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Abstract  The penalty function based on misclassification of a pure diagonal bilinear process of order two as a 
moving average process of order two was derived in this study. Computation of penalties using the penalty function 
revealed that such misclassification increases the error variance. Regression analysis of the penalties on the 
parameters of the pure diagonal bilinear process suggested a second order polynomial regression model. A test 
of significance of each of the parameters of the fitted model showed that all the parameter estimates were 
statistically significant at 5% level of significance. The analysis of variance technique was also used to confirm the 
adequacy of the fitted model. 
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1. Introduction 
Much attention is usually given to the structures of the 

autocorrelation function (ACF) and partial autocorrelation 
function (PACF) during the identification stage of a time 
series model. The moving average model is a linear time 
series model with known structures of autocorrelation 
function and partial autocorrelation function [10]. Let 

,t t Zµ ∈ be a sequence of independent and identically 
distributed random variables with zero mean and variance 

( )2
1σ . Then ,tX t Z∈ is a non zero mean moving average 

process of order two (MA(2) process) if:  

 0 1 1 2 2t t t tX β β µ β µ µ− −= + + +  (1.1) 

The moving average process in (1.1) has the following 
first and second moments [3]: 

 0( )tE X β=  (1.2) 
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The autocorrelation function in (1.4) cuts off at lag two 
([2,3]) .Other properties of the autocorrelation function are 

1
2 2

2 2
ρ− ≤ ≤  and 2

1 1
2 2

ρ− ≤ ≤  [9]. 

A non linear time series model which competes with 
the moving average process in (1.1) in terms of 
autocorrelation function structure is the pure diagonal 
bilinear time series process of order two (PDB(2) process) 
defined by [4]:  

 1 1 1 2 2 2t t t t t tY X e X e eθ θ− − − −= + +  (1.5) 

where ,te t Z∈ is a sequence of independent and 
identically distributed random variables with zero mean 

and constant variance ( )2
2σ , 1θ and 2θ are real constants. 

If 1 1 2λ θ σ=  and 2 2 2λ θ σ= , then the first and second 
moments of the model in (1.5) are as follows [8]: 

 ( ) 2
1 2 2( )tE Y θ θ σ= +  (1.6) 
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It is quite obvious that the ACFs in (1.4) and the one in 
(1.8) all cut off after lag two. This is indicative of the fact 
that a moving average process of order two and a pure 
diagonal bilinear time series process of order two have 
similar autocorrelation structures. As a result, there is a 
possibility of misclassifying a pure diagonal bilinear 
process of order two as a moving average process of order 
two. The ease with which linear models are fitted and the 
practice of approximating nonlinear models by linear 
models can also cause misspecification of the nonlinear 
pure diagonal bilinear process of order two. 

From the foregoing, it is imperative to investigate the 
statistical implication of the aforementioned model 
misclassification. In this regard, we will focus on the 
penalty function associated with misclassification of a 
PDB(2) process as an MA(2) process. 

2. Relationship between the Parameters 
of the Pure Diagonal Bilinear Process of 
Order Two and Moving Average Process 
of Order Two 

Having observed that the moving average process of 
order two and pure diagonal bilinear process of order two 
have similar autocorrelation structures, it is worthwhile to 
derive the relationship between the parameters of the two 
models. These relationships will help us to obtain the 
penalty function for misclassifying the nonlinear model as 
the competing linear model. The method of moments 
which involves equating the first and second moments of 
the pure diagonal bilinear model to the corresponding 
moments of the non zero moving average process of order 
two shall be used for this purpose. 

Equating means, we have  

 2
0 2 1 2( )β σ θ θ= +  (2.1) 

Equating variances, we obtain 
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Equating first order autocorrelations leads to: 

 
2 4 2 2

1 2 1 1 1 2 1 2
2 2 2 2 4 2 2

1 2 1 2 1 1 2
3 3 4

1 2 1 2 2

(1 ) 3
(1 ) 1 2

2 2

β β λ λ λ λ λ λ

β β λ λ λ λ λ

λ λ λ λ λ

+ − + +
=
 + + + + + +
 
 + + + 

 (2.3) 

Equating second order autocorrelations gives 
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Dividing (2.4) by (2.3), we have 
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From (2.5), we obtain 
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Substituting (2.6) into (2.3), we obtain 

 4 3 2
2 2 2 2 1 0A B Aβ β β β+ + + + =  

 
(2.7) 

where 
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One way of solving (2.7) involves modifying it first to 
obtain 
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Here, a, b and k are constants such that 

 
2

2 2
4

Aa B k+ = +  (2.11) 

 2ab A kA+ =  (2.12) 

 2 21b k+ =  (2.13) 
The value of k satisfying (2.11), (2.12) and (2.13) is 

obtained by solving the equation  

 ( ) ( )3 2 2 21 1 14 4 0
2 4 8

k Bk A k B A− + − + − =  (2.14) 

Substituting 
6
Bk Z= + into (2.14), we obtain 
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Following the methods of [5] and [1], the real solution 
of (2.15) is found to be  

 2 23 3
1 1 2 1 1 2Z Z Z Z Z Z Z= + + + − +  (2.16) 

where 
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Hence, 

 2 23 3
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Bk Z Z Z Z Z Z= + + + − + +  (2.19) 

Comparing (2.7) and (2.10), we have 
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It can be deduced from (2.20) that  

 2
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When 2 21β β= , we have 
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For 2 22β β= , we obtain 
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Using 2 23β β= , we have 
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With 2 24β β= , we obtain 
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Simulation concerning (2.23), (2.24), (2.25), (2.26) and 
their corresponding values of 1β  namely 11β , 12β , 13β  
and 14β  respectively shows that only 11β and 21β  take on 
values satisfying the invertibility condition of a moving 
average process of order two. 

3. Penalty Function for Misclassification 
of a PDB(2) Process as an MA(2) Process 

Penalty function based on model misclassification in 
time series analysis is defined by [6] as a function of error 
standard deviations. Let 2σ  be the standard deviation of 
the errors associated with a PDB(2) process. Suppose 1σ  
represents the standard deviation of the errors 
corresponding to an MA(2) process. Then the penalty 
function for the misclassification of PDB(2) as an MA(2) 
is given as 

 1 2

2

_P σ σ
σ
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We can write (3.1) as  
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Using (2.2), we obtain 
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Substituting (3.3) into (3.2) leads to 
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1β  and 2β  in (3.3) are as defined in (2.27) and (2.23) 
respectively. Table 1 contains the penalties (P) 
corresponding to various values of 1λ , 2λ , 1β  and 2β . 

Considering the complete table containing 2129 sets of 
values, we can see that the penalty function for 
misclassification of a PDB(2) process as an MA(2) 
process (P) takes on positive values for all values of 1λ , 

2λ , 1β  and 2β . The positive value of the penalty for 
misclassification of a PDB(2) process as an MA(2) 
process shows that this misclassification leads to increase 
in variance of the errors. This finding agrees with the 
results obtained by [6] with regard to misclassification of 
a PDB(1) process as an MA(1) process. 

For predictive purposes, we have to find the 
relationship between P and 1λ  and 2λ . First, we plot P 
against each of 1λ  and 2λ . Figure 1 shows the plot of P 
against 1λ . 

Table 1. Penalties for various Values of Parameters of MA(2) Process and PDB (2) Process 
S/NO 1λ  2λ  1θ  2θ  P  P̂  ˆP P−  

1 -0.26 -0.42 0.40 0.12 0.24 0.2615 -0.0215 
2 -0.26 -0.41 0.39 0.12 0.23 0.2519 -0.0219 
3 -0.26 -0.40 0.37 0.12 0.22 0.2426 -0.0226 
4 -0.26 -0.39 0.35 0.11 0.22 0.2334 -0.0134 
5 -0.26 -0.38 0.34 0.11 0.21 0.2245 -0.0145 
6 -0.26 -0.37 0.32 0.10 0.20 0.2159 -0.0159 
7 -0.25 -0.43 0.40 0.13 0.24 0.2664 -0.0264 
8 -0.25 -0.42 0.39 0.13 0.23 0.2565 -0.0265 
9 -0.25 -0.41 0.37 0.12 0.22 0.2469 -0.0269 

10 -0.25 -0.40 0.36 0.12 0.22 0.2375 -0.0175 
11 -0.25 -0.39 0.34 0.11 0.21 0.2284 -0.0184 
12 -0.25 -0.38 0.33 0.11 0.20 0.2195 -0.0195 
13 -0.25 -0.37 0.31 0.10 0.20 0.2108 -0.0108 
14 -0.25 -0.36 0.30 0.10 0.19 0.2024 -0.0124 
15 -0.25 -0.35 0.28 0.10 0.19 0.1942 -0.0042 
16 -0.25 -0.34 0.27 0.09 0.18 0.1862 -0.0062 
17 -0.25 -0.33 0.25 0.09 0.18 0.1785 0.0015 
18 -0.24 -0.43 0.39 0.13 0.24 0.2615 -0.0215 
19 -0.24 -0.42 0.37 0.13 0.23 0.2517 -0.0217 
20 -0.24 -0.41 0.36 0.12 0.22 0.2421 -0.0221 
21 -0.24 -0.40 0.34 0.12 0.21 0.2327 -0.0227 
22 -0.24 -0.39 0.33 0.11 0.21 0.2236 -0.0136 
23 -0.24 -0.38 0.32 0.11 0.20 0.2147 -0.0147 
24 -0.24 -0.37 0.30 0.11 0.19 0.2060 -0.0160 
25 -0.24 -0.36 0.29 0.10 0.19 0.1976 -0.0076 
26 -0.24 -0.35 0.27 0.10 0.18 0.1894 -0.0094 
27 -0.24 -0.34 0.26 0.09 0.18 0.1814 -0.0014 
28 -0.24 -0.33 0.24 0.09 0.17 0.1737 -0.0037 
29 -0.24 -0.32 0.23 0.08 0.17 0.1662 0.0038 
30 -0.24 -0.31 0.22 0.08 0.16 0.1589 0.0011 
31 -0.24 -0.30 0.20 0.07 0.16 0.1519 0.0081 
32 -0.24 -0.29 0.19 0.07 0.15 0.1451 0.0049 
33 -0.23 -0.44 0.39 0.13 0.24 0.2670 -0.0270 
34 -0.23 -0.43 0.37 0.13 0.23 0.2569 -0.0269 
35 -0.23 -0.42 0.36 0.13 0.23 0.2471 -0.0171 
36 -0.23 -0.41 0.35 0.12 0.22 0.2374 -0.0174 
37 -0.23 -0.40 0.33 0.12 0.21 0.2281 -0.0181 
38 -0.23 -0.39 0.32 0.11 0.20 0.2189 -0.0189 
39 -0.23 -0.38 0.30 0.11 0.20 0.2100 -0.0100 
40 -0.23 -0.37 0.29 0.10 0.19 0.2014 -0.0114 
41 -0.23 -0.36 0.28 0.10 0.18 0.1929 -0.0129 
42 -0.23 -0.35 0.26 0.10 0.18 0.1847 -0.0047 
43 -0.23 -0.34 0.25 0.09 0.17 0.1768 -0.0068 
44 -0.23 -0.33 0.23 0.09 0.17 0.1691 0.0009 
45 -0.23 -0.32 0.22 0.08 0.16 0.1616 -0.0016 
46 -0.23 -0.31 0.21 0.08 0.16 0.1543 0.0057 
47 -0.23 -0.30 0.20 0.07 0.15 0.1473 0.0027 
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Figure 1. Plot of P against 1λ  

 

Figure 2. Plot of P against 2λ  

It can easily be seen from Figure 1 that there is a 
curvilinear relationship between P and 1λ . In Figure 2, we 
have the plot of P against 2λ . 

Figure 2 also reveals that there is a curvilinear 
relationship between P and 2λ . 

Combining the information in Figure 1 and Figure 2, 
the regression model in (3.5) is suggested for the 
relationship between P and 1λ  and 2λ . 

 2 2
0 1 1 2 1 3 2 4 2P φ φ λ φ λ φ λ φ λ ν= + + + + +  (3.5) 

where 0φ , 1φ , 2φ , 3φ  and 4φ  are the parameters of the 
regression equation (3.5) and ν  is the associated error 
term. The least squares estimation of (3.5) based on the 
admissible values of . 1λ  and 2λ  leads to the predictive 
equation [7]. 

 
2

1 1
2

2 2

0.0034 0.0224 1.0320

0.0152 1.1757

P λ λ

λ λ

∧
= − + +

+ +
 (3.6) 

Table 2 contains the summary of the test for 
significance of each of the parameters of the model in (3.6). 
Table 2. Test for Significance of the Parameters of the Regression 
Model for Penalty for Misclassication of a PDB(2) Process as an 
MA(2) Process 

Predictor Coef StDev T P 
Constant -0.0034 0.0003 -13.34 0.000 

1λ  0.0224 0.0011 21.25 0.000 

2
1λ  1.0320 0.0102 101.20 0.000 

2λ  0.0152 0.0005 29.26 0.000 

2
2λ  1.1757 0.0023 521.79 0.000 

S = 0.0064, R-Sq = 99.4%, R-Sq(adj) = 99.4% 
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Each of the parameters appears to be significant at 
5%α =  level of significance since the corresponding p 

value is less than 0.05. Next, we test for significance of 
the overall regression using the analysis of variance 
technique as shown in Table 3. 

Table 3. ANOVA Table for Testing for Significance of the Fitted 
Penalty Model 

Source DF SS MS F P 

Regression 4 15.5117 3.8779 93994.23 0.000 

Error 2124 0.0876 0.0000   

Total 2128 15.5993    

The p value of 0.00 in the Table 3 implies that the fitted 
regression model is suitable for describing the relationship 
between P and 1λ  and 2λ . 

4. Conclusion 
In this study, we determined the effect of misclassifying 

a pure diagonal bilinear process of order two as a moving 
average process of order two. A penalty function was 
defined and was used to compute penalties for 
misclassification of the pure diagonal bilinear process of 
order two as the moving average process of order two 
based on various sets of values of the parameters of the 
two processes. The computed penalties assumed positive 
values. This indicated increase in error variance due to 
misclassification of pure diagonal bilinear process of order 
two as a moving average process of order two. A 
quadratic regression model was found suitable for 

predicting the penalties based on the parameters of the 
pure diagonal bilinear process of order two. 
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