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Abstract In this communication, we propose a new generalizations of fuzzy average codeword length L, and
study its particular cases. The results obtained not only generalize the existing fuzzy average code word length but
all the known results are the particular cases of the proposed length. Some new fuzzy coding theorems have also

been proved.
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1. Introduction

Fuzzy sets play a significant role in many deployed
systems because of their capability to model non-
statistical imprecision. Consequently, characterization and
quantification of fuzziness are important issues that affect
the management of uncertainty in many system models
and designs. Zadeh [14] introduced the concept of fuzzy
sets in which imprecise knowledge can be used to define
an event. A fuzzy set ‘A’ is represented as

A={%/up(%):i=12,..,n}

where xUA(Xi) gives the degree of belongingness of the

element 'x; ' to the set *A’. If every element of the set *A’

is ‘0’ or “1’, there is no uncertainty about it and a set is
said to be crisp set. On the other hand, a fuzzy set ‘A’ is
defined by a characteristic function

ﬂA(Xi):{leX21X3,...,Xn}_)[0’1]'
The function (X)) associates with each (x;)eR"

grade of membership function. The importance of fuzzy
set comes from the fact it can deal with imprecise and
inexact information. Its application areas span from design
of fuzzy controller to robotics and artificial intelligence.
Many fuzzy measures have been discussed and derived by
Kapur [6], Lowen [8], Pal and Bezdek [10] etc.

The basic noiseless coding theorems [6,11] give the
lower bound for the mean codeword length of a uniquely
decipherable code in terms of Shannon’s [12] measure of
entropy. Kapur [7] has established relationship between
probabilistic entropy and coding. But, there are situations
where probabilistic measure of entropy does not work. To
tackle such situations, instead of taking the probability,
the idea of fuzziness can be explored.

De Luca and Termini [3] introduced a measure of fuzzy
entropy corresponding to Shannon’s [12] information
theoretic entropy and is given by

2 (% )10g 2 (%)
H(A)= ZL(l—ﬂA(Xi))'09(1—ﬂA(Xi)J oy

I
Bhandari and Pal [1] surveyed the literature on
information measures of fuzzy sets and also gave some
new measures. Thus corresponding to Renyi’s [11]
entropy of order o they suggested that the amount of
ambiguity or fuzziness of order o should be

a X:
Ha(A):Lzrlog[ﬂA( ) a];a #1,a>0(1.2)
1-a +(1-1a (%))
Kapur [7] has taken measure of fuzzy entropy

corresponding to Havrada Charvat [4] as

Ha(A)=inn|:{ #y (%) }—l}a:tl,a>0(l.3)
| RN

Corresponding to Cambell’s [2] measure of entropy, the
fuzzy entropy can be taken as

H, (A) =ﬁlog{§n1{uﬁ (% )+ (1= ma (% ))a }a} (1.4)

1
a+la>0

Corresponding to Sharma and Taneja [13] measure of

entropy of degree (o), Kapur [6] has taken the following
measure of entropy
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Corresponding to Kapur [6] measure of entropy of
degree (a,B), Kapur [6] has given measure of entropy for
fuzzy sets as

an #a () + (1= 2 ()"

i +:U§(Xi)+(l_:uA(Xi))ﬂ -2

Shannon [12] established the first noiseless coding
theorem which states that for all uniquely decipherable

(1.6)

a,b’( )_

a+/3 2

codes, the lower bound for the arithmetic mean Z.n piN;
lies between S(P) and S(P)+1, where

n

S(P)=->_pilog p; is Shannon’s measure of entropy.
i

Mathai, A.M. [9] has given the measure of entropy as

M, {sz “—1} a#l-o<a<2 (1.7

Corresponding to this measure, we propose the following
average codeword length as:

a-1

j(m) “1|;a#La>0(1.8)

Zp. [

Corresponding to equation (1.7) we propose the following
measure of fuzzy entropy as

Ma(A)ﬁ{i{faxi»m}l] (1.9)

And the corresponding average codeword length as

I i (%) D(%l)(m) 1((1.10)
" a1 Z': +(1-pa ()" N

Remark :
(I): When a —1,(1.7) tends to Shannon’s entropy

given as

1.11)

n
P)=—2_pilog p
i
(I: When o —1 (1.8) tends to average codeword
length given by
(1.12)

L=Zin Pin;

In section 2, some noiseless coding theorems connected
with fuzzy entropy corresponding to Mathai’s [9] entropy
have been proved.

2. Fuzzy Noiseless Coding Theorems

Theorem?2.1: For all uniquely decipherable codes
M, (A) <L, 2.1

Where

[ [
T Zi:{+(1—y(xi))2_a}[) '

Proof: By Holders inequality, we have

ZX.V.—(Z- ) (Z y)

0<p<l,g<0or0<g<lp<0

(2.2

-1
Set X =|:f(/JA( ) /JB(Xi)):|t D_ni
1
yiz[f(yA(xi),yB(xi))]t and p=-t=0<p<l,
t
q—m:>q<0.
Thus equation (2.2) becomes

i [f (n,UA(Xi)’,UB(Xi))]_Tl
"D [ (ua (%), 8 (%)) ]t

> {[f(ﬂA(Xi)'ﬂB(Xi))]_t Dni}

t+1
e

x {[f(ﬂA(Xi)'ﬂB(Xi ))ﬁ}m

Using Kraft’s inequality, we have
t+1

[ Ha XI 1HB Xl))JtJlrl}t

|: Ha XI yHB Xl))JDnit:F

S (ra(x) s ()]t
,n[ s (%), 1p Xl))JDnitJE
i

or

or luA XI e XI))J (2.3)

<Z [[ (#a (% #B(Xi))]DnitJ

Dividing both sides by t, we get

YL (a(x) m5(%))]
t
< L[ (a0, a5 (%)) 0™ |
) t
Subtracting n from both sides, we get




>
%

Taking « =i,
1-t

F(ua (%), 18 (%)) = HE (% )+(1-ua(%))
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o f(a (%) 18 (%)) 1]

! t

[ (1a (%), (x)) ] O™ -1

t

(24

Thus equation (2.4) becomes

a n

a—li

a
<~
a—li

Dividing both sides by o, we get

1

1

Thatis M, (

pEON1 Y

. n {#/2(“ (%) }D(aa_l
o —1%i X; ))270:

2—-a
A

+(1-pa(

A)<L,.

Which proves the theorem.

Theorem 2.2: For all uniquely decipherable codes,

Where,

And a>1,8
Proof: Since
1 n
a-1 i
n

1
<_—
a—li

Ma,ﬁ < La,,b’

2-a

Hp

(%)

2-
Hp A

(%)

<lorpzla<l
from (2.5), we have

Multiplying both sides by (a—l), we have

S| i O+ 0 (1)) 1]

<X

{ 1A% (%)

+(L—paa (%

+(L-pa (% ))270[ D(i

tza—,a>0,a #1 and

i )+ 0w 1

{ﬂ/zx_a(Xi)+(1‘#(xi))z_a}D[ ¢

1
p

(1= g ()" D( j

i ) 1m0 1

() + (2= pa (x ))Za}‘l}
j(m) (2.5)
1

(ni)

2—a

(2.4

j(ni) 1

(2.6)

2.7

{#i—a () + (1 pen (% ))za}D(aalj(ni) 1

2 }D[aj)(m) . (2.8)
)

Changing a to 3, we have

0 () (1 a ()P |1
1

<2t

(%

)+(1_:UA(Xi))2ﬂ}D( ﬁ_lj

(ni)

75

(2.9

-1

Subtract (2.9) to (2.8), and divide by (S -«), we get

|

Hp

+(1-pa (% ))Zia D( “

2—-a

(%) + (1= (%))}
g (Xi)+(1_ﬂA(Xi))27ﬁ}

wa (%)

i

(%)

H(1-ua ()7 D(%j(ni)

Thatis M, g <L, z.This proves the theorem.

Theorem 2.3: For all uniquely decipherable codes

Where

1

L ,=— = N0
@ a+ﬁ+22'

! <

a,f = Lé:,ﬂ

HA (%)
N
1" (%)

+(1*NA(Xi ))Z—ﬂ D[%)(ni) -2

(2.10)

(2.11)

(2.12)

Proof: The result can be easily proved by adding (2.8)
and (2.9) and then dividing by

(a+p+2).
Theorem 2.4: For all uniquely decipherable codes
Mg <Llop
Where
DAL CORRCEVN S ==
Mep = _ n 2-5 2-8
poa| Tk () + (- ()Y} 1]
And
I [ " (%) ] 1]
Zinzl ) =) -1
L1 [+ sa (%)) WD(”)() |
R 7 ()
Zin:l B\ i -1
l +(1—uA(xi))2’”D(ﬂJ( i

(2.13)

}(2.14)

11(2.15)

To prove this theorem, we first prove the following lemma.
Lemma 1: For all uniquely decipherable codes
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é[{ﬂ%«_a(Xi)+(1—,uA(xi))2_“}_1}
ﬁ% ﬂi‘“(xi)+(l—yA(xi))Z—“D(aa_l](”i) )

Proof of the Lemma. From equation (2.3), we have
S (1 05) 18 (%)
<ML (a5, 28 ()] |
Subtracting ‘n’ from both sides, we get
DLt (kea (%), 18 ()} -1
< IH{F (a ()8 (%)) D" -1

Taking o=

t o
F(un (%)t (%)) = 127 (%) +(1-ua (%)), we
have

Zin[{ﬂf\_a (Xi)+(1—ﬂA(Xi))za}‘1}

at) (2.16)
B L TR ] I

Which proves the lemma
Proof of the theorem 2. 4
Changing o to B in (2.16), we have

Z?[{ﬂi_ﬂ(xi)Jf(l‘ﬂA(Xi))2_ﬂ}‘1}
<3 ()4 (1 (1) L] =

Dividing (2.17) to (2.16), we get
Z?Hﬂlz(a (Xi)+(1‘ﬂA(Xi))2_a}‘1}
S 00 )7 7]
A (%) + (1 pa (%)) D(%_lj(m) 1
S () (1 () L5I

Dividing both sides by B — o, we have
1 Zin{{ﬂlzfa(xiﬁ(l—ﬂA(xi))za}—l}
P il () 1 mn () |1

5o ug (%)

. a-1), . =1

1 i _ +(1—/1A(Xi))2_a D(Tj(m) |

R I '
ZI +(1—/1A(Xi))27ﬂ D[ﬁﬁlJ(m) h

(2.18)

= M, 3<L, 3. The RHS. is a new exponentiated

mean codeword length of order a and type B and is

defined as
DR S CIRCENES i =1
~ S i )+ ()1

T A % (%) 1
zln a-l ni -1
1 H1-ma (%)) D( “ )( )
< = =
p-a 13 P (%)
zIn E ni -1
I +(1—,UA(Xi))27ﬁ D[ B j( : |
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