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Abstract  In recent decades, Long Short-Term Memory networks (LSTMs), an enhanced version of Recurrent 
Neural Networks (RNNs), have made significant contributions across various domains. Particularly in the study of 
time series data, they have offered promising capabilities in capturing temporal dependencies and patterns. This 
paper delves into the application of LSTMs in market forecasting, aiming to use historical price data to construct 
predictive models and optimize investment allocations for improved portfolio performance. The investigation 
includes a detailed examination of hyperparameters tailored for Invesco QQQ Trust (QQQ), SPDR Gold Trust 
(GLD), and Bitcoin (BTC) LSTM models, employing them for price prediction and the development of high-return 
trading strategies. Following this, an analysis is carried out on portfolio holdings, return rates, and risk enhancements 
for each investment asset within the testing set under this trading strategy. 
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1. Introduction 

In the realm of artificial intelligence and deep  
learning, Recurrent Neural Networks (RNNs) have 
emerged as indispensable tools for handling  
sequential data. RNNs maintain information states in 
time series data through recursive connections. However, 
they encounter challenges such as the vanishing or 
exploding gradient problem, making it difficult to learn 
long-term dependencies.  

In 1997, Hochreiter and Schmidhuber [1] introduced 
Long Short-Term Memory networks (LSTMs), an 
improved version of RNNs specifically designed to 
address the issue of long-term dependencies. LSTMs 
enhance their ability to capture long-term information in 
sequences by introducing memory cells and gating 
mechanisms. In the field of Natural Language Processing 
(NLP), Hochreiter and Schmidhuber's seminal work in 
1997 laid the foundation for the application of LSTMs in 
tasks such as machine translation, sentiment analysis, and 
named entity recognition. Following this, LSTMs have 
been widely applied in various fields, such as speech 
recognition [2], medical image processing [3], intelligent 
transportation systems [4], time series forecasting [5], and 
financial market [6,7]. Inspired by these studies, this paper 
applies LSTM to predict market trends for Invesco QQQ 
Trust (QQQ), SPDR Gold Trust (GLD), and Bitcoin 

(BTC), thereby discussing potential optimizations for 
investment portfolios. GLD is often considered a safe-
haven asset, BTC serves as a global digital asset and is 
typically viewed as a higher-risk appreciating asset, while 
QQQ encompasses major companies in the technology 
sector, offering relatively stable long-term growth potential. 
Therefore, the selection of these three investment assets 
takes into account risk diversification, hedging and 
appreciation, as well as global market coverage. 

2. LSTM Neural Network-Based Price 
Prediction Model 

2.1. The Structure of Long Short-Term 
Memory (LSTM) 

It is well known that Recurrent Neural Networks 
(RNNs) are a type of deep learning model designed for 
handling sequential or time-based data. Their unique 
feature lies in the inclusion of cyclic connections, 
allowing information to be passed within the network and 
utilized for processing different time steps.  

The basic structure of an RNN (Figure 1) consists of 
input, hidden, and output layers. The neurons in the 
hidden layer not only receive input from the current time 
step but also incorporate output from the hidden layer of 
the previous time step.  
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Figure 1. The basic structure of RNN 

At each time step, an RNN receives input and performs 
a forward pass. The input includes the data for the current 
time step tx  and the hidden state from the previous time 
step 1th −  The RNN computes the output ty'  and the 
hidden state for each time step th . By comparing the 
model's output ty' with the actual target values ty , the 
loss function L is computed. Next, the backward pass 
algorithm is employed to calculate the gradients of the 
loss function with respect to the network parameters 
(weights), where the gradients represent the rate of change 
of the loss function with respect to the parameters. Using 
gradient descent or other optimization algorithms, the 
gradient information is applied to the network parameters 
to update their values. This process ensures that the next 
forward pass of the network produces predictions closer to 
the actual targets. The above steps are iterated, moving 
through multiple time steps. In each iteration, the model 
adjusts its parameters to minimize the loss function. The 
hidden state is passed from each time step to the next, 
creating a recurrent structure that enables the network to 
consider contextual information in the sequence. When 
handling long sequences with traditional RNNs, it's 
important to note that during backward pass, gradient 
information can become extremely small (vanishing) or 
exceptionally large (exploding). The former hinders 
effective learning of long-term dependencies, while the 
latter causes unstable network parameters and 
uncontrollable training, impacting overall model 
performance. To address these issues, an improved 
structure was introduced, known as Long Short-Term 
Memory (LSTM), which uses memory cells and gate 
mechanisms, effectively alleviating the impact of gradient 
vanishing and exploding, and overcoming the challenges 
of long-term dependencies. 

In an LSTM, the memory cell tC  is responsible for 
storing information and can retain or update this 
information over extended periods, enabling more 
effective handling of long sequential dependencies. The 
recurrent unit in LSTM consists of three main gates: the 
input gate, the forget gate, and the output gate(see Figure 
2). These gates control the flow of information, allowing 
the LSTM to selectively store, forget, or output 
information at different time steps. 

The forget gate decides which information will be 
removed from the previous memory cell 1tC − . Let th  and 

tx  be the hidden state and input data in the current 

timestep t , and tf  be the weight of information to be 
forgotten in 1tC − , Then the forget gate uses a sigmoid 

activation function ( ) 1
1 xx

e
σ

−
=

+
  to decide how much 

information to retain or forget based on input data 𝑥𝑥𝑡𝑡  and 
the previous time step's hidden state 1th .−  

[ ]( )1t f t t ff W h ,x bσ −= +   , where fW  and fb  are the 

weight vector (or matrix) and bias parameter of the forget 
gate. Then the output of tf  ranges between 0 and 1, 
where 0 indicates a preference to forget and discard, and 1 
indicates a preference to remember and retain information 
from the past.  

 
Figure 2. The basic structure of a LSTM Recurrent Unit 

The input gate calculates the current moment candidate 
memory cell state value tC  and the input gate value ti  
between 0 and 1 to control the proportion of input 
information tx  to be stored into the current memory cell 

tC , and then use  tC and ti to update the memory cell. 

[ ]( )1t c t t cC tanh W h ,x b−= +    , 

[ ]( )1t t t t ii W h ,x bσ −= +   , 

1t t t t tC f * C i * C−= +   

where cW ,  tW , cb , and ib  are the weight vectors (or 
matrices) and bias parameters of the input gate. 

The output Gate determines the output hidden  
state th  using the output gate value tO . 
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[ ]( )1t o t t oO W h ,x bσ −= +  , and ( )t t th O * tanhtanh C= . 
It controls how much information is output, utilizing 

the sigmoid and hyperbolic tangent (tanh) activation 
functions. To be more precise, it produces an output 
between 0 and 1 based on input data and the current time 
step's hidden state, and outputs a portion of the 
information processed by the tanh function on the memory 
cell. Through the combination of these gates, LSTM can 
more effectively handle long sequences, aiding the 
network in learning and retaining dependencies on past 
information. This capability makes it well-suited for 
various tasks.  

2.2. Critical Hyperparameters in LSTM 
When building a Long Short-Term Memory (LSTM) 

network, a crucial aspect involves the selection of 
hyperparameters. Unlike parameters, which are internal 
variables adjusted during training, hyperparameters are 
external configuration settings that play a pivotal role in 
shaping the learning process. These higher-level structural 
choices significantly impact the model's performance and 
ability to generalize new data. In the context of LSTMs, 
careful consideration of hyperparameters is essential for 
achieving optimal results. This section will delve into the 
key hyperparameters associated with LSTMs, exploring 
their roles, significance, and the considerations involved 
in selecting appropriate values for a given task. From 
learning rates to the number of hidden units, each 
hyperparameter contributes to the overall architecture and 
behavior of the LSTM, making their understanding and 
fine-tuning crucial for successful model training.  

Initial Learning Rate α  The initial learning rate is 
the starting value for the step size or the rate at which 
the model's parameters are updated during training. A 
higher α  may lead to faster convergence but may risk 
overshooting the optimal values. A lower 𝛼𝛼 may result 
in slower convergence but might provide more stable 
updates.  

Input Size inputN  The input size refers to the 
dimensionality of the input data fed into the LSTM 
network. In natural language processing, for example, it 
could be the length of a sequence or the number of 
features in each time step. Larger inputN may require more 
computational resources but can capture more complex 
patterns. Smaller inputN may lead to faster training but 
might result in a loss of information.  

Number of Hidden Units hiddenN  The number of 
hidden units (also called hidden neurons) represents the 
dimensionality of the hidden state and cell state in the 
LSTM. It determines the capacity of the LSTM to learn 
and represent complex relationships. A higher hiddenN
increases the model's capacity to capture intricate patterns 
but may also increase the risk of overfitting, especially 
with limited data. A lower hiddenN may lead to 
underfitting, where the model might struggle to capture 
important patterns.  

Number of Epochs epochsT  The number of epochs is 
the count of times the entire training dataset is passed 

through the LSTM during training. Training for too few 
epochs may result in an underfit model, while training for 
too many epochs may lead to overfitting. It is essential to 
find a balance to achieve the best generalization for 
unseen data.  

In short, in a LSTM, Initial Learning Rate 𝛼𝛼 Influences 
the speed and stability of convergence. Input Size inputN
affects the model's ability to capture information from the 
input. Number of Hidden Units hiddenN  determines the 
model's capacity to learn complex patterns. Number of 
Epochs epochsT  Influences the balance between 
underfitting and overfitting. Choosing appropriate values 
for these parameters involves a trade-off between model 
complexity, training speed, and generalization to new data. 
Hyperparameter tuning is often required to find the 
optimal configuration for a specific task. In the following 
sections, we will delve into price prediction models based 
on LSTM neural networks, focusing specifically on QQQ, 
GLD, and BTC. Our emphasis will be on investigating 
more effective input sizes and the number of hidden units.  

2.3. Data Processing 
We collected the daily closing prices for QQQ, GLD, 

and BTC from January 2010 to July 2023. As QQQ and 
GLD ETF do not trade on weekends and holidays, we 
use the closing price from the previous trading day for 
those days. For the daily price data of these three 
investment assets, we selected the first 70% (from 
August 1, 2010, to September 8, 2018) as the training set, 
and the remaining 30% as the test set (from September 9, 
2019, to July 31, 2023). 

Given that neural network learning inherently involves 
capturing the distribution of the data, it becomes 
imperative to normalize the data to maintain consistency. 
Without normalization, each batch of training data may 
exhibit a different distribution. As the neural network 
strives to strike a balance among these multiple 
distributions, the input data for each layer undergoes 
constant changes, complicating the search for an optimal 
equilibrium and potentially hindering the convergence of 
the constructed neural network model. To expedite model 
convergence, mitigate the risk of gradient explosion, and 
enhance overall training speed and efficiency, data 
normalization is applied.  

The normalization formula is expressed as follows. 
i min

i
max min

x x
x'

x x
−

=
−

, where 𝑥𝑥𝑖𝑖  is the price on day i , minx  is 

the minimum value in the price sample and maxx  is the 
maximum value in the price sample.  

2.4. Model Effectiveness Evaluation 
Set the initial learning rate α =  0.005 and choose 

120epochsT = , we use the LSTM network with different 

values for inputN  and hiddenN  to predict prices for QQQ, 
GLD, and BTC. Subsequently, we assess the model 
performance using the average absolute error (MAE), mean 
absolute percentage error (MAPE), and root mean square 
error (RMSE). 
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Where n  is the size of the sample, iy'  is the model 
prediction price, and 𝑦𝑦𝑖𝑖  is the real price. A smaller MAE, 
MAPE, and RMSE indicate a closer alignment between 
the predicted and true values.  

We selected input sizes of 5, 10, 20, and 60 based on 
the common practice in daily stock trading, where market 
participants often rely on moving averages calculated over 
these specific periods (5 days, 10 days, 20 days, and 60 
days) for making assessments. This choice aligns with 
established strategies in the financial industry, leveraging 
these specific timeframes to gauge trends and make 
informed decisions in stock trading.  

In Table 1, it is evident that all of the three model 
evaluation metrics reach their minimum values when 

5inputN =  and the 150hiddenN =  (corresponding to 
Forecast 1 in Figure 3) in the testing set. Slightly higher 
values are observed when 5inputN =  and the

200hiddenN =  (resulting in Forecast 2 in Figure 3). As 
a conclusion drawn from this analysis, for QQQ, 
utilizing the daily prices of the preceding five days as 
input in the LSTM network seems more suitable for 
accurate price estimation. 

In the case of LSTM networks for GLD, we observe 
similar outcomes. Specifically, for GLD, using the daily 
prices from the previous 20 days as input in the LSTM 
network appears more suitable for precise price estimation. 
This observation is based on the fact that all three model 
evaluation metrics reach their minimum values when 

20inputN =  and the 200hiddenN = , corresponding to 
Forecast 1 within the testing set shown in Figure 4. The 
second-best performing LSTM network, characterized by 
the second-to-last smallest values for all three evaluation 
metrics, generates the Forecast 2 in Figure 4. It shares the 
same inputN as the top-performing model, which is 20; 

and its 100hiddenN .=   

Table 1. LSTM network with different hyperparameters for QQQ 

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  60 100 150 200 𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  60 100 150 200 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  MAE 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  MAPE（%） 

5 25.52 26.48 13.36 17.55 5 7.84 8.21 4.07 5.56 
10 32.50 31.78 16.54 30.41 10 10.10 9.91 5.13 9.89 
20 45.77 46.69 21.22 33.64 20 14.23 14.26 6.45 10.47 
60 75.40 59.90 58.51 83.36 60 23.19 18.33 17.97 25.97 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  RMSE 
5 30.41 30.85 17.53 19.84 

10 37.57 36.68 20.02 32.49 
20 52.36 55.27 26.41 38.44 
60 86.50 69.82 67.62 93.27 

 
Figure 3. QQQ Daily Prices - Actual vs. LSTM Predictions 
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Table 2. LSTM network with different hyperparameters for GLD 

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  60 100 150 200 250 𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  60 100 150 200 250 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  MAE 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  MAPE(%) 

5 2.37 1.67 3.96 4.09 2.02 5 1.40 1.01 2.36 2.44 1.21 
10 1.60 5.67 3.42 1.58 1.96 10 0.95 3.38 2.01 0.94 1.18 
20 5.81 1.54 1.71 1.14 3.64 20 3.39 0.93 1.04 0.68 2.19 
60 4.93 4.50 5.85 10.64 6.04 60 2.88 2.63 3.42 6.22 3.51 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  RMSE 
5 2.78 2.16 4.31 4.48 2.50 

10 2.14 6.01 3.82 2.10 2.47 
20 6.56 2.12 2.20 1.70 4.08 
60 5.62 5.19 6.53 11.44 6.94 

 
Figure 4. GLD Daily Prices - Actual vs. LSTM Predictions 

 
Figure 5. BTC Daily Prices - Actual vs. LSTM Predictions 

Table 3. LSTM network with different hyperparameters for BTC 

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  60 100 150 200 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  MAE 

5 1545.49 1404.64 1344.03 1765.85 
10 3166.65 2966.30 1609.26 2088.86 
20 3884.93 2834.63 2433.34 1914.92 
60 12926.62 12222.18 10298.25 8856.76 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  MAPE(%) 
5 4.98 4.24 4.04 5.51 

10 8.22 8.78 8.26 6.23 
20 10.74 8.08 6.76 5.72 
60 35.27 32.85 27.60 23.40 

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  RMSE 
5 2221.18 2219.41 2170.74 2565.78 

10 5082.76 4201.00 1871.44 3055.74 
20 6530.79 4643.09 3924.60 3011.47 
60 18048.67 17347.09 14910.88 12886.14 

When comparing these BTC LSTM networks, the 
models with the minimum and second minimum values 
for MAE and MAPE are the same, corresponding to 
forecast 1 and 2 in Figure 5. The hyperparameters for 
forecast 1 are 5inputN =  and the 150hiddenN = , while for 

forecast 2, the hyperparameters are 5inputN =  and the

100hiddenN = . However, the networks with the minimum 
and second minimum values for RMSE differ from 
forecast 1 and 2. They align with forecast 2 and forecast 3 
in Figure 5, where forecast 3 represents the LSTM 
network with 10inputN =  and the 150hiddenN = .  

In this context, directly comparing forecast 1 
(minimizing MAE and MAPE) and forecast 3 (minimizing 
RMSE) for predicting BTC prices is challenging due to 
their unique features. Forecast 1 is better suited for periods 
of lower BTC price volatility, as shown in Figure 6. 
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Conversely, forecast 3 is considered more effective during 
times of increased BTC price fluctuations, as depicted in 
Figure 7. This difference in suitability stems from the 

distinct characteristics of the evaluation metrics and the 
underlying patterns captured by each forecast in response 
to different levels of BTC price volatility.  

 

 
Figure 6. Extracting Time Periods of Low BTC Price Volatility from Figure 5 

 
Figure 7. Extracted Time Periods of Elevated BTC Price Volatility from Figure 5 

Summarizing the analysis and discussion in this 
subsection, we obtain the following intriguing findings: 
When employing LSTM for price evaluation, QQQ is best 
suited for using the prices of the previous five days; GLD 
is best suited for utilizing the prices of the previous 20 
days. As for BTC, it is optimal to use the prices of the 
previous five days when its price volatility is low and the 
prices of the previous ten days when volatility is high.  

3. Trading Strategies Based on Daily 
Price Predictions 

Building upon the analysis in subsection 2.4, we select 
LSTM models with the following crucial hyperparameters 
for QQQ, GLD, and BTC to generate forecasts for the 
next day's prices. 

Table 4. Key LSTM Hyperparameters Chosen for  QQQ, GLD, BTC 
Price Predictions 

 QQQ GLD BTC 
𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  150 200 150 
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  5 20 5 

 
Let tP '  denote the predicted price on day t , and tP  

denote the actual price on day t , then the expected daily 

return rate is 1

1

'
' t t
t

t

P P
R

P
−

−

−
= . We compute and compare 

the daily '
tR for QQQ, GLD, and BTC, utilizing the 

comparison results to inform our trading strategies. On 
regular trading days, we prioritize the investment target 
with the highest expected daily return among QQQ, GLD, 
and BTC. We sell the other two assets and use the 
proceeds to buy more of the highest-return assets. If all 
assets have negative expected daily returns, we sell 
everything and hold cash. On holidays (non-trading days), 
QQQ and GLD remain untouched, while BTC is tradable. 
If the expected daily return for BTC is negative, we sell it; 
if positive, we use all available cash to buy BTC. 

Let tC  denote the cumulative return rate on day t , then 

( ) ( ) ( )1 21 1 1t tC r r r= − − −    , where tr = 1

1

t t

t

B B
B

−

−

−
 is 

the real daily return rate, and tB  is overall balance of all 
assets on day 𝑡𝑡.  Applying the above trading strategy to 
our test set, covering from September 2019 to July 2023, 
resulted in a remarkable return rate of 317.54%, with an 
annual average return rate of 81.91%. 
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Figure 8. Cumulative Return Rate in the Testing Set (2019/09-2023/07) 

In addition to the high return rate in this trading strategy, 
another noteworthy outcome is the variability in the 
number of days each distinct asset is held in the testing set. 
In 2019 and 2020, our trading strategy involved holding 
BTC for the longest duration, while the period of holding 
gold was the shortest, with no gold holdings in 2019. 
However, in the subsequent two years, gold emerged as 
the most frequently chosen investment among the three, 
dominating in 2021 and slightly decreasing thereafter. 
There were no days of holding BTC in 2021 and 2023, 
and the holding period in 2022 was also the shortest. In 
contrast, the days of holding gold constituted a significant 
proportion over these three years. 

 

 

 
Figure 9. Investment Portfolio: Holding Days Ratio Over 2019-2023 
(QQQ, GLD, BTC) 

The investment strategy discussed above focuses on 
high returns without taking into consideration the 
associated risks. However, it's important to note that there 
are significant differences in the risk profiles of these 
three investment assets. Let 𝑅𝑅𝑖𝑖  represent the actual daily 

return rate of an asset, calculated as 1

1

i i
i

i

P P
R

P
−

−

−
=  with 

𝑃𝑃𝑖𝑖  is the actual price of the asset on day 𝑖𝑖 . The risk 
standard deviation RSD  is given by 

( )2
1

1 N

i i
i

RSD R R
N =

= −∑ , where N is the number of 

historical return rates, and iR  denotes the average 
historical return value. Subsequently, considering N as 30 
days, we generated the following Risk-Return graph based 
on the actual daily prices of QQQ, GLD, and BTC for the 
testing set. 
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Figure 10. Actual Risk-Return for QQQ, GLD, and BTC (2019-2023) 

In Figure 10, it is evident that among the three 
investment targets, GLD stands out as the most stable in 
terms of both returns and risks, followed by QQQ. 
Conversely, BTC exhibits the highest risk, but it also 
encompasses a wider range of returns. A natural follow-up 
question is how the risk-return profiles of these three 
investment targets will evolve within the trading strategy 
outlined in this article. Let ir '  denote the daily trading 

return rate for the asset. We define '
i ir R=  if we choose to 

hold the asset on day 𝑖𝑖, i.e., buy or retain the asset on day 
1i − , and 0'

ir =  if we choose not to hold the asset on day 
i , i.e., sell or refrain from buying the asset on day 1i − . 
The corresponding trading RSD is calculated by 

( )21
1 N

i i 'ir ' r
N =∑ − .  

 
Figure 11. Trading Risk-Return for QQQ, GLD, and BTC (2019-2023) 

Upon comparing Figure 10 and Figure 11, it becomes 
evident that, when applying our trading strategy, both 
QQQ and BTC experience a notable reduction in risk 
along with a substantial increase in returns compared to 
their actual daily risk-return profiles. Although the risk 

range for GLD remains relatively stable, there is an 
enhancement in its return rate as well. 

4. Future Work 

In this article, we delved into the application of LSTM 
for predicting the prices of investment assets, facilitating 
the creation of a high-return trading strategy. Our focus 
revolved around the selection of two crucial 
hyperparameters for LSTM: hiddenN  and inputN . There is 
potential for further optimizing the model by 
incorporating techniques such as Dropout [8,9], and batch 
normalization [10], among others. Moreover, when 
crafting trading strategies based on predicted prices, we 
can broaden our analysis to encompass factors like 
transaction costs and the inflation rate of cash. In addition, 
our current trading strategy involves daily transactions. In 
the future, we may investigate strategies with weekly or 
monthly trading frequencies and compare the optimal 
trading frequency for various investment assets. 
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