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1. Introduction 
Generalized order statistics (GOS) have been 

introduced and extensively studied in Kamps (1995 a,b) as 
a unified theoretical set-up which contains a variety of 
models of ordered random variables with different 
interpretations. Examples of such models are: Ordinary 
order statistics, Sequential order statistics, Progressive 
type II censored order statistics, Record values, kth record 
value and Pfeifer’s records. There is no natural 
interpretation of generalized order statistics in terms of 
observed random samples but these models can be 
effectively applied in life testing and reliability analysis, 
medical and life time data, and models related to software 
reliability analysis, etc. The common approach makes it 
possible to define several distributional properties at once. 
The structural similarities of these models are based on the 
similarity of their joint density function. 

2. Standard Extreme Value Distribution 
A random variable X is said to have an standard 

extreme value distribution if its probability density 
function is of the form 

 ( ) , , 0
xx ef x e e x

ααα α−= × − ∞ < < ∞ >  (2.1) 

and the cumulative distribution is given by  

 ( ) 1 , , 0
xeF x e x

α
α−= − − ∞ < < ∞ >  (2.2) 

The extreme value distribution is used in the analysis of 
data concerning floods, extreme sea level and air pollution 
problems. 

The cumulative distribution function and probability 
density function of random variable X, respectively, takes 
the form 
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The mathematical form of pdf, as given in (2.3), is very 
useful to derive the expression for recurrence relations for 
single and product moments of GOS. 

3. Generalized Order Statistics 

Let { }, 1nX n ≥ be a sequence of absolutely continuous, 
independent and identically distributed random variables 
with cdf ( )( )F x P X x= ≤ and pdf f(x). Assume k > 0, 

{ }2,3, ,n ∈   ( ) 1
1 2 1, ,..., n

nm m m m R −
−= ∈ , 

1n

r j
j r

M m
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=
= ∑ , such that 0r rk n r Mγ = + − + > for all 

{ }1,2,..., 1r n∈ − . Then ( ), , ,X r n m k , r = 1, 2,…,n, are 
called GOS if their joint pdf is given by  
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where 1 1
1 2(0 ) ... (1)nF x x x F− −+ < ≤ ≤ ≤ < . 

By choosing appropriate values of parameters, we get 
the distribution of a few very common statistics as shown 
in the table given below.  

S.No. Choice of parameters for i = 1, 2,…, n GOS becomes 

1 1 2 11, ... 0i nn i m m mγ −= − + = = = =  and k = 1 Joint distribution of n order statistics 

2 1 2 1, ... 1,i nk m m m k Nγ −= = = = = − ∈  kth record value 

3 ( 1) , 0i i in iγ α α= − + >   Sequential order statistics 

4 1, 0i iγ α α= − + >  Order statistics with non integer sample size 

5 , 0i i iγ β β= >  Pfeifer’s record values 

6 ,i om N k N∈ ∈  Progressively type-II right censored order statistics 

The joint pdf of first r, GOS is given by: 
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(3.2) 

where, 1 1
1 2(0 ) ... (1)rF x x x F− −+ < ≤ ≤ ≤ < . 

We now consider two cases: 
Case I: m1 = m2 = …= m n −1 = m 
Case II: i jγ γ≠   ; i ≠ j, i, j = 1, 2, …, n - 1.  
For case I, the GOS will be denoted by X(r, n, m, k). 

The pdf of X(r, n, m, k) is given by  
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and the joint pdf of X(r, n, m, k) and X(s, n, m, k), 1 ≤ r < 
s ≤ n is given by: 

 

( ) ( ) ( )

( )( )
( ) ( ) ( )

( )

, , , , , , ,

1

11

1

,

1 ( ) ( )
( 1)! ( 1)!

( ) ( ) ( )

1 ( ) ( ), ,

X r n m k X s n m k

s m

s rr
m m m

s

f x y
c

F x f x
r s r

g F x h F y h F x

F y f y x yγ

−

− −−

−

= −
− − −

⋅ −  

⋅ − <

 (3.4) 
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For case II, the pdf of ( ), , ,X r n m k  is given by  
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Also, the joint pdf of ( ), , ,X r n m k  and 

( ), , ,X s n m k , 1 ≤ r < s ≤ n is given by 

 

( ) ( ) ( )

( )

, , , , , , ,

1
1

1

,

1 ( )( )
1 ( )

( ) ( )( ) 1 ( ) ,
1 ( ) 1 ( )

X r n m k X s n m k

is
r

s i
i r

r
i

i
i

f x y

F yc a s
F x

f x f ya r F x
F x F y

γ

γ

−
= +

=

  − =   −   
  × − 

− −  

∑

∑

 

 (3.7) 
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 Further it can be proved that  
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 (3.10) 

The moments of order statistics have generated 
considerable interest in the recent years. The expressions 
for several recurrence relations and identities satisfied by 
single as well as product moments of order statistics have 
been obtained by several authors in the past. These 
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relations help in reducing the quantum of computations 
involved. Joshi (1978, 1982) established recurrence 
relations for exponential distribution with unit mean and 
were further extended by Balakrishnan and Joshi (1984) 
for doubly truncated exponential distribution. For linear-
exponential distribution, Balakrishnan and Malik(1986) 
derived the similar type of relations which were extended 
to doubly truncated linear exponential distribution by 
Mohie El-Din et al. (1997) and Saran and Pushkarna 
(1999). Nain (2010 a, b) obtained recurrence relations for 
ordinary order statistics and kth record values from pth 
order exponential and generalized weibull distributions, 
respectively. 

The recurrence relations for the moments of generalized 
order statistics based on non identically distributed 
random variables were developed by Kamps (1995 a, b). 
Pawlas and Szynal (2001) obtained recurrence relations 
for single and product moments of generalized order 
statistics from Pareto, generalized Pareto and Burr 
distributions. Saran and Pandey (2004, 2009) obtained 
recurrence relations for single and product moments of 
generalized order statistics from linear-exponential and 
Burr distributions. Saran and Nain (2012) obtained 
recurrence relations for single and product moments 
generalized order statistics from doubly truncated pth order 
exponential distribution. Saran and Nain (2013) also 
obtained explicit expressions for single and product 
moments of Generalized Order Statistics from a new class 
of exponential distribution. 

In this paper, we have established recurrence relations 
for single and product moments of GOS from Extreme 
Value Distribution. This distribution has many 
applications in analysis of data concerning floods, extreme 
sea levels and air pollution problems. 

The results so obtained are generalized versions of 
some of the recurrence relations obtained by Kumar 
(2010), Saran and Pandey (2004). 

Notations 
For n = 1, 2, 3, ..., 1 , 1r s n k≤ < ≤ ≥  and 
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4. Recurrence Relations For Single and 
Product Moments 
Case I: 1 2 1... nm m m m−= = = =  
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Proof (a): 
The uth order moment of X( r, n, m, k ) is given by  
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Substituting f(x) from (2.3) we have  
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Integrating by parts, taking xu + j as the part to be 
integrated, we obtain 
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On substituting 1 21 1, r rr r rc cmγ γ γ− −−+ = − =  and 
1j

jα α +=  in (4.5), we shall derive the recurrence relation 
as stated in (4.1). 
Proof (b). By definition 
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where,  
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Substituting f(y) from (2.3) we have: 
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Integrating by parts, taking yv + j as the part to be 
integrated, we obtain: 
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After using 1 21 1 s ss s sc cm andγ γ γ− −−+ = − = , we 
get: 
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On substituting J(x : v, r, s, m) so obtained in (4.6), we 
shall derive the recurrence relation as stated in (4.2). 

Case II: i jγ γ≠ ; i ≠ j, i, j = 1, 2, …, n - 1. 
Lemma 1. 
(a)  
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Proof (a): Differentiating both sides of (3.9), with respect 
to x, we get: 
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which on using the relation 1 2r r rc cγ− −=  leads to (4.9). 
Proof (b): Differentiating both sides of (3.10), with 

respect to y, we get: 
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which on using the relation 1 2s s sc cγ− −=  leads to (4.10). 
Theorem 2. 

For n = 1, 2, 3,..., 1 , 1r s n k≤ < ≤ ≥  and 

{ }, 0,1, 2,...u v ∈  
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(b) 

 
, 1
, : , ,,

, : , , , 1
0 , 1: , ,

1

u v jj r s m n ku v
sr s m n k u v j

j r s m n k
v j

µαµ αγ
µ

+ +∞

+ +
= −

 
 =  + + −  

∑






 (4.12) 

Proof (a): 
The uth order moment of ( ), , ,X r n m k  is given by: 
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Substituting the value of f(x) from (2.3), we have  
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(4.14) 

Integrating by parts, taking xu + j as the part to be 
integrated, we obtain: 
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 (4.15) 

After using (4.9), we shall derive the recurrence relation 
given in (4.11). 

Proof (b): We know that 
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where 
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Substituting f(y) from (2.3) we have: 
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Integrating by parts, taking yv + j as the part to be 
integrated, we obtain: 
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On substituting the above expression of ( ): , , ,J x v r s m  
in (4.16) we get  
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which on using (4.16), leads to (4.12). 

5. Conclusion 
In the study presented above, we demonstrate the 

recurrence relations for single and product moments of 
GOS from Extreme Value Distribution. These results 
generalize the corresponding results of Kumar (2010) and 
Saran and Pandey (2004). 
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