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Abstract  Paradox seldom occurs in a linear transportation problem, but it is related to the classical transportation 
problem. For specific reasons of this problem, an increase in the quantity of goods or number of passengers (as used 
in this paper) to be transported may lead to a decrease in the optimal total transportation cost. Two numerical 
examples were used for the study. In this paper, an efficient algorithm for solving a linear programming problem 
was explicitly discussed, and it was concluded that paradox does not exist in the first set of data, while paradox 
exists in the second set of data. The Vogel’s Approximation Method (VAM) was used to obtain the initial basic 
feasible solution via the Statistical Software Package known as TORA. The first set of data revealed that paradox 
does not exist, while the second set of data showed that paradox exists. The method however gives a step by step 
development of the solution procedure for finding all the paradoxical pair in the second set of data. 
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1. Introduction 
Paradox occurs when a transportation problem admits 

of a total cost which is lower than the optimum and is 
attainable by shipping larger quantities of goods over the 
same routes that were previously designated as optimal. 
This phenomenon which does not occur regularly was 
discovered by Szwarc (1971). It is obvious that many 
researchers have discovered independently from each 
other the following behavior of the transportation problem. 
In certain cases of the Transportation Problem (TP), an 
increase in the supplies and demands may lead to a 
decrease in the optimal transportation cost. In other words, 
by moving bigger amount of goods around, one may save 
a lot of money. This surely sounds paradoxical (Deineko, 
et al.; 2003). 

The classical transportation problem is the name of a 
mathematical model which has a special mathematical 
structure. The mathematical formulation of a large number 
of problems conforms to this special structure. Hitchcock 
(1941) originally developed the basic linear transportation 
problem. Charnes et al (1953) developed the stepping 
stone methods which provide an alternative way of 
determining the simplex method information. Dantzig 
(1963) used the simplex method to the transportation 
problem as the primal simplex transportation method. 

Appa (1973) also developed the solution procedure for 
solving the transportation problem and its variants. 
Klingman and Russel (1974 and 1975) introduced a 
specialized method for solving a transportation problem 
with several additional linear constraints. Hadley (1987) 
gave the detailed solution procedure for solving linear 
transportation problem. Till date, several researchers 
studied extensively to solve cost minimizing 
transportation problem in various ways. 

In some situations, if we obtain more flow with lesser 
cost than the flow corresponding to the optimum cost then 
we say paradox occurs. Charnes and Klingman (1971), 
Szwarc (1973), Adlakha and Kowalski (1998) and Storoy 
(2007) considered the paradoxical transportation problem. 
Gupta et al (1993) considered a paradox in linear 
fractional transportation problem with mixed constraints. 
Joshi and Gupta (2010) studied paradox in linear plus 
fractional transportation problem. In the early day of 
linear programming problem some of the pioneers 
observed paradox but by whom no one knows. 

In this paper we present a method for solving 
transportation problem with linear constraints. Thereby, 
we state the sufficient condition of existence of paradox, 
paradoxical range of flow and paradoxical flow for a 
specified flow in such type of linear transportation 
problem. We also justify the theory by illustrating a 
numerical example. 
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2. Definitions 
1. Paradox in a transportation problem: in a 

transportation problem if we can obtain more flow 
(F1) with lesser cost (Z1) than the optimum flow (F0) 
corresponding to the optimum cost (Z0) i.e. F1 > F0 
and Z1 < Z0, then we say that a paradox occurs in a 
transportation problem. 

2. Cost-flow pair: if the value of the objective function 
is Z0 and the flow is F0 corresponding to the feasible 
solution X0 of a transportation problem, then the pair 
(Z0, F0) is called the cost-flow pair corresponding to 
the feasible solution X0. 

3. Paradoxical pair: A cost-flow pair, (Z, F) of an 
objective function is called paradoxical pair if Z < Z0 
and F > F0 where Z0 is the optimum cost and F0 is the 
optimum flow of the transportation problem. 

4. Best paradoxical pair: The paradoxical pair (Z*, F*) 
is called the best paradoxical pair of a transportation 
problem if for all paradoxical pair (Z, F), either Z* < 
Z or Z* = Z but F* > F. 

5. Paradoxical range of flow: if F0 be the optimum flow 
and F* be the flow corresponding to the best 
paradoxical pair of a transportation problem then [F0, 
F*] is called paradoxical range of flow. 

3. Review of Related Literature 
The transportation paradox is, however, hardly 

mentioned at all in any of the great number of textbooks 
and teaching materials where the transportation problem is 
treated. Apparently, several researchers have discovered 
the paradox independently from each other. But most 
papers on the subject refer to the paper by Charines and 
Klingman (1971) and Szwarc (1971) as the initial papers. 
In Charines and Klingman (1971) name it the more-for-
less paradox and they write: “The paradox was first 
observed in the early days of linear programming history 
(by whom no one knows) and has been part of the folklore 
known to some (e.g. A. Charnes and Cooper; 1953) but 
unknown to the great majority of workers in the field of 
linear programming. 

Arora and Ahuja (2010) carried out a research work in 
paradox on a fixed charge transportation problem. In their 
findings, a paradox arises when the fixed charge 
transportation problem admits of a total cost which is 
lower than the optimum cost, by transporting larger 
quantities of goods over the same routes. A sufficient 
condition for the existence of a paradox is established. 
Paradoxical Range of flow is obtained for any given flow 
in which the corresponding objective function value is less 
than the optimum value of the fixed charge transportation 
problem. 

Ekezie et al (2013) carried out a research on the 
determination of paradoxical pairs in a linear 
transportation problem. In their study, an efficient 
algorithm for solving a linear programming problem was 
discussed, and it was concluded that paradox exists. The 
North-West Corner method was used to obtain the initial 
basic feasible solution for the optimal solution. They also 
used the algorithm discussed to develop a step by step 
solution procedure for finding all the paradoxical pairs. 

According to Appa (1973), the transportation paradox is 
known as Doigs paradox at the London School of 
Economics, named after Alison Doig who used it in 
exams etc around 1959 (Doig did not publish any paper on 
it). 

Since the transportation paradox seems not to be known 
to the majority of those who are working with (or teaching) 
the transportation problem, one may be tempted to believe 
that this phenomenon is only an academic curiosity which 
will most probably not occur in any practical situation. 
But that seems not to be true. Experiments done by Finke 
(1978), with randomly generated instances of the 
transportation problem of size 100 × 100 and allowing 
additional shipments (post-optimal) show that the 
paradoxical properties. More precisely, the average cost 
reductions achieved are reported to be 18.6% with total 
additional shipments of 20.5%. 

Ekezie et al (2013) carried out a research on the 
Paradox sum of a linear and a linear fractional 
transportation problem using data that were collected from 
a secondary source. In the study, a transportation problem 
with an objective function as the sum of a linear and linear 
fractional function was considered. A paradoxical 
situation arises in the sum of a linear and linear fractional 
transportation problem, when value of the objective 
function falls below the optimal value and this lower value 
is attainable by transporting larger number of passengers. 
An algorithm is proposed for finding initial basic feasible 
solution for the sum of a linear and linear fraction 
transportation problem and a sufficient condition for the 
existence of a paradoxical solution is established. 

In a recent paper (2003), Deineko et al developed 
necessary and sufficient conditions for a cost matrix C to 
be immune against the transportation paradox. As well see 
in the next section, these conditions are rather restrictive, 
supporting the observations by Finke. 

4. Problem Formulation 
In this paper, we consider the following transportation 

problem: 
Let the transportation problem consists of m sources 

and n destinations, where 
xij = the amount of product transported from the ith 

source to the jth destination, 
cij = the cost involved in transporting per unit product 

from the ith source to the jth destination, 
ai = the number of units available at the ith source, 
bj = the number of units required at the jth destination. 
In this paper, we consider the cost minimizing linear 

transportation problem as: 
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Let { }0 0 | ( , )ijx x i j I J= ∈ ×  be a basic feasible solution 

corresponding to the basis B of the problem P1 and the 
value of the objective function Z0 corresponding to the 
basic feasible solution X0 is 

 0 0

1 1
( )

m n

ij ij
i j

Z c x say
= =

= ∑ ∑  

Let F0 be the corresponding flow. 
Then 0 .i j

i I j I
F a b

∈ ∈
= =∑ ∑  

Now we consider the dual variables ui for i ∈ I and j ∈ I 
such that ui + vj = cij corresponding to the basis B. 

Also ∀(I, j)∉B, let 

 ( )ij i j ijc u v c′ = + −  

If 0 ( , )ijc i j B′ < ∀ ∉  then the solution is optimum. 
Theorem: the sufficient condition for the existence of 
paradoxical solution of (P1) is that if ∃ at least one cell (r, 
s) ∉ B in the optimum table of (P1) where ar and bs are 
replaced by ar + l and bs + l respectively (l > 0) then (ur + 
vs) < 0. 

Proof: Let Z0 be the value of the objective function and 
F0 be the optimum flow corresponding to the optimum 
solution (X0) of problem (P1). The dual variables ui and vj 
are given by 

 ( )i j iju  v  c , i,  j B+ = ∀ ∈  

Then  
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Now, let ∃ at least one cell (r, s)∉B, where ar are 
replaced by ar + l and bs + l, respectively (l > 0) in such a 
way that the optimum basis remains same, then the value 
of the objective function Ẑ  is given by 
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The new flow F̂  is given by 

 0ˆ i j
i j

F a l b l F l= + = + = +∑ ∑  

 0ˆ 0F F l− = >  

Therefore for the existence of paradox we must have 
0ˆ 0Z Z− < . Hence the sufficient condition for the 

existence of paradox is that ∃ at least one cell (r, s)∉B in 
the optimum table of such that if ar and bs are replaced by 
ar + l and bs + l (l > 0) then l(ur + vs) < 0, i.e. (ur + vs) < 0. 

Now we state the following algorithm to find all the 
paradoxical pair of the problem (P1). 
Algorithm: 
Step 1: Find the cost-flow pair (Z0, F0) for the optimum 
solution X0. 
Step 2: i = 1 F  
Step 3: Find all cells (r, s)∉B such that (ur + vs) < 0 if it 
exists otherwise go to step 8. 
Step 4: Among all cells (r, s) ∉B satisfying step 3 find 
min flow for l = 1 which enter into the existing basis 
whose corresponding cost is minimum. Let (Zi, Fi) be the 
new cost flow pair corresponding to the optimum solution 
Xi. 
Step 5: Write (Zi, Fi). 
Step 6: i = i + 1. 
Step 7: go to step 3 
Step 8: We write the best paradoxical pair (Z*, F*) = (Zi, 
Fi) for the optimum solution X* = Xi. 
Step 9: End. 

This algorithm gives all the paradoxical pairs. From 
these pairs we can find the paradoxical pair for a specified 
flow () also. 

5. Data Analysis 
In this paper, we shall use three sets of data to enable us 

achieve our primary aim. Firstly, we shall examine the 
data gotten from ABC Transport Company, owerri Imo 
State Nigeria. ABC Transport Company Ltd has many 
types of buses that ply different routes in Nigeria. In this 
study, we shall restrict the work to only 6 different types 
of buses that ply 4 different routes in Nigeria. Table 1 
shows the expected number of passengers each type of bus 
can carry in a day, and the cost of transporting a passenger 
from Owerri to the different routes in Nigeria by each of 
the buses. 

Table 1. 

B
us

 ty
pe

s 

Routes 

 Lagos Abuja Jos Kaduna Supply 

Coach Bus 1 5820 5960 5850 5640 165 

Coach Bus 2 5680 5720 5720 5580 102 

Coach Bus 3 5590 5650 5630 5410 66 

Coach Bus 4 5480 5680 5890 5720 42 

Smart Coach Bus 6850 6520 6870 6630 33 

Sprinter Bus 6980 6860 6900 6820 15 

Demand 168 134 76 45 423 

Solving the transportation problem in Table 1, the result 
is displayed in Table 2. 
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Table 2. 
 D1 D2 D3 D4 Si  Ui 

S1 
5820 

44 
5960 

 
5850 

76 
5640 

45 165 0 

S2 
5680 

16 
5720 

 
5720 

 
5580 

 102 -140 

S3 
5590 

66 
5650 

 
5630 

 
5410 

 66 -230 

S4 
5480 

42 
5680 

 
5890 

 
5720 

 42 -340 

S5 
6850 

 
6520 

33 
6870 

 
6630 

 33 660 

S6 
6980 

 
6860 

15 
6900 

 
6820 

 15 1000 

Dj 168 134 76 45 423  

Vj 5820 5860 5850 5640   

The total cost of transportation is N2, 454,440. We then 
check the sign of (Ur + Vs), where (r, s) ∉ B in Table 2, 
we observe that all the Ui’s + Vj’s > 0. With this result, we 
can conclude that paradox does not exist, which implies 
that the algorithm discussed in this paper will be irrelevant 
to this set of data. 

Let us now consider the second set of data used for this 
research, which was extracted from Opara (2009), 
Introduction to Operation Research, Exercises 3 page 28. 
The estimated supply capacities of the six warehouses, the 
demand requirements at the seven markets and the 
transportation cost of each product are given in Table 3. 

Table 3. 
 D1 D2 D3 D4 D5 D6 D7 Si 

S1 
9 

 
7 

13 
3 

34 
6 

13 
8 

 
14 

 
10 

 60 

S2 
8 

 
6 

16 
4 

 
12 

 
4 

17 
5 

6 
5 

 39 

S3 
5 

26 
7 

 
1 

 
3 

7 
7 

 
12 

 
4 

 33 

S4 
5 

20 
5 

 
5 

 
7 

 
6 

 
7 

 
9 

 20 

S5 
7 

 
1 

13 
5 

 
11 

 
7 

 
8 

 
4 

 13 

S6 
5 

3 
6 

 
6 

 
3 

 
6 

 
7 

 
3 

5 8 

dj 49 42 34 20 17 6 5 173 

Solving the above problem using the Vogel’s 
Approximation Method (VAM), the optimal 
transportation table is presented in Table 4. 

Table 4. 
 D1 D2 D3 D4 D5 D6 D7 Si Ui 

S1 
9 

 
7 

13 
3 

34 
6 

13 
8 

 
14 

 
10 

 60 0 

S2 
8 

 
6 

16 
4 

 
12 

 
4 

17 
5 

6 
5 

 39 -1 

S3 
5 

26 
7 

 
1 

 
3 

7 
7 

 
12 

 
4 

 33 -3 

S4 
5 

20 
5 

 
5 

 
7 

 
6 

 
7 

 
9 

 20 -3 

S5 
7 

 
1 

13 
5 

 
11 

 
7 

 
8 

 
4 

 13 -6 

S6 
5 

3 
6 

 
6 

 
3 

 
6 

 
7 

 
3 

5 8 -3 

dj 49 42 34 20 17 6 5 173  

vj 8 7 3 6 5 6 6   

The total cost is 759. We then check the sign of (Ur + 
Vs), where (r, s) ∉ B in Table 4, we observe that U5 + V3 
= -3 < 0, and U5 + V5 = - 1 < 0. This implies that 
Paradoxical pair of the problem (P1) exists. So applying 
the algorithm discussed in this paper, we have; 

Applying Step 1: The cost-flow pair is (Zo, Fo) = (759, 
173) corresponding to the optimum solution X = {x12 = 13, 
x13 = 34, x14 = 13, x22 = 16, x25 = 17, x26 = 6, x31 = 26, x34 
= 7, x41 = 20, x52 = 3, x61 = 3, x67 = 5}. 

Applying step 2: set i=1 
Applying step 3: Now we check the sign of (Ur + Vs) 

and we obtain for the non-basic cells (5, 3) and (5, 5), the 
sign that is negative. 

Applying step 4: For l = 1 
For the cell (5, 3) 

Table 5. 
 D1 D2 D3 D4 D5 D6 D7 Si Ui 

S1 
9 

 
7 

13 
3 

34 
6 

13 
8 

 
14 

 
10 

 60 0 

S2 
8 

 
6 

16 
4 

 
12 

 
4 

17 
5 

6 
5 

 39 -1 

S3 
5 

26 
7 

 
1 

 
3 

7 
7 

 
12 

 
4 

 33 -3 

S4 
5 

20 
5 

 
5 

 
7 

 
6 

 
7 

 
9 

 20 -3 

S5 
7 

 
1 

14 
5 

 
11 

 
7 

 
8 

 
4 

 14 -6 

S6 
5 

3 
6 

 
6 

 
3 

 
6 

 
7 

 
3 

5 8 -3 

dj 49 42 35 20 17 6 5 174  

vj 8 7 3 6 5 6 6   

The total cost of this transportation problem is 756. 
For cell (5, 5), the transportation table is presented in 

Table 6. 
Table 6. 

 D1 D2 D3 D4 D5 D6 D7 Si Ui 

S1 
9 

 
7 

13 
3 

34 
6 

13 
8 

 
14 

 
10 

 60 0 

S2 
8 

 
6 

15 
4 

 
12 

 
4 

17 
5 

6 
5 

 39 -1 

S3 
5 

26 
7 

 
1 

 
3 

7 
7 

 
12 

 
4 

 33 -3 

S4 
5 

20 
5 

 
5 

 
7 

 
6 

 
7 

 
9 

 20 -3 

S5 
7 

 
1 

14 
5 

 
11 

 
7 

 
8 

 
4 

 14 -6 

S6 
5 

3 
6 

 
6 

 
3 

 
6 

 
7 

 
3 

5 8 -3 

dj 49 42 34 20 18 6 5 174  
vj 8 7 3 6 5 6 6   

The total cost of this transportation problem is 758. 
The min cost = min{756, 758} = 756. 
Hence l = 1 enters in the optimum basis from the cell (5, 

3) and corresponding table is Table 5, the corresponding 
paradoxical pair (Z′, F′) = (756, 174). 

Employing steps 6 and 7. Then repeating this process, 
the next table is 

Table 7. 
 D1 D2 D3 D4 D5 D6 D7 Si Ui 

S1 
9 

 
7 

11 
3 

36 
6 

13 
8 

 
14 

 
10 

 60 0 

S2 
8 

 
6 

16 
4 

 
12 

 
4 

17 
5 

6 
5 

 39 -1 

S3 
5 

26 
7 

 
1 

 
3 

7 
7 

 
12 

 
4 

 33 -3 

S4 
5 

20 
5 

 
5 

 
7 

 
6 

 
7 

 
9 

 20 -3 

S5 
7 

 
1 

14 
5 

 
11 

 
7 

 
8 

 
4 

 15 -6 

S6 
5 

3 
6 

 
6 

 
3 

 
6 

 
7 

 
3 

5 8 -3 

dj 49 42 36 20 17 6 5 175  
vj 8 7 3 6 5 6 6   
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Now repeating this process, the final table is presented 
in Table 8. 

Table 8. 
 D1 D2 D3 D4 D5 D6 D7 Si Ui 

S1 
9 

 
7 

0 
3 

47 
6 

13 
8 

 
14 

 
10 

 60 0 

S2 
8 

 
6 

16 
4 

 
12 

 
4 

17 
5 

6 
5 

 39 -1 

S3 
5 

26 
7 

 
1 

 
3 

7 
7 

 
12 

 
4 

 33 -3 

S4 
5 

20 
5 

 
5 

 
7 

 
6 

 
7 

 
9 

 20 -3 

S5 
7 

 
1 

26 
5 

 
11 

 
7 

 
8 

 
4 

 26 -6 

S6 
5 

3 
6 

 
6 

 
3 

 
6 

 
7 

 
3 

5 8 -3 

dj 49 53 36 20 17 6 5 186  

vj 8 7 3 6 5 6 6   

Hence, from the above table, the corresponding 
paradoxical pair (Z′, F′) = (720, 186). 

Applying step 8: The best paradoxical pair is (Z*, F*) = 
(720, 186) corresponding to the optimum solution is X* = 
{x12 = 0; x13 = 47, x14 = 13, x22 = 16, x25 = 17, x26 = 6, x31 
= 26, x34 = 7, x41 = 20, x52 = 26, x61 = 3, x67 = 5} and the 
paradoxical range of flow is [F0, F*] = [173, 186]. Thus, 
all the paradoxical pairs are {(756, 174), (753, 175), (750, 
176), (747, 177), (744, 178), (741, 179), (738, 180), (735, 
181), (732, 182), (729, 183), (726, 184), (723, 185) and 
(720, 186). 

Let us consider the third set of data from this 
hypothetical example for more clarification of the 
algorithm. The estimated supply capacities of the five 
warehouses, the demand requirements at the five markets 
and the transportation cost of each product are given in 
Table 8. 

Table 9. 
(i, j) M1 M2 M3 M4 M5 Si 

W1 
6 4 8 4 2 45 

 

W2 
2 3 2 5 3 35 

 

W3 
3 4 1 7 1 30 

 

W4 
5 3 4 1 2 22 

 

W5 
7 2 5 4 7 10 

 
Dj 44 36 27 25 10 142 

Solving the above problem using VAM via TORA 
Statistical Software Package, the optimal transportation 
table is presented in Table 10. 

Table 10. 
(i, j) M1 M2 M3 M4 M5 Si Ui  

W1 
6 

6 
4 

26 
8 

 
4 

3 
2 

10 
45 

 0 

W2 
2 

35 
3 

 
2 

 
5 

 
3 

 
35 

 -4 

W3 
3 

3 
4 

 
1 

27 
7 

 
1 

 
30 

 -3 

W4 
5 

 
3 

 
4 

 
1 

22 
2 

 
22 

 -3 

W5 
7 
 

2 
10 

5 
 

4 
 

7 
 

10 
 -2 

Dj 44 36 27 25 10 142  

Vj  6 4 4 4 2   

The total cost is 320. Again, we then check the sign of 
(Ur + Vs), where (r, s) ∉ B in Table 10, we observe that U2 
+ V5 = -2 < 0, U3 + V5 = - 1 < 0, and U4 + V5 = - 1 < 0. So, 
paradoxical pairs exist. 

Applying Step 1: The cost-flow pair is (Zo, Fo) = (320, 
142) corresponding to the optimum solution X = {x11 = 6, 
x12 = 26, x14 = 3, x15 = 10, x21 = 35, x31 = 3, x33 = 27, x44 = 
22, x52 = 10}. 

Applying step 2: set i=1 
Applying step 3: Now we check the sign of (Ur + Vs) 

and we obtain for the non-basic cells (2,5), (3,5) and (4,5), 
the sign that is negative. 

Applying step 4: For l = 1 
For the cell (2, 5) 

Table 11. 
(i, j) M1 M2 M3 M4 M5 Si Ui  

W1 
6 

5 
4 

26 
8 

 
4 

3 
2 

11 
45 

 0 

W2 
2 

36 
3 

 
2 

 
5 

 
3 

 
36 

 -4 

W3 
3 

3 
4 

 
1 

27 
7 

 
1 

 
30 

 -3 

W4 
5 

 
3 

 
4 

 
1 

22 
2 

 
22 

 -3 

W5 
7 

 
2 

10 
5 

 
4 

 
7 

 
10 

 -2 

Dj 44 36 27 25 11 143  

Vj  6 4 4 4 2   

The total cost of this transportation problem is 318. 
For cell (3, 5), the transportation tableau is presented in 

Table 12. 

Table 12. 
(i, j) M1 M2 M3 M4 M5 Si Ui  

W1 
6 

5 
4 

26 
8 

 
4 

3 
2 

11 
45 

 0 

W2 
2 

35 
3 

 
2 

 
5 

 
3 

 
35 

 -4 

W3 
3 

4 
4 

 
1 

27 
7 

 
1 

 
31 

 -3 

W4 
5 

 
3 

 
4 

 
1 

22 
2 

 
22 

 -3 

W5 
7 

 
2 

10 
5 

 
4 

 
7 

 
10 

 -2 

Dj 44 36 27 25 11 143  

Vj  6 4 4 4 2   

The total cost of this transportation problem is 319. 
For the cell (4, 5), the transportation tableau is 

presented in Table 13. 

Table 13. 
(i, j) M1 M2 M3 M4 M5 Si Ui  

W1 
6 

5 
4 

26 
8 

 
4 

2 
2 

11 
45 

 0 

W2 
2 

35 
3 

 
2 

 
5 

 
3 

 
35 

 -4 

W3 
3 

5 
4 

 
1 

27 
7 

 
1 

 
31 

 -3 

W4 
5 

 
3 

 
4 

 
1 

22 
2 

 
22 

 -3 

W5 
7 

 
2 

10 
5 

 
4 

 
7 

 
10 

 -2 

Dj 44 36 27 25 11 143  

Vj  6 4 4 4 2   

The total cost is 319. 
The min cost = min {318, 319, 319} = 318. 
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Hence l = 1 enters in the optimum basis from the cell (2, 
5) and corresponding table is Table 10, the corresponding 
paradoxical pair (Z′, F′) = (318, 143). 

Employing steps 6 and 7. Then repeating this process 
again, the next tableau is 

Table 14. 
(i, j) M1 M2 M3 M4 M5 Si Ui  

W1 
6 

4 
4 

26 
8 

 
4 

3 
2 

12 
45 

 0 

W2 
2 

37 
3 

 
2 

 
5 

 
3 

 
35 

 -4 

W3 
3 

3 
4 

 
1 

27 
7 

 
1 

 
31 

 -3 

W4 
5 

 
3 

 
4 

 
1 

22 
2 

 
22 

 -3 

W5 
7 

 
2 

10 
5 

 
4 

 
7 

 
10 

 -2 

Dj 44 36 27 25 12 144  

Vj  6 4 4 4 2   

Now repeating this process, the final table is presented 
in Table 15. 

Table 15. 
(i, j) M1 M2 M3 M4 M5 Si Ui  

W1 
6 

0 
4 

26 
8 

 
4 

3 
2 

16 
45 

 0 

W2 
2 

41 
3 

 
2 

 
5 

 
3 

 
35 

 -4 

W3 
3 

3 
4 

 
1 

27 
7 

 
1 

 
31 

 -3 

W4 
5 

 
3 

 
4 

 
1 

22 
2 

 
22 

 -3 

W5 
7 

 
2 

10 
5 

 
4 

 
7 

 
10 

 -2 

Dj 44 36 27 25 16 148  

Vj  6 4 4 4 2   

Hence, from the above table, the corresponding 
paradoxical pair (Z′, F′) = (308, 148). 

Applying step 8: The best paradoxical pair is (Z*, F*) = 
(308, 148) corresponding to the optimum solution is X* = 
{x11 = 0; x12 = 26, x14 = 3, x15 = 16, x21 = 41, x31 = 3, x33 = 
27, x44 = 22, x52 = 10} and the paradoxical range of flow is 
[F0, F*] = [142, 148]. Thus, all the paradoxical pair are 
{(318, 143), (316, 144), (314, 145), (312, 146), (310, 147), 
and (308, 148)}. 

6. Conclusion 
In this paper, an attempt has been made to discuss an 

efficient statistical algorithm for computing paradox in a 
linear transportation problem if paradox does exist. The 
algorithm gives step by step development of the solution 
procedure for finding all the paradoxical pair where 

paradox exists, well understanding. The statistical 
software package known as “TORA” was used to obtain 
the optimal solution before adopting the algorithm of 
paradoxical pairs. 

Future research should be done on a related work like in 
this paper, and the author should try to develop a program 
that will enable one to obtain the best paradoxical pairs 
instead of solving it manually, and as well the paradoxical 
range of flow. 
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