
American Journal of Applied Mathematics and Statistics, 2024, Vol. 12, No. 1, 15-23
Available online at http://pubs.sciepub.com/ajams/12/1/3
Published by Science and Education Publishing
DOI:10.12691/ajams-12-1-3

Optimized Investment Strategy Based on
Long Short-Term Memory Networks (LSTMs)

Qingyun Wang1, Yayuan Xiao2,*

1College of Mathematics and Computer Science, Gannan Normal University, Ganzhou, China, 341000
2Department of Mathematical Sciences, Ball State University, Muncie, IN, USA, 47396

*Corresponding author:

Received January 12, 2024; Revised February 15, 2024; Accepted February 22, 2024

Abstract In recent decades, Long Short-Term Memory networks (LSTMs), an enhanced version of Recurrent
Neural Networks (RNNs), have made significant contributions across various domains. Particularly in the study of
time series data, they have offered promising capabilities in capturing temporal dependencies and patterns. This
paper delves into the application of LSTMs in market forecasting, aiming to use historical price data to construct
predictive models and optimize investment allocations for improved portfolio performance. The investigation
includes a detailed examination of hyperparameters tailored for Invesco QQQ Trust (QQQ), SPDR Gold Trust
(GLD), and Bitcoin (BTC) LSTM models, employing them for price prediction and the development of high-return
trading strategies. Following this, an analysis is carried out on portfolio holdings, return rates, and risk enhancements
for each investment asset within the testing set under this trading strategy.

Keywords: RNN, LSTM, QQQ, GLD, BTC

Cite This Article: Qingyun Wang, and Yayuan Xiao, “Optimized Investment Strategy Based on Long Short-
Term Memory Networks (LSTMs).” American Journal of Applied Mathematics and Statistics, vol. 12, no. 1 (2024):
15-23. doi: 10.12691/ajams-12-1-3.

1. Introduction

In the realm of artificial intelligence and deep
learning, Recurrent Neural Networks (RNNs) have
emerged as indispensable tools for handling
sequential data. RNNs maintain information states in
time series data through recursive connections. However,
they encounter challenges such as the vanishing or
exploding gradient problem, making it difficult to learn
long-term dependencies.

In 1997, Hochreiter and Schmidhuber [1] introduced
Long Short-Term Memory networks (LSTMs), an
improved version of RNNs specifically designed to
address the issue of long-term dependencies. LSTMs
enhance their ability to capture long-term information in
sequences by introducing memory cells and gating
mechanisms. In the field of Natural Language Processing
(NLP), Hochreiter and Schmidhuber's seminal work in
1997 laid the foundation for the application of LSTMs in
tasks such as machine translation, sentiment analysis, and
named entity recognition. Following this, LSTMs have
been widely applied in various fields, such as speech
recognition [2], medical image processing [3], intelligent
transportation systems [4], time series forecasting [5], and
financial market [6,7]. Inspired by these studies, this paper
applies LSTM to predict market trends for Invesco QQQ
Trust (QQQ), SPDR Gold Trust (GLD), and Bitcoin

(BTC), thereby discussing potential optimizations for
investment portfolios. GLD is often considered a safe-
haven asset, BTC serves as a global digital asset and is
typically viewed as a higher-risk appreciating asset, while
QQQ encompasses major companies in the technology
sector, offering relatively stable long-term growth potential.
Therefore, the selection of these three investment assets
takes into account risk diversification, hedging and
appreciation, as well as global market coverage.

2. LSTM Neural Network-Based Price
Prediction Model

2.1. The Structure of Long Short-Term
Memory (LSTM)

It is well known that Recurrent Neural Networks
(RNNs) are a type of deep learning model designed for
handling sequential or time-based data. Their unique
feature lies in the inclusion of cyclic connections,
allowing information to be passed within the network and
utilized for processing different time steps.

The basic structure of an RNN (Figure 1) consists of
input, hidden, and output layers. The neurons in the
hidden layer not only receive input from the current time
step but also incorporate output from the hidden layer of
the previous time step.

16 American Journal of Applied Mathematics and Statistics

Figure 1. The basic structure of RNN

At each time step, an RNN receives input and performs
a forward pass. The input includes the data for the current
time step tx and the hidden state from the previous time
step 1th − The RNN computes the output ty' and the
hidden state for each time step th . By comparing the
model's output ty' with the actual target values ty , the
loss function L is computed. Next, the backward pass
algorithm is employed to calculate the gradients of the
loss function with respect to the network parameters
(weights), where the gradients represent the rate of change
of the loss function with respect to the parameters. Using
gradient descent or other optimization algorithms, the
gradient information is applied to the network parameters
to update their values. This process ensures that the next
forward pass of the network produces predictions closer to
the actual targets. The above steps are iterated, moving
through multiple time steps. In each iteration, the model
adjusts its parameters to minimize the loss function. The
hidden state is passed from each time step to the next,
creating a recurrent structure that enables the network to
consider contextual information in the sequence. When
handling long sequences with traditional RNNs, it's
important to note that during backward pass, gradient
information can become extremely small (vanishing) or
exceptionally large (exploding). The former hinders
effective learning of long-term dependencies, while the
latter causes unstable network parameters and
uncontrollable training, impacting overall model
performance. To address these issues, an improved
structure was introduced, known as Long Short-Term
Memory (LSTM), which uses memory cells and gate
mechanisms, effectively alleviating the impact of gradient
vanishing and exploding, and overcoming the challenges
of long-term dependencies.

In an LSTM, the memory cell tC is responsible for
storing information and can retain or update this
information over extended periods, enabling more
effective handling of long sequential dependencies. The
recurrent unit in LSTM consists of three main gates: the
input gate, the forget gate, and the output gate(see Figure
2). These gates control the flow of information, allowing
the LSTM to selectively store, forget, or output
information at different time steps.

The forget gate decides which information will be
removed from the previous memory cell 1tC − . Let th and

tx be the hidden state and input data in the current

timestep t , and tf be the weight of information to be
forgotten in 1tC − , Then the forget gate uses a sigmoid

activation function () 1
1 xx

e
σ

−
=

+
 to decide how much

information to retain or forget based on input data 𝑥𝑥𝑡𝑡 and
the previous time step's hidden state 1th .−

[]()1t f t t ff W h ,x bσ −= + , where fW and fb are the

weight vector (or matrix) and bias parameter of the forget
gate. Then the output of tf ranges between 0 and 1,
where 0 indicates a preference to forget and discard, and 1
indicates a preference to remember and retain information
from the past.

Figure 2. The basic structure of a LSTM Recurrent Unit

The input gate calculates the current moment candidate
memory cell state value tC and the input gate value ti
between 0 and 1 to control the proportion of input
information tx to be stored into the current memory cell

tC , and then use tC and ti to update the memory cell.

[]()1t c t t cC tanh W h ,x b−= + ,

[]()1t t t t ii W h ,x bσ −= + ,

1t t t t tC f * C i * C−= +

where cW , tW , cb , and ib are the weight vectors (or
matrices) and bias parameters of the input gate.

The output Gate determines the output hidden
state th using the output gate value tO .

 American Journal of Applied Mathematics and Statistics 17

[]()1t o t t oO W h ,x bσ −= + , and ()t t th O * tanhtanh C= .
It controls how much information is output, utilizing

the sigmoid and hyperbolic tangent (tanh) activation
functions. To be more precise, it produces an output
between 0 and 1 based on input data and the current time
step's hidden state, and outputs a portion of the
information processed by the tanh function on the memory
cell. Through the combination of these gates, LSTM can
more effectively handle long sequences, aiding the
network in learning and retaining dependencies on past
information. This capability makes it well-suited for
various tasks.

2.2. Critical Hyperparameters in LSTM
When building a Long Short-Term Memory (LSTM)

network, a crucial aspect involves the selection of
hyperparameters. Unlike parameters, which are internal
variables adjusted during training, hyperparameters are
external configuration settings that play a pivotal role in
shaping the learning process. These higher-level structural
choices significantly impact the model's performance and
ability to generalize new data. In the context of LSTMs,
careful consideration of hyperparameters is essential for
achieving optimal results. This section will delve into the
key hyperparameters associated with LSTMs, exploring
their roles, significance, and the considerations involved
in selecting appropriate values for a given task. From
learning rates to the number of hidden units, each
hyperparameter contributes to the overall architecture and
behavior of the LSTM, making their understanding and
fine-tuning crucial for successful model training.

Initial Learning Rate α The initial learning rate is
the starting value for the step size or the rate at which
the model's parameters are updated during training. A
higher α may lead to faster convergence but may risk
overshooting the optimal values. A lower 𝛼𝛼 may result
in slower convergence but might provide more stable
updates.

Input Size inputN The input size refers to the
dimensionality of the input data fed into the LSTM
network. In natural language processing, for example, it
could be the length of a sequence or the number of
features in each time step. Larger inputN may require more
computational resources but can capture more complex
patterns. Smaller inputN may lead to faster training but
might result in a loss of information.

Number of Hidden Units hiddenN The number of
hidden units (also called hidden neurons) represents the
dimensionality of the hidden state and cell state in the
LSTM. It determines the capacity of the LSTM to learn
and represent complex relationships. A higher hiddenN
increases the model's capacity to capture intricate patterns
but may also increase the risk of overfitting, especially
with limited data. A lower hiddenN may lead to
underfitting, where the model might struggle to capture
important patterns.

Number of Epochs epochsT The number of epochs is
the count of times the entire training dataset is passed

through the LSTM during training. Training for too few
epochs may result in an underfit model, while training for
too many epochs may lead to overfitting. It is essential to
find a balance to achieve the best generalization for
unseen data.

In short, in a LSTM, Initial Learning Rate 𝛼𝛼 Influences
the speed and stability of convergence. Input Size inputN
affects the model's ability to capture information from the
input. Number of Hidden Units hiddenN determines the
model's capacity to learn complex patterns. Number of
Epochs epochsT Influences the balance between
underfitting and overfitting. Choosing appropriate values
for these parameters involves a trade-off between model
complexity, training speed, and generalization to new data.
Hyperparameter tuning is often required to find the
optimal configuration for a specific task. In the following
sections, we will delve into price prediction models based
on LSTM neural networks, focusing specifically on QQQ,
GLD, and BTC. Our emphasis will be on investigating
more effective input sizes and the number of hidden units.

2.3. Data Processing
We collected the daily closing prices for QQQ, GLD,

and BTC from January 2010 to July 2023. As QQQ and
GLD ETF do not trade on weekends and holidays, we
use the closing price from the previous trading day for
those days. For the daily price data of these three
investment assets, we selected the first 70% (from
August 1, 2010, to September 8, 2018) as the training set,
and the remaining 30% as the test set (from September 9,
2019, to July 31, 2023).

Given that neural network learning inherently involves
capturing the distribution of the data, it becomes
imperative to normalize the data to maintain consistency.
Without normalization, each batch of training data may
exhibit a different distribution. As the neural network
strives to strike a balance among these multiple
distributions, the input data for each layer undergoes
constant changes, complicating the search for an optimal
equilibrium and potentially hindering the convergence of
the constructed neural network model. To expedite model
convergence, mitigate the risk of gradient explosion, and
enhance overall training speed and efficiency, data
normalization is applied.

The normalization formula is expressed as follows.
i min

i
max min

x x
x'

x x
−

=
−

, where 𝑥𝑥𝑖𝑖 is the price on day i , minx is

the minimum value in the price sample and maxx is the
maximum value in the price sample.

2.4. Model Effectiveness Evaluation
Set the initial learning rate α = 0.005 and choose

120epochsT = , we use the LSTM network with different

values for inputN and hiddenN to predict prices for QQQ,
GLD, and BTC. Subsequently, we assess the model
performance using the average absolute error (MAE), mean
absolute percentage error (MAPE), and root mean square
error (RMSE).

18 American Journal of Applied Mathematics and Statistics

()

1

1

2

1

1

1 100

1

n

i i
i

n
i i

ii

n

i i
i

MAE y y ,
n

y y
MAPE %,

n y'

RMSE y y ,
n

=

=

=

= −

−
= ×

′=

′

−

′∑

∑

∑

Where n is the size of the sample, iy' is the model
prediction price, and 𝑦𝑦𝑖𝑖 is the real price. A smaller MAE,
MAPE, and RMSE indicate a closer alignment between
the predicted and true values.

We selected input sizes of 5, 10, 20, and 60 based on
the common practice in daily stock trading, where market
participants often rely on moving averages calculated over
these specific periods (5 days, 10 days, 20 days, and 60
days) for making assessments. This choice aligns with
established strategies in the financial industry, leveraging
these specific timeframes to gauge trends and make
informed decisions in stock trading.

In Table 1, it is evident that all of the three model
evaluation metrics reach their minimum values when

5inputN = and the 150hiddenN = (corresponding to
Forecast 1 in Figure 3) in the testing set. Slightly higher
values are observed when 5inputN = and the

200hiddenN = (resulting in Forecast 2 in Figure 3). As
a conclusion drawn from this analysis, for QQQ,
utilizing the daily prices of the preceding five days as
input in the LSTM network seems more suitable for
accurate price estimation.

In the case of LSTM networks for GLD, we observe
similar outcomes. Specifically, for GLD, using the daily
prices from the previous 20 days as input in the LSTM
network appears more suitable for precise price estimation.
This observation is based on the fact that all three model
evaluation metrics reach their minimum values when

20inputN = and the 200hiddenN = , corresponding to
Forecast 1 within the testing set shown in Figure 4. The
second-best performing LSTM network, characterized by
the second-to-last smallest values for all three evaluation
metrics, generates the Forecast 2 in Figure 4. It shares the
same inputN as the top-performing model, which is 20;

and its 100hiddenN .=

Table 1. LSTM network with different hyperparameters for QQQ

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 60 100 150 200 𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 60 100 150 200
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 MAE 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 MAPE（%）

5 25.52 26.48 13.36 17.55 5 7.84 8.21 4.07 5.56
10 32.50 31.78 16.54 30.41 10 10.10 9.91 5.13 9.89
20 45.77 46.69 21.22 33.64 20 14.23 14.26 6.45 10.47
60 75.40 59.90 58.51 83.36 60 23.19 18.33 17.97 25.97

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 RMSE
5 30.41 30.85 17.53 19.84

10 37.57 36.68 20.02 32.49
20 52.36 55.27 26.41 38.44
60 86.50 69.82 67.62 93.27

Figure 3. QQQ Daily Prices - Actual vs. LSTM Predictions

 American Journal of Applied Mathematics and Statistics 19

Table 2. LSTM network with different hyperparameters for GLD

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 60 100 150 200 250 𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 60 100 150 200 250
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 MAE 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 MAPE(%)

5 2.37 1.67 3.96 4.09 2.02 5 1.40 1.01 2.36 2.44 1.21
10 1.60 5.67 3.42 1.58 1.96 10 0.95 3.38 2.01 0.94 1.18
20 5.81 1.54 1.71 1.14 3.64 20 3.39 0.93 1.04 0.68 2.19
60 4.93 4.50 5.85 10.64 6.04 60 2.88 2.63 3.42 6.22 3.51

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 RMSE
5 2.78 2.16 4.31 4.48 2.50

10 2.14 6.01 3.82 2.10 2.47
20 6.56 2.12 2.20 1.70 4.08
60 5.62 5.19 6.53 11.44 6.94

Figure 4. GLD Daily Prices - Actual vs. LSTM Predictions

Figure 5. BTC Daily Prices - Actual vs. LSTM Predictions

Table 3. LSTM network with different hyperparameters for BTC

𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 60 100 150 200
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 MAE

5 1545.49 1404.64 1344.03 1765.85
10 3166.65 2966.30 1609.26 2088.86
20 3884.93 2834.63 2433.34 1914.92
60 12926.62 12222.18 10298.25 8856.76

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 MAPE(%)
5 4.98 4.24 4.04 5.51

10 8.22 8.78 8.26 6.23
20 10.74 8.08 6.76 5.72
60 35.27 32.85 27.60 23.40

𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 RMSE
5 2221.18 2219.41 2170.74 2565.78

10 5082.76 4201.00 1871.44 3055.74
20 6530.79 4643.09 3924.60 3011.47
60 18048.67 17347.09 14910.88 12886.14

When comparing these BTC LSTM networks, the
models with the minimum and second minimum values
for MAE and MAPE are the same, corresponding to
forecast 1 and 2 in Figure 5. The hyperparameters for
forecast 1 are 5inputN = and the 150hiddenN = , while for

forecast 2, the hyperparameters are 5inputN = and the

100hiddenN = . However, the networks with the minimum
and second minimum values for RMSE differ from
forecast 1 and 2. They align with forecast 2 and forecast 3
in Figure 5, where forecast 3 represents the LSTM
network with 10inputN = and the 150hiddenN = .

In this context, directly comparing forecast 1
(minimizing MAE and MAPE) and forecast 3 (minimizing
RMSE) for predicting BTC prices is challenging due to
their unique features. Forecast 1 is better suited for periods
of lower BTC price volatility, as shown in Figure 6.

20 American Journal of Applied Mathematics and Statistics

Conversely, forecast 3 is considered more effective during
times of increased BTC price fluctuations, as depicted in
Figure 7. This difference in suitability stems from the

distinct characteristics of the evaluation metrics and the
underlying patterns captured by each forecast in response
to different levels of BTC price volatility.

Figure 6. Extracting Time Periods of Low BTC Price Volatility from Figure 5

Figure 7. Extracted Time Periods of Elevated BTC Price Volatility from Figure 5

Summarizing the analysis and discussion in this
subsection, we obtain the following intriguing findings:
When employing LSTM for price evaluation, QQQ is best
suited for using the prices of the previous five days; GLD
is best suited for utilizing the prices of the previous 20
days. As for BTC, it is optimal to use the prices of the
previous five days when its price volatility is low and the
prices of the previous ten days when volatility is high.

3. Trading Strategies Based on Daily
Price Predictions

Building upon the analysis in subsection 2.4, we select
LSTM models with the following crucial hyperparameters
for QQQ, GLD, and BTC to generate forecasts for the
next day's prices.

Table 4. Key LSTM Hyperparameters Chosen for QQQ, GLD, BTC
Price Predictions

 QQQ GLD BTC
𝑁𝑁ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 150 200 150
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑡𝑡 5 20 5

Let tP ' denote the predicted price on day t , and tP

denote the actual price on day t , then the expected daily

return rate is 1

1

'
' t t
t

t

P P
R

P
−

−

−
= . We compute and compare

the daily '
tR for QQQ, GLD, and BTC, utilizing the

comparison results to inform our trading strategies. On
regular trading days, we prioritize the investment target
with the highest expected daily return among QQQ, GLD,
and BTC. We sell the other two assets and use the
proceeds to buy more of the highest-return assets. If all
assets have negative expected daily returns, we sell
everything and hold cash. On holidays (non-trading days),
QQQ and GLD remain untouched, while BTC is tradable.
If the expected daily return for BTC is negative, we sell it;
if positive, we use all available cash to buy BTC.

Let tC denote the cumulative return rate on day t , then

() () ()1 21 1 1t tC r r r= − − − , where tr = 1

1

t t

t

B B
B

−

−

−
 is

the real daily return rate, and tB is overall balance of all
assets on day 𝑡𝑡. Applying the above trading strategy to
our test set, covering from September 2019 to July 2023,
resulted in a remarkable return rate of 317.54%, with an
annual average return rate of 81.91%.

 American Journal of Applied Mathematics and Statistics 21

Figure 8. Cumulative Return Rate in the Testing Set (2019/09-2023/07)

In addition to the high return rate in this trading strategy,
another noteworthy outcome is the variability in the
number of days each distinct asset is held in the testing set.
In 2019 and 2020, our trading strategy involved holding
BTC for the longest duration, while the period of holding
gold was the shortest, with no gold holdings in 2019.
However, in the subsequent two years, gold emerged as
the most frequently chosen investment among the three,
dominating in 2021 and slightly decreasing thereafter.
There were no days of holding BTC in 2021 and 2023,
and the holding period in 2022 was also the shortest. In
contrast, the days of holding gold constituted a significant
proportion over these three years.

Figure 9. Investment Portfolio: Holding Days Ratio Over 2019-2023
(QQQ, GLD, BTC)

The investment strategy discussed above focuses on
high returns without taking into consideration the
associated risks. However, it's important to note that there
are significant differences in the risk profiles of these
three investment assets. Let 𝑅𝑅𝑖𝑖 represent the actual daily

return rate of an asset, calculated as 1

1

i i
i

i

P P
R

P
−

−

−
= with

𝑃𝑃𝑖𝑖 is the actual price of the asset on day 𝑖𝑖 . The risk
standard deviation RSD is given by

()2
1

1 N

i i
i

RSD R R
N =

= −∑ , where N is the number of

historical return rates, and iR denotes the average
historical return value. Subsequently, considering N as 30
days, we generated the following Risk-Return graph based
on the actual daily prices of QQQ, GLD, and BTC for the
testing set.

22 American Journal of Applied Mathematics and Statistics

Figure 10. Actual Risk-Return for QQQ, GLD, and BTC (2019-2023)

In Figure 10, it is evident that among the three
investment targets, GLD stands out as the most stable in
terms of both returns and risks, followed by QQQ.
Conversely, BTC exhibits the highest risk, but it also
encompasses a wider range of returns. A natural follow-up
question is how the risk-return profiles of these three
investment targets will evolve within the trading strategy
outlined in this article. Let ir ' denote the daily trading

return rate for the asset. We define '
i ir R= if we choose to

hold the asset on day 𝑖𝑖, i.e., buy or retain the asset on day
1i − , and 0'

ir = if we choose not to hold the asset on day
i , i.e., sell or refrain from buying the asset on day 1i − .
The corresponding trading RSD is calculated by

()21
1 N

i i 'ir ' r
N =∑ − .

Figure 11. Trading Risk-Return for QQQ, GLD, and BTC (2019-2023)

Upon comparing Figure 10 and Figure 11, it becomes
evident that, when applying our trading strategy, both
QQQ and BTC experience a notable reduction in risk
along with a substantial increase in returns compared to
their actual daily risk-return profiles. Although the risk

range for GLD remains relatively stable, there is an
enhancement in its return rate as well.

4. Future Work

In this article, we delved into the application of LSTM
for predicting the prices of investment assets, facilitating
the creation of a high-return trading strategy. Our focus
revolved around the selection of two crucial
hyperparameters for LSTM: hiddenN and inputN . There is
potential for further optimizing the model by
incorporating techniques such as Dropout [8,9], and batch
normalization [10], among others. Moreover, when
crafting trading strategies based on predicted prices, we
can broaden our analysis to encompass factors like
transaction costs and the inflation rate of cash. In addition,
our current trading strategy involves daily transactions. In
the future, we may investigate strategies with weekly or
monthly trading frequencies and compare the optimal
trading frequency for various investment assets.

References
[1] Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term

Memory. Neural Computation, 9(8), 1735–1780.
[2] Graves, Alex & Mohamed, Abdel-rahman & Hinton, Geoffrey.

(2013). Speech Recognition with Deep Recurrent Neural
Networks. ICASSP, IEEE International Conference on Acoustics,
Speech and Signal Processing - Proceedings. 38.
10.1109/ICASSP.2013.6638947.

[3] Prasoon, A., Petersen, K., Igel, C., Lauze, F., Dam, E., Nielsen, M.
(2013). Deep Feature Learning for Knee Cartilage Segmentation
Using a Triplanar Convolutional Neural Network. In: Mori, K.,
Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds) Medical Image
Computing and Computer-Assisted Intervention – MICCAI 2013.
MICCAI 2013. Lecture Notes in Computer Science, vol 8150.
Springer, Berlin, Heidelberg.

[4] Y. Lv, Y. Duan, W. Kang, Z. Li and F.-Y. Wang (2015), "Traffic
Flow Prediction With Big Data: A Deep Learning Approach," in
IEEE Transactions on Intelligent Transportation Systems, 16(2),
865-873.

[5] Hansika Hewamalage, Christoph Bergmeir, Kasun Bandara (2021),
Recurrent Neural Networks for Time Series Forecasting: Current
status and future directions, International Journal of Forecasting,
37(1), 388-427.

[6] Thomas Fischer, Christopher Krauss (2018), Deep learning with
long short-term memory networks for financial market predictions,
European Journal of Operational Research, 270(2), 654-669.

[7] Qiu J, Wang B, Zhou C (2020). Forecasting stock prices with
long-short term memory neural network based on attention
mechanism. PLoS One. 15(1), e0227222. PMID: 31899770;
PMCID: PMC6941898.

[8] Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., &
Salakhutdinov, R. (2014). Dropout: A simple way to prevent
neural networks from overfitting. Journal of Machine Learning
Research, 15(1), 1929-1958.

[9] Pascanu Razvan, Mikolov Tomas, and Bengio Yoshua (2013). On
the difficulty of training recurrent neural networks. In
International Conference on Machine Learning. 1310–1318.

[10] Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating
deep network training by reducing internal covariate shift.
ICML'15: Proceedings of the 32nd International Conference on
International Conference on Machine Learning. Vol. 37, 448-456.

© The Author(s) 2024. This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

