (solution gradually improved from X = 0 to the 
end of rectangle as shown in Figure 4). As [10] considered 
saturation of injected water and its solution is assumed as 

 ( ) ( )* *

1
X, ; X, ;0 (X, )qm

im
m

S T S T S Tε
∞

=
= + ∑   (31) 

Where  

 ( )*

0

X, ;q1(X, )
!

m

im m
q

S T
S T

m q
=

∂
=

∂
  (32) 

i.e. the saturation of injected water is a function of 
distance X, and time T for any parametric value q is 
expressed as, the saturation of injected fluid at common 
interface ( )* X, ;0S T and sum of schematic presentation 
of fingers for saturation of injected fluid as given by 
Scheidegger for different value of parameter q is 
expressed as saturation of injected fluid at time T=0 is 

( )0 X,iS T  and sum of saturation of injected fluid fingers 

are ( )1 X,iS T , ( )2 X,iS T ,… at different time T for 
different value of parameter q. Here, the series (35) is 
called homotopy-series; the series (31) is called homotopy 
series solution of ( )* X, ;q 0S T  =  and ( )X,imS T  is 

called the mth-order derivative of S*. Auxiliary parameter 
 in homotopy-series (31) can be regard as iteration factor 
and is widely used in numerical computations. It is well 
known that the properly chosen iteration factor can ensure 
the convergence of homotopy series (31) is depending 
upon the value of  , one can ensure that convergent of 
homotopy series, solution simply by means of choosing 
the proper value of   as shown by Liao [8,9,10,11]. If the 
auxiliary linear operator, the initial guess, the auxiliary 
parameter  , the auxiliary function ( ),H X T are so 
properly chosen, the series (31) converges at q=1. 

Hence the saturation of injected fluid can be expressed as,  

 ( ) ( )0
1

X, X, (X, )iw i im
m

S T S T S T
∞

=
= + ∑   (33)  

and ( )X,imS T will be calculated by equation (38).
 This must be one of the solution of original non-linear 

partial differential equation (22) for saturation of injected 
fluid. According to the definition (32), the governing 
equation can be deduced from the zero-order deformation 
equation (26). Define the vector 

 ( ) ( ) ( ){ }0 1X, ,S X, ,...S X,in i i inS S T T T=
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Differentiating equation (30) m times with respect to 
the embedding parameter q and then setting q=1 and 
finally dividing them by m!, we have the so-called mth 
order deformation equation for saturation of injected fluid 
water S will be as [11]  
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And, 
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It should be emphasized that ( )X,imS T  for 1m ≥  is 
governed by the linear equation (32) with the linear 
boundary condition that come from the original problem, 
which can solve by symbolic computation software Maple 
as bellow. The rule of solution expression as given by 
equation (22) and equation (26), the auxiliary function 
independent of q  can be chosen as ( ), 1H X T = [11]. 

According to (30) and taking inverse of equation (34) 
we get, 
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In this way, we get (X, )imS T  for 1, 2,3...m =  
successively by using Maple software as, 
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Using initial guess value for the saturation of injected 
water from equation (22) and successive saturation of 
injected water into the native oil form (39) and (32) etc. 
and using in equation (34), we get  
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Where ( ) ( )1 2X, ,S X, ,...i iS T T are given by equation (28) 
and (29) respectively represents saturation of the injected 
water into the native oil at any time T for the horizontal 
distance X for T>0. The solution is an infinite series 
solution, which represents the approximate value of 

saturation of injected water for time T>0. Which is 
convergent at 1q =  for auxiliary parameter 0.02= . 

Thus the saturation of injected water into the native oil 
is expressed in terms of exponentials of function of X and 
time T>0, which depends on first guess value of the 
solution (25) only. Equation (41) represents the saturation 
of injected water in oil formatted region 0X ≥ of 
instability phenomenon in homogeneous porous media 
with small inclination when injected water is injected with 
external injecting force at common interface during 
secondary oil recovery process. 

5. Numerical and Graphical Presentation 
with Inclination 

Maple coding has been used to obtain numerical and 
graphical presentations of equation (41). Figure 5 
represents the graph of ( ),iwS X T vs. distance X for time 
T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 and fixed 
value 0 0.1wS = , 0.05ε =  and 

sin 0.1 9.8 2 sin15 0.5176iwA gLρ θ= = × × × = . Table 1 
indicates the numerical value for Figure 5. All tabular 
values used for the graphical representations of the 
instability phenomenon, which shows the behavior of the 
saturation of injected water. The convergence of the 
Homotopy series (41) is dependent upon the value of 
convergence-parameter   [8,9,10,11]. Therefore we choose 
proper value of the convergence-parameter 0.02=  to 
obtain convergent Homotopy-series solution [10]. 

Table 1. Numerical Values of the Saturation of Injected Water in Homogeneous Porous Matrix with Small Inclination θ=15° 
Distance Saturation of the injected water in inclined porous matrix 

X T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9 T=1.0 
0.1 0.1153 0.1198 0.1245 0.1288 0.1329 0.1371 0.1409 0.1447 0.1483 0.1517 
0.2 0.1321 0.1419 0.1515 0.1609 0.1703 0.1795 0.1885 0.1974 0.2061 0.2147 
0.3 0.1501 0.1649 0.1798 0.1944 0.2809 0.2232 0.2373 0.2513 0.2652 0.2789 
0.4 0.1694 0.1895 0.2094 0.2291 0.2487 0.2681 0.2874 0.3066 0.3256 0.3444 
0.5 0.1902 0.2154 0.2404 0.2653 0.2889 03146 0.3389 0.3633 0.3874 0.4113 
0.6 0.2127 0.243 0.2731 0.3031 0.3329 0.3627 0.3922 0.4216 0.4508 0.4799 
0.7 0.2369 0.2724 0.3076 0.3428 0.3777 0.4125 0.4472 0.4817 0.5159 0.5502 
0.8 0.2633 0.3038 0.3442 0.3844 0.4244 0.4643 0.5041 0.5437 0.5832 0.6224 
0.9 0.2918 0.3374 0.3829 0.4282 0.4733 0.5184 0.5632 0.6079 0.6525 0.6968 
1.0 0.3227 0.3735 0.424 0.4744 0.5247 0.5748 0.6247 0.6745 0.7242 0.7739 

 

Figure 5. Saturation of injected water at different distance X for fixed 
time T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 in homogeneous 

porous matrix with small inclination 015θ =  where 

00.05, 0.1, 0.02,A 0.5176wSε = = = =  

6. Deduction of instability phenomenon in 
homogeneous porous media without 
inclination  

For discussing this case, we put 0θ =  in equation 1 
and 2 so that the equation (22) becomes  

 
22

2
iw iw iw

iw
S S S

S
T XX

ε ε
∂ ∂ ∂ = +  ∂ ∂∂  

  (42) 

As consider the same condition (23) and (24) and same 
guess value (25). 

Above equation (42) is nonlinear partial differential 
equation of motion for the saturation of injected water 
during instability phenomenon occurring in secondary oil 
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recovery process in homogeneous porous matrix. The 
solution of equation (42) can be obtained as [10]. 
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(43) 

Equation (43) represents the saturation of injected water 
during instability phenomenon in homogeneous porous 
matrix without inclination.  

7. Numerical and Graphical Presentation 
without inclination 

Numerical and graphical presentations of equation (43). 
Figure 6 represents the graph of ( ),iwS X T vs. distance X 
for time T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 
and fixed value 0 0.1wS = , and 0.05ε =  Table II indicates 
the numerical value for Figure 6. The convergence of the 
Homotopy series (41) is dependent upon the value of 
convergence-parameter   [8,9,10,11]. Therefore we 
choose proper value of the convergence-parameter 

0.02=  to obtain convergent Homotopy-series solution [10]. 

 

Figure 6. Saturation of injected water at different distance X for fixed 
time T = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0 in homogeneous 
porous matrix without inclination and 

00.05, 0.1, 0.02,A 0.5176wSε = = = =  

Table 2. Numerical Values of the Saturation of Injected Water in Homogeneous Porous Matrix Without Inclination 

Distance Saturation of the injected water in inclined porous matrix 

X T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 T=0.6 T=0.7 T=0.8 T=0.9 T=1.0 

0.1 0.1157 0.1209 0.1261 0.1312 0.1364 0.1415 0.1467 0.1518 0.1569 0.1619 

0.2 0.1325 0.1429 0.1532 0.1635 0.1739 0.1842 0.1945 0.2048 0.2151 0.2253 

0.3 0.1505 0.1661 0.1816 0.1971 0.2126 0.2279 0.2435 0.2589 0.2745 0.2899 

0.4 0.1699 0.1906 0.2113 0.2319 0.2526 0.2733 0.2939 0.3146 0.3352 0.3558 

0.5 0.1908 0.2166 0.2425 0.2683 0.2942 0.3189 0.3456 0.3716 0.3974 0.4232 

0.6 0.2133 0.2443 0.2753 0.3063 0.3373 0.3683 0.3993 0.4303 0.4613 0.4922 

0.7 0.2376 0.2738 0.3059 0.3462 0.3824 0.4185 0.4547 0.4908 0.5269 0.5631 

0.8 0.2639 0.3053 0.3467 0.3879 0.4294 0.4707 0.5119 0.5533 0.5946 0.6359 

0.9 0.2926 0.3391 0.3856 0.4321 0.4786 0.5251 0.5716 0.6181 0.6645 0.7109 

1.0 0.3236 0.3753 0.4269 0.4787 0.5303 0.5819 0.6336 0.6853 0.7369 0.7885 

8. Comparative Study of Saturation of 
Injected Water in Instability 
Phenomenon with and without Inclined 
Homogeneous Porous Matrix 

The saturation of injected water in horizontal 
homogeneous porous matrix will be faster than saturation 
of injected water in inclined homogeneous porous matrix 
due to absents of gravitational force and angle of 
inclination. The comparative study of instability 
phenomenon also shows by the Table 3 that numerical 
values of saturation of injected water in horizontal 
homogeneous porous matrix is more than numerical value 
in inclined homogeneous porous matrix. 
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Table 3. Comparative Numerical Value of Saturation of Injected Water With and Without Inclined Porous Matrix 
Distance Saturation of the injected water in inclined porous matrix 

X 
T=0.1 T=0.2 T=0.3 T=0.4 T=0.5 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

0.1 0.1153 0.1157 0.1189 0.1209 0.1245 0.1261 0.1288 0.1312 0.1329 0.1364 
0.2 0.1321 0.132 0.1719 0.1429 0.1515 0.1532 0.161 0.1635 0.1703 0.1739 
0.3 0.1501 0.1505 0.1649 0.1661 0.1798 0.1816 0.1944 0.1971 0.2089 0.2126 
0.4 0.1694 0.1699 0.1895 0.1906 0.2094 0.2113 0.2291 0.2319 0.2487 0.2526 
0.5 0.1902 0.1908 0.2454 0.2166 0.2404 0.2425 0.2653 0.2683 0.2889 0.2942 
0.6 0.2127 0.2133 0.2429 0.2443 0.2731 0.2753 0.3031 0.3063 0.3329 0.3373 
0.7 0.2369 0.2376 0.2724 0.2738 0.3076 0.3089 0.3428 0.3462 0.3777 0.3824 
0.8 0.2633 0.2639 0.3038 0.3053 0.3442 0.3467 0.3844 0.388 0.4244 0.4294 
0.9 0.2918 0.2926 0.3374 0.3391 0.3829 0.3856 0.4282 0.4321 0.4733 0.4786 
1.0 0.3227 0.3236 0.3735 0.3753 0.424 0.427 0.4744 0.4787 0.5247 0.5303 

X 
T=0.6 T=0.7 T=0.8 T=0.9 T=1.0 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

with 
incline 

without 
incline 

0.1 0.1371 0.1415 0.1409 0.1467 0.1447 0.1518 0.1483 0.1569 0.1517 0.1619 
0.2 0.1795 0.1842 0.1885 0.1945 0.1974 0.1048 0.2061 0.2151 0.2147 0.2253 
0.3 0.2232 0.228 0.2373 0.2435 0.2513 0.259 0.2652 0.2745 0.2789 0.2899 
0.4 0.2681 0.2733 0.2874 0.2939 0.3066 0.3146 0.3256 0.3352 0.3444 0.3558 
0.5 0.3146 0.3189 0.3329 0.3458 0.3633 0.3716 0.3874 0.3974 0.4113 0.4262 
0.6 0.3627 0.3683 0.3922 0.3993 0.4216 0.4303 0.4508 0.4613 0.4799 0.4922 
0.7 0.4125 0.4185 0.4472 0.4547 0.4817 0.4908 0.5159 0.5269 0.5502 0.5631 
0.8 0.4643 0.4707 0.5041 0.5119 0.5437 0.5533 0.5832 0.5946 0.6224 0.6359 
0.9 0.5184 0.5251 0.5632 0.5716 0.6079 0.6181 0.6525 0.6645 0.6968 0.7109 
1.0 0.5748 0.5819 0.6247 0.6336 0.6745 0.6853 0.7242 0.7369 0.7736 0.7885 

9. Conclusion 

The equation (41) represents solution of equation (22) 
together with condition (23) and (24) by using Homotopy 
analysis method. Which gives saturation of injected water 
in inclined porous matrix during instability phenomenon 
occurred in secondary oil recovery process which satisfy 
both condition (23) and (24). The solution is in form of 
exponential function (X) and function of time T for given 
perturb parameter [ ]0,1ε ∈ . Hence solution shows that 
saturation of injected water increases exponentially as 
distance X (length of average cross-sectional area of 
schematic fingers) increases for given T > 0. From given 
finger 5 we can concluded that the saturation of injected 
water is not steadily increasing for small distance X due to 
the angle of inclination and gravitational effect but after 
some small distance the saturation of water is steadily 
exponentially increases as distance X increases for given 
time T > 0. When it is flowing through interconnected 
capillaries and external injecting force.  

In deduction, for horizontal porous matrix for 
inclination angle θ=0° gives governing equation (42) 
together with same condition (23) and (24), the solution 
(43) represents the saturation of injected water in 
horizontal porous matrix with same guess value of 
injected water saturation. The graph of solution (43) given 
by Figure 6 is exponentially increases from common 
interface X = 0 because here gravitational force and angle 
of inclination does not play any role. 

The comparative study of saturation of injected water 
for inclined and without incline porous matrix have been 
given by Figure 5 and 6. Which shows that saturation of 
injected water is increasing as distance X increase for 
given time T > 0. But due inclination the saturation of 
injecting water is slightly less than the saturation of 
injected water for case of without inclination for some 
distance X increases for given time T > 0. 

Hence overall we can conclude that when water is 
injected in oil formatted area at common interface then 

instability phenomenon occurred and saturation of injected 
water is increase as distance X increase for given time T > 
0 in case of incline porous matrix and horizontal porous 
matrix. But due to inclination the saturation of injected 
water is slightly less comparative to without inclination. 
Which is quite obvious for physical as well as 
experimental results. 
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