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Abstract  This paper discussed the Application of SARIMA Models in Modeling and Forecasting Nigeria’s 
Inflation Rates. Time series analysis and forecasting is an efficient versatile tool in diverse applications such as in 
economics and finance, hydrology and environmental management fields just to mention a few. Among the most 
effective approaches for analyzing time series data, the method propounded by Box and Jenkins, the Autoregressive 
Integrated Moving Average (ARIMA) was employed in this study. In this paper, we used Box-Jenkins methodology 
to build ARIMA model for Nigeria’s monthly inflation rates for the period November 2003 to October 2013 with a 
total of 120 data points. In this research, ARIMA (1, 1, 1) (0, 0, 1)12 model was developed, and obtained as 1ˆty +  = 
0.3587yt+0.6413yt-1-0.8840et-11 -0.7308912et-12+0.8268et. This model is used to forecast Nigeria’s monthly inflation 
for the upcoming year 2014. The forecasted results will help policy makers gain insight into more appropriate 
economic and monetary policy in other to combat the predicted rise in inflation rates beginning the first quarter of 
2014. 
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1. Introduction 
Inflation is the percentage change in the value of the 

Wholesale Price Index (WPI) on a year-on year basis. It 
effectively measures the change in the prices of a basket 
of goods and services in a year. In India, inflation is 
calculated by taking the WPI as base. Thus, the formula 
for calculating Inflation is: 

 

WPI in month of current year
WPI in same month of previous year

100
WPI in same month of previous year

 
 −  ×  

Inflation occurs due to an imbalance between demand 
and supply of money, changes in production and 
distribution cost or increase in taxes on products. When 
economy experiences inflation, i.e. when the price level of 
goods and services rises, the value of currency reduces. 
This means now each unit of currency buys fewer goods 
and services. 

It has its worst impact on consumers. High prices of 
day-to-day goods make it difficult for consumers to afford 
even the basic commodities in life. This leaves them with 
no choice but to ask for higher incomes. Hence the 
government tries to keep inflation under control. 

Contrary to its negative effects, a moderate level of 
inflation characterizes a good economy. An inflation rate 
of 2 or 3% is beneficial for an economy as it encourages 
people to buy more and borrow more, because during 
times of lower inflation, the level of interest rates also 
remains low. Hence the government as well as the central 
bank always strives to achieve a limited level of inflation. 

In Nigeria hardly does the day go by without 
government officials, politicians and economist talking 
about inflation. In some cases we are told inflation is high 
for a particular month and low for another month. 
There are several important variables that help to 
describe the state of an economy. These include inflation, 
unemployment, the budget balance, the interest rates, and 
the balance of payments. Inflation may be defined as a 
rise in the average level of a group of prices in a 
country. The term is sometimes restricted to prolonged or 
sustained rises. Inflation creates a problem because the 
purchasing power of money falls as the price level 
rises. It imposes an opportunity cost on holders of money. 
Thus inflation [1] will reduce the real value of money 
wage, and savings accounts making holders of these 
instruments to lose. Inflation also encourages wasteful 
increase in the volume and frequency of transactions 
people undertake and because it is difficult to foresee, 
it adds to the uncertainties of economic life. In real terms, 

 



 American Journal of Applied Mathematics and Statistics 17 

inflation means your money cannot buy as much as what 
it could have bought yesterday. Inflation retards [2] 
economic growth because the economy needs a certain 
level of savings to finance investments which boosts 
economic growth. Inflation causes global concerns 
because it can distort economic patterns and can result in 
the redistribution of wealth when not anticipated. Inflation 
can also discourage investors within and without the 
country by reducing their confidence level in investments. 
This is because investors expect high possibility of 
returns so that they can make good financial decisions. 

There are two main types of inflation: These are 
creeping or moderates inflation and hyper inflation. The 
creeping inflation, also known as mild inflation, is the 
type in which the rates of price change is not so severe. 
Example of creeping inflation is the one Ghana 
experienced in 1992, 1999, 2002; 2004-2007 and 2010. A 
rate of inflation of about 10% annually can be described as 
creeping inflation. The hyper inflation is the type in which 
the rates of change in prices are so severe. A typical 
example of hyper inflation is what has happened in 
Zimbabwe from 2007 to 2008. This country had a rates of 
inflation of about 8000%.This means that if you buy an 
item today in the morning, the price of the item will 
change by the time you go there in the evening. The hyper 
inflation is the worse economic problem any country will 
experience. The effect of inflation is highly considered as 
a crucial issue for a country. The inflation problems make 
a lot of people living in a country much harder. People 
who are living on fixed income suffer most as when prices 
of commodities rise, since these people cannot buy as 
much as they could previously. 

In this study, the problem is to forecast Nigeria’s 
monthly inflation rates using time series Seasonal 
Autoregressive Integrated Moving Average (SARIMA) 
models. When it comes to forecasting, there are extensive 
number of methods and approaches available and their 
relative success or failure to outperform each other is in 
general conditional to the problem at hand. The rational 
for choosing this type of model is contingent on the 
behaviour of the time series data. Also in the history of 
inflation forecasting, this model has proved to perform 
better than other models. 

2. Review of Related Literature 
A research work [3] was carried out on SARFIMA 

model to study and predict the Iran’s oil supply. The 
results of their analysis showed that the best model was 
SARFIMA (0, 1, 1)(0, -0.199, 0)12 which was used to 
predict the quantity of oil supply in Iran till the end of 
2020. 

Research was carried out [4] to evaluate the performance 
of VAR and ARIMA models to forecast Austrian HICP 
inflation. Additionally, they investigate whether 
disaggregate modeling of five subcomponents of inflation 
is superior to specifications of headline HICP inflation. 
Their modeling procedure is to find adequate VAR 
and ARIMA specifications that minimize the 12 months 
out-of-sample forecasting error. The main findings are 
twofold. First, VAR models outperform the ARIMA 
models in terms of forecasting accuracy over the longer 
projection horizon (8 to 12 months ahead). Second, a 

disaggregated approach improves forecasting accuracy 
substantially for ARIMA models. In case of the VAR 
approach the superiority of modelling the five 
subcomponents instead of just considering headline HICP 
inflation is demonstrated only over the longer period (10 
to 12 months ahead). 

Two researchers [5] also used a unified approach to 
automatic modelling for univariate series. First, ARIMA 
models and the classical methods for fitting these models 
to a given time series were reviewed. Second, some 
objective methods for model identification were 
considered and some algorithmically procedures for 
automatic model identification were described. Third, 
outliers are incorporated into the model and an algorithm, 
for automatic model identification in the presence of 
outliers was proposed. 

Researchers [6] carried out an empirical study of the 
usefulness of SARFIMA models in energy science. The 
results indicate the appropriate model is SARFIMA 
(2,1,0)(0,0.473,0)12 was used to predict the consumption 
rates of petroleum products till the end of 2013. 

Having reviewed some related literatures, we shall now 
in this paper examine the application of SARIMA models 
in modeling and forecasting Nigeria’s inflation rates. 

3. Materials and Methods 
In this paper, the methodology and the theorems 

propounded by Box and Jenkins called the Autoregressive 
Integrated Moving Average (ARIMA) was extensively 
explored. This is an advance forecasting technique that 
takes into account historical data and decomposes it into 
an Autoregressive (AR) process, where there is a memory 
of past values, an Integrated (I) process, which accounts 
for stabilizing or making the data stationary plus a 
Moving-Average (MA) process, which accounts for 
previous error terms making it easier to forecast. 

3.1. Autoregressive Moving Average Process 
(ARMA) or Mixed Process 

According to [7], autocorrelation patterns may require 
more complex models. A more General model is a mixture 
of the AR(p) and MA(q) models and is called 
autoregressive moving-average model, ARMA(p, q) 
model . He explained further that this model forecasts Y 
as both a linear combination of actual past values and a 
linear combination of past errors. The general ARMA (p, 
q) model is given by  

 1 1 2 2

1 1 2 1 2

i t t p t p

i i q i q

Y Y Y Y

e e e e

µ α α α

θ θ θ
− − −

− − −

= + + + +

+ − − − −





 (1) 

 
1 1

p q

i k t k k t k t
k k

Y Y e eα θ µ− −
= =

= − + +∑ ∑  (2) 

Like the AR (p) model, the ARMA (p, q), has 
autocorrelation that diminish as the distance between 
residuals increases. 

3.2. The Autoregressive Integrated Moving 
Average Model (ARIMA) 
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The order of the autoregressive component is p, the 
order of differencing needed to achieve stationarity is d, 
and the order of the moving average component is q. In 
general the ARIMA process (8) is of the form 

 
1 1

p q

t k t k k t k t
k k

Z Z e eα θ µ− −
= =

= − + +∑ ∑  (3) 

3.3. The Backshift and Difference Operators 
for ARIMA Representation 

To express and understand differenced ARIMA models 
the concept of the backshift (lag) operator, B, and 
difference operator, ∇, is used, These has no mathematical 
meaning other than to facilitate the writing of different 
type of models that would otherwise be extremely difficult 
to express. The backshift is defined as m

t t mB Y Y −= . For 
example 1t tBY Y −= . 

1t tBY Y −= , and 12
12t tB Y Y −= . The difference operator 

takes the form (1 )d dB∇ = − , when d differences are 
taken to achieve stationarity in the time series data. Using 
these notations, 

1. The general AR(p) model 
1

p

t k t k t
k

Y Y eα µ−
=

= + +∑ is 

expressed as 
1 1 2 2 1( )t t t p t p tY Y Y Y B Y eα α α α µ− − −− − − − = = + , 

where ( )Bα  is the autoregressive operator of order p, 
defined by  

 2
1 2( ) 1 p

pB B B Bα α α α= − − − −  (4) 

2. The general MA (q) model 
1

q

t k t k t
k

Y e eθ µ−
=

= + +∑  

is expressed as 1 2 2

( )
t t t t t q t q

t

Y e e e e

B e

θ θ θ

θ µ
− − −= − − − −

= +



 

where (B) is the moving average operator of order q, 
defined by  

 2
1 2( ) 1 q

qB B B Bθ θ θ θ= − − − −  (5) 

3. The general ARMA (p, q) 

model,
1 1 2

1 1 2 2

t t t p p t p t

t t q t q

Y Y Y Y e

e e e

µ α α α

θ θ θ
− − −

− − −

= + + + + +

− − − −





, is 

expressed as 
1 1 2

1 1 2 2

t t t p p t p

t t t q t q

Y Y Y Y

e e e e

α α α

θ θ θ µ
− − −

− − −

= − − −

= − − − − +





 

 

2
1 2

2
1 2 1

(1 )

(1 )

( ) ( )

p
p t

q
q

t t

B B B Y

B B B e

B Y B e

α α α

θ θ θ µ

α θ µ

− − − −

= − − − − +

= +



  (6) 

4. Stationary series tZ  obtained after d differencing of 

tY  T is given by 

 (1 )d d
t t tZ Y B Y= ∇ = −  (7) 

5. A general ARIMA (p, d, q) model is expressed 

 

2
1 2

2
1 2

(1 ) (1 )

(1 )

(1 ) ( ) ( )

d p
p t

q
q t

d
t t

B B B B Y

B B B e

B B Y B e

α α α

θ θ θ

α θ

− − − − −

= − − − −

− =



  (8) 

Table 1. General Time Series Models 

MODEL STATIONARITY CONDITION INVERTIBILITY CONDITION ACF COEFFICIENTS PACF COEFFICIENTS 

AR(p) Yes No Die down Cuts off after lag p 

MA(q) No Yes Cuts off after lag q Die down 

ARM(p,q) Yes Yes Die down Die down 

Table 1 gives the summary of the general non seasonal 
time series models and their statistical properties. The 
table summarizes discussions on general AR, MA, and 
mixed ARMA [8] models. 

3.4. Seasonal Autoregressive Models 
A purely seasonal time series is the one that has only 

seasonal AR or MA parameters. Seasonal autoregressive 
models are built with parameter called seasonal 
autoregressive (SAR) parameters. The SAR parameters 
represent the autoregressive relationships that exist 
between time series data separated by multiples of the 
number of periods per season. A general AR model with P 

SAR parameters is given by 
1

p

t is t is
i

Y Yα −
=

= ∑  where t sY −  

is of order s, 2t sY −  is of order 2s and t psY − , is of order 
ps. A model with one SAR parameter is written as 

  t s t s tY Y eα −= +  (9) 

Seasonal moving Average (SMA) models are built with 
seasonal moving average (SMA) parameters, and the 
general SMA model with Q parameters is given by: 

  
1

Q

t is t is t
i

Y e eθ −
=

= +∑  (10) 

The general mixed SAR and SMA model is given by 

 
1 1

p Q

t is t is is t is t
i i

Y Y e eα θ− −
= =

= + +∑ ∑  (11) 

The order the seasonal ARMA process is given in terms 
of both Ps and Qs 

Table 2 gives the summary of the stationarity and 
invertibility conditions of some specific seasonal time 
series models and the behaviour of their theoretical ACF 
and PACF. 
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Table 2. Specific Pure Seasonal Time Series Models 
ARMA 

MODEL 
STATIONARITY 

CONDITION 
INVERTIBILITY 

CONDITION ACF COEFFICIENTS PACF COEFFICIENTS 

(1,D,0)s -1 < αs < 1 None Die down Cuts off after one seasonal lag 

(1,D,0)s α, + α2s < 1 None Die down Cuts off after one seasonal lag 

(0,D,1)s None -1 < θs < 1 Cuts off after one seasonal lag Die down 

(0,D,2)s None 
θs + θ2s < 1 
θ2s - θs < 1 
θ2s < 1 

Cuts off after two seasonal lag Die down 

(1,D,1)s` -1 < αs < 1 -1 < θs < 1 Die down Die down 

4. Data on Nigeria’s Inflation 
Looking at Table 9 in the Appendix, it shows the data 

of Nigeria’s monthly inflation ratess from November 2003 
to October 2013, totaling one hundred and twenty (120) 

monthly observations. The data were obtained from the 
National Bureau of Statistics. Figure 1 and Figure 2 show 
the plot of Nigeria’s monthly inflation and the trend 
analysis plot respectively. Figure 3 and Figure 4 also 
describe the features of the data that is the autocorrelation 
plot and the partial autocorrelation plot respectively. 
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Figure 1. TIME SERIES PLOT OF NIGERIAN’S MONTHLY INFLATION 
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Figure 2. TREND ANALYSIS PLOT OF NIGERIAN’S MONTHLY INFLATION 
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Figure 3. AUTOCORRELATION PLOT OF NIGERIA’S INFLATION 
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Figure 4. PARTIAL AUTOCORRELATION PLOT OF NIGERIAN’S INFLATION 
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Figure 5. ACF PLOT OF RESIDUALS OF NIGERIAN’S INFLATION 
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A look at the time series plot of the original data in 
Figure 1 implies that the series is non-stationary. More so, 
the trend analysis as shown in Figure 2 shows a 
decreasing trend. However, the ACF plot as shown in 
Figure 3 dies down in a sinewave fashion and the PACF 
plot as shown in Figure 4 tails off at lag 2 (though there is 
a spike at lag 28, it is considered spurious and therefore 
neglected). With these results above, an AR [2] model is 
suspected. The result of estimates of parameters, the ACF 
and the PACF of the residuals obtained using MINITAB 
version 15.0 are shown below, Figure 5 and Figure 6 
respectively. 

Table 3. ESTIMATES OF PARAMETERS FOR AR(2) MODEL 

Type Coef SE Coef T P 

AR 1 1.1353 0.0901 12.60 0.000 

AR 2 -0.2254 0.0896 -2.52 0.013 

Constant 1.0939 0.1677 6.52 0.000 

Mean 12.142 1.862   

Number of observations: 120 
Residuals: SS = 393.856 (back forecasts excluded) 
MS = 3.366 DF = 117 
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Figure 6. PACF PLOT OF RESIDUALS OF NIGERIAN’S INFLATION 
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Figure 7. TIME SERIES PLOT FOR FORCAST USING AR (2) 
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4.1. Modified Box-Pierce (Ljung-Box) Chi-
Square Statistic 

Lag  12 24 36 48 
Chi-Square 15.8 23.1 35.4 38.1 
DF  9 21 33 45 
P-Value 0.072 0.338 0.355 0.758 
A look at Figure 6 and Figure 7 show some significant 

number of spikes outside the limit 

2 22 2 .
120 120kk kkkk kk i eϕ ϕα ϕ α ϕ−

− ≤ ≤ ≤ ≤  which 

equals 0.183 0.183kkϕ− ≤ ≤  suggesting that the residuals 
are not random. Figure 5 also shows that the P-values for 
the Ljung-Box statistics are significant. The forecast as 
shown by Figure 7 do not seem to be consistent with the 
forecast of inflation figures. We try differencing the data 
to bring about stationarity in mean. 
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Figure 8. TIME SERIES PLOT OF 1ST DIFFERENCE OF THE ORIGINAL DATA 

Figure 8 shows the time series plot of the first 
difference of Nigerian’s original inflation data. There is 

stationarity in mean and the existence of seasonality is 
evident. 
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Figure 9. TREND ANALYSIS FOR IST DIFFERENCE OF THE ORIGINAL DATA 

Figure 10 and Figure 11 show the autocorrelation 
function and the partial autocorrelation function of the 
first difference of Nigerian’s original inflation data 

respectively. The ACF and PACF show insignificant 
number of spikes dieing down in a sinewave fashion. 
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Figure 10. ACF OF IST DIFFERENCE OF THE ORIGINAL DATA 
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Figure 11. PACF OF 1ST DIFFERENCE OF ORIGINAL DATA 
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Figure 12. TIME SERIES PLOT OF THE SEASONAL DIFFERENCE OF THE 1ST DIFFERENCE DATA 
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Figure 12 shows the time series plot of the seasonal 
difference of the first differenced of Nigerian’s inflation 

data which shows stability in mean at both the seasonal 
and the non-seasonal levels. 
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Figure 13. TREND ANALYSIS OF THE SEASONAL DIFFERENCE OF THE 1ST DIFFERENCED DATA 

Figure 13 shows the trend analysis of the seasonal 
difference of the first differenced of Nigerian’s original 
inflation data. The trend is neither increasing nor 
decreasing which is indicative of stationarity in mean. 

Figure 14 shows the autocorrelation function of the 
seasonal difference of the first differenced of Nigerian’s 
original inflation data. 
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Figure 14. ACF OF THE SEASONAL DIFFERENCE OF THE 1ST DIFFERENCED DATA 

The time series plot of the 1st differenced data and the 
trend analysis as indicated in Figure 8 and Figure 9 show 
stationarity in mean and variance. There were significant 
spikes in the time series plot at lags 12, 24, and so on. 
This is indicating that seasonality is evident in the 
monthly inflation rates with a period of 12. This call for 
seasonal differencing of the 1st non-seasonal differenced 
data, as shown in Figure 12. Figure 10 and Figure 11 are 
the plots of the autocorrelation function (ACF) and the 
partial autocorrelation function (PACF) of the 1st 
differenced data. The ACF dies down after lag 1 and the 
PACF also tails off after lag 1, suggesting that p=1 and 
q=1 would be needed to describe these data as coming 
from a non-seasonal autoregressive and a moving average 
process respectively. Hence, the time series model that 

gives rise to these observations was an ARIMA (1, 1, 1) 
model, since the data was differenced once (i.e. d=1) to 
attain stationarity. 

Figure 12 and Figure 13 show the time series plot of the 
seasonal difference of the 1st differenced series and the 
trend analysis plot respectively. The trend analysis shows 
stationarity at the seasonal level. Figure 14 and Figure 15 
show the ACF and the PACF of the seasonal difference of 
the 1s differenced series respectively. A critical look at the 
seasonal lags show that both ACF and the PACF spikes at 
seasonal lag 12 dies down to zero for other seasonal lags, 
suggesting that p=1 and q=1 would be needed to describe 
these data as coming from a seasonal autoregressive and 
moving average process. 
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Figure 15. PACF OF THE SEASONAL DIFF. OF THE 1ST DIFFERENCED DATA 

4.2. Identification of the ARIMA Model 
Two goodness-of-fit statistics that are most commonly 

used for the model selection are; Akaike Information 
Criterion (AIC) and Schwarz Bayesian Information 
Criterion (BIC). The AIC and BIC are determined based 
on a likelihood function. The AIC [9] and BIC are 

calculated using the formulas below: 2( ) kAIC In SSE
n

= +  

and ( ) ( )kBIC In SSE In n
n

= +  where n is the total number 

of observations, SSE is the sum of the squared errors, and 
( )k p q P Q d s= + + + + + . In this paper, n = 120 data 

points. Four tentative ARIMA models are tested for the 
data series and the corresponding AIC and BIC values for 
the models are presented in Table 4. 

Table 4. AIC and BIC values for four Tentative SARIMA Models 
ARIMA MODEL (p,d,q) AIC BIC 

(1 1 1) (1 0 1)12 5.5126 5.6288 

(1 1 1) (0 0 1)12 5.4813 5.5742 

(1 1 1) (1 0 0)12 5.9297 6.0226 

(0 1 1) (1 0 1)12 5.4978 5.5907 

The models that have the lowest AIC and BIC are 
ARIMA (1 1 1) (0 0 1)12 and (1 1 1) (1 0 1)12 . Since two 
models are identified, the most suitable model is selected 
by the principle of parsimony. ARIMA (1 1 1) (0 0 1)12 

model has fewer parameters than ARIMA (1 1 1) (1 0 1)12 

model. Furthermore all the coefficients of ARIMA (1 1 1) 
(0 0 1)12 model are significantly different from zero and 
the estimated values satisfy the stability as indicated in 
Table 3. We then proceed to the next stage of the Box-
Jenkins approach which is the estimation of parameters of 
the tentative model. 

4.3. Parameter Estimation of SARIMA (1, 1, 
1) (1, 0, 1)12 and SARIMA (1, 1, 1) (1, 0, 1)12 
Models 

Immediately a suitable SARIMA (P, d, q)(P, D,Q)12 

structure is identified, the next step is the parameter 
estimation or fitting stage. The parameters are estimated 
by the maximum likelihood method. The results of 
parameter estimations are reported in Table 5 and Table 6. 

Table 5(a). Estimates of parameters of SARIMA (1, 1, 1) (1, 0, 1)12 

model 

Final Estimates of Parameters 

Type Coef SE Coef T P 

AR 1 0.0408 0.6648 0.0708 0.951 

SAR 12 0.1296 0.0989 1.31 0.193 

MA 1 -0.1022 0.6724 -0.15 0.880 

SMA 12 0.9019 0.0708 12.74 0.000 

Differencing: 1 regular difference 
Number of observations: Original series 120, after 

differencing 119 
Residuals: SS = 227.986 (back forecasts excluded) 
MS = 1.982 DF = 115 

Table 5(b). Modified Box-Pierce (Ljung-Box) Chi-Square Statistic 
Modified Box-Pierce (Ljung-Box) Chi – Square Statistic 

Lag 12 24 36 48 

Chi-Square 8.4 11.4 19.3 27.3 

DF 8 20 32 44 

P-Value 0.391 0.937 0.962 0.977 

Table 6(a). Estimates of parameters of the tentative SARIMA (1, 1, 1) 
(0, 0, 1)12 model 

Final Estimates of Parameters 

Type Coef SE Coef T P 

AR 1 -0.6413 0.1684 -3.81 0.000 

MA 1 -0.8268 0.1168 -7.08 0.000 

SMA 12 0.8840 0.0600 14.73 0.000 

Differencing: 1 regular difference 
Number of observations: Original series 120, after 

differencing 119 
Residuals: SS = 224.666 (back forecasts excluded) 
MS = 1.937 DF = 116 

Table 6(b). Modified Box-Pierce (Ljung-Box) Chi-Square Statistic 
Modified Box-Pierce (Ljung-Box) Chi – Square Statistic 

Lag 12 24 36 48 

Chi-Square 11.1 15.5 24.1 31.4 

DF 9 21 33 45 

P-Value 0.271 0.795 0.871 0.939 
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We proceed in our analysis to check if the parameters 
contained in the models are significant. This ensures that 
there are no extra parameters present in the model and the 
parameters used in the model have significant contribution, 
which can provide the best forecast. The estimates of 
autoregressive, moving average and the seasonal moving 
average parameters are labeled “AR..1”, “MA..1” and 
“SMA..12”, which are -0.6413, -0.8268, and 0.8840, 
respectively. Based on 95% confidence level, we conclude 
that all the coefficients of the ARIMA (1, 1, 1) (0, 0, 1)12 

model are significantly different from zero as shown in 
Table 3(a). Furthermore, the p-vales for the Ljung-Box 
statistic clearly all exceed 5% for all lag orders, implying 
that there is no significant departure from white noise for 
the residuals. We then proceed to the next step after 
parameter estimation which is the Diagnostic Checking or 

model validation. The Box and Jenkins (1970) estimation 
process for seasonal ARIMA model is shown in Figure 16. 

4.4. Diagnostic Checking and Model 
Validation 

The model verification is concerned with checking the 
residuals of the model to determine if the model contains 
any systematic pattern which can be removed to improve 
on the selected ARIMA model. It is obvious that the 
selected model may appear to be the best among a number 
of models considered; it becomes necessary to do 
diagnostic checking to verify that the model is adequate. 
Verification of an ARIMA model is tested (i) by verifying 
the ACF of the residuals, (ii) by verifying the normal 
probability plot of the residuals. 
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Figure 16. ACF of Residuals for SARIMA (1, 1, 1) (0, 0, 1)12 model 

Looking at Figure 16, the autocorrelation checks of the 
residuals indicate that the model is good because they a 
white noise process. That is the residuals have zero mean, 
constant variance and also uncorrelated. Also, the p-values 
for the Ljung-Box statistic from Table 3 as shown clearly 
exceed 5% for all lag orders, indicating that there is no 
significant departure from white noise for the residuals. 
Since the model diagnostic tests show that all the 
parameter estimates are significant and the residual series 
are random, it can then be concluded that (1, 1, 1) (0, 0, 
1)12 model is adequate for the inflation series. Therefore, 
(1, 1, 1) (0, 0, 1)12 is used to forecast the inflation series of 
Nigeria. 

4.5. Point Forecast with SARIMA (1, 1, 1) (0, 
0, 1)12 Model 

The ARIMA (1, 1, 1)(0, 0, 1) is selected to forecast the 
inflation variable, where autoregressive term p = 1(non-
seasonal), P = 0(seasonal) [that is, (1 - αB)(1 – 0)]; 
differencing term d = 1(non-seasonal difference), Q = 
0(seasonal difference) [that is (1 - B)(1 – 0)] and moving 
average term q = 1(non-seasonal), Q = 1(seasonal) [that is 
(1 - θ1B)(1 - θ12B12). For the dataset in Table 3, the fitted 
model is given by 

 12
1 12(1 )(1 ) (1 )(1 )t tB B y B B eα θ θ− − = − −  (12) 

 
2

12 12
12 1 1 12

t t t t

t t t t

y By By B y

e B e Be B e

α α

θ θ θ θ

− − +

= − − +
 

 
12 13

12 1 1 12
2

t t t t t

t t t

y e B e Be B e

By By B y

θ θ θ θ

α α

= − − +

+ + −
 (13) 

Transforming the back operator, equation (13) becomes; 

 12 12 1 1

1 12 13 1 2(1 )
t t t t

t t t

y e e e
e y y
θ θ

θ θ α α
− −

− − −

= − −

+ + + −
 (14) 

4.6. Forecast Results by SARIMA (1, 1, 1)(0, 
0,1) 12 Model 

In order to forecast one period ahead that is, yt+1, the 
subscript of the equation (14) is increased by one unit 
throughout as given by 

 1 1 1

12 11 1 1 12 12

(1 )t t t t

t t t

y y y e
e e e
α α

θ θ θ θ
+ − +

− −

= + − +

− − +
 (15) 
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The term et+1 is not known because the expected value 
of future random errors has been taken as zero. There are 
120 data points from November 2003 to October 2013 
used to build the ARIMA model. From the Table 3, using 
α = -0.6413, θ1 = -0.8268, θ12 = 0.8840, we have θ1θ12 = -
0.7308912. Thus, equation (15) is given as 

 1 1 11

12 1

0.3587 0.6413 0.8840
0.7308912 0.8268

t t t t

t t t

y y y e
e e e

+ − −

− +

= + −

− + +
 

In order to forecast inflation for the period 121 (that is, 
November 2013), equation (15) is given by 

 121 120 119 109

108 120 121

ˆ ˆ0.3587 0.6413 0.8840
ˆ ˆ ˆ0.7308912 0.8268

y y y e
e e e

= + −

− + +
 

 121ˆ 0e =  

 109 109 109ˆ ˆ 12.3 10.0128 2.2872e y y= − = − =  

 108 108 108ˆ ˆ 11.7 10.0515 1.6485e y y= − = − =  

 120 120 120ˆ ˆ 7.8 9.5862 1.7862e y y= − = − = −  

The forecast quantity for period 121 can now be 
calculated as follows: 

 121ˆ 0.3587(7.8) 0.6413(8.0) 0.8840(2.2872)
0.7308912(1.6485) 0.8268( 1.7862) 0  3.22%

y = + −
− + − + =

 

Once our model has been obtained and its parameters 
have been estimated, we can use it to make our prediction. 
Table 7 summarizes 12 months upfront inflation forecast 
from November 2013 to October 2014 with 95% 
confidence interval. 

Table 7. 12- Month Forecasted Inflation for November 2013 to 
October 2014 

Month Period Forecast (%) Lower Upper 

November 121 7.2483 4.5201 9.9766 

December 122 7.1960 2.9647 11.4273 

January 123 8.0461 2.9109 13.1813 

February 124 7.9450 1.9374 13.9526 

March 125 7.8761 1.1681 14.5842 

April 126 8.2442 0.8670 15.6214 

May 127 8.7118 0.7423 16.6813 

June 128 9.9033 1.3700 18.4366 

July 129 10.8598 1.8052 19.9143 

August 130 11.9522 2.4002 21.5041 

September 131 12.1978 2.1759 22.2196 

October 132 11.5097 1.0372 21.9822 

Table 8. Basic Statistic of Nigeria’s Monthly Inflation Data in 
Percentages 

No. of 
observation Mean St. Dev. Variance Min. Max. 

120 11.894 4.711 22.196 3.000 28.200 

5. Conclusion 
From Figure 1, it can be confirmed that inflation 

exhibit volatility starting from somewhere around 2006. 

The volatility in Nigerian’s inflation series can be 
attributed to several economic factors. Some of these 
factors are money supply, exchange rates depreciation, 
petroleum price increases, and poor agricultural 
production. 

Box-Jenkins Seasonal Autoregressive Integrated 
Moving Average (SARIMA) was employed to analyze 
monthly inflation rates of Nigeria from October 2003 to 
November 2013. The study mainly intended to forecast 
the monthly inflation rates for the coming period of 
November, 2013 to November 2014. 

Series of tentative models were developed to forecast 
Nigeria’s monthly inflation, but based on minimum AIC 
and BIC values and after the estimation of parameters and 
series of diagnostic test were performed, 
ARIMA(1,1,1)(0,0,1) 12 model was judge to be the best 
model for forecasting after satisfying all model 
assumptions. 

The forecast results revealed a decreasing pattern 
of inflation rates in the first quarter of 2014 and turning 
point at the beginning of the second quarter of 2014, 
where the rates takes an increasing trend till the 
September. 

Definition of Terms 
The full meanings of the abbreviations used in this 

paper are: 
ACF – Autocorrelation function 
PACF – Partial Autocorrelation function  
AR – Autoregressive 
MA – Moving Average 
SMA – Seasonal Moving Average 
SAR – Seasonal Autoregressive 
ARIMA – Autoregressive Integrated Moving Average 
SARIMA – Seasonal Autoregressive Integrated Moving 

Average  
AIC – Akaike Information Criterion 
BIC – Bayesian Information Criterion 
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APPENDIX-A 
Table 9. Nigeria’s Monthly Inflation Ratess from November 2003 to October 2013 

Month Inflation Month Inflation Month Inflation Month Inflation 

1 21.3 31 10.5 61 14.8 91 12.4 

2 23.8 32 8.5 62 15.1 92 10.2 

3 22.4 33 3.0 63 14.0 93 9.4 

4 24.8 34 3.7 64 14.6 94 9.3 

5 22.5 35 6.3 65 14.4 95 10.3 

6 17.5 36 6.1 66 13.3 96 10.5 

7 19.8 37 7.8 67 13.2 97 10.5 

8 14.1 38 8.5 68 11.2 98 10.3 

9 10.7 39 8.0 69 11.1 99 12.6 

10 13.0 40 7.1 70 11.0 100 11.9 

11 9.1 41 5.2 71 10.4 101 12.1 

12 10.7 42 4.2 72 11.6 102 12.9 

13 10.0 43 4.6 73 12.4 103 12.7 

14 10.0 44 6.4 74 13.9 104 12.9 

15 9.8 45 4.8 75 14.4 105 12.8 

16 10.9 46 4.2 76 15.6 106 11.7 

17 16.3 47 4.1 77 14.8 107 11.3 

18 17.9 48 4.6 78 15.0 108 11.7 

19 16.8 49 5.2 79 12.9 109 12.3 

20 18.6 50 6.6 80 14.1 110 12.0 

21 26.1 51 8.6 81 13.0 111 9.0 

22 28.2 52 8.0 82 13.7 112 9.5 

23 24.3 53 7.8 83 13.6 113 8.6 

24 18.6 54 8.2 84 13.4 114 9.1 

25 15.1 55 9.7 85 12.8 115 9.0 

26 11.6 56 12.0 86 11.8 116 8.4 

27 10.7 57 14.0 87 12.1 117 8.7 

28 10.8 58 12.4 88 11.1 118 8.2 

29 12.0 59 13.0 89 12.8 119 8.0 

30 12.6 60 14.7 90 11.3 120 7.8 

Source: National Bureau of Statistics 

 


