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Abstract  Energy conservation in buildings is a paramount concern to combat greenhouse gas emissions and 
combat climate change. The efficient management of room occupancy, involving actions like lighting control and 
climate adjustment, is a pivotal strategy to curtail energy consumption. In contexts where surveillance technology 
isn't viable, non-intrusive sensors are employed to estimate room occupancy. In this study, we present a predictive 
framework for room occupancy that leverages a diverse set of machine learning models, with Random Forest 
consistently achieving the highest predictive accuracy. Notably, this dataset encompasses both temporal and spatial 
dimensions, revealing a wealth of information. Intriguingly, our framework demonstrates robust performance even 
in the absence of explicit temporal modeling. These findings underscore the remarkable predictive power of 
traditional machine learning models. The success can be attributed to the presence of feature redundancy, the 
simplicity of linear spatial and temporal patterns, and the advantages of high-frequency data sampling. While these 
results are compelling, it's essential to remain open to the possibility that explicitly modeling the temporal dimension 
could unlock deeper insights or further enhance predictive capabilities in specific scenarios. In summary, our 
research not only validates the effectiveness of our prediction framework for continuous and classification tasks but 
also underscores the potential for improvements through the inclusion of temporal aspects. The study highlights the 
promise of machine learning in shaping energy-efficient practices and room occupancy management. 

Keywords: room occupancy prediction, classification, support vector machine, random forest, XGBoost, Internet-
of-Things (IoT) 

Cite This Article: Siqi Mao, Yaping Yuan, Yinpu Li, Ziren Wang, Yuanxin Yao, and Yixin Kang, “Room 
Occupancy Prediction: Exploring the Power of Machine Learning and Temporal Insights.” American Journal of 
Applied Mathematics and Statistics, vol. 12, no. 1 (2024): 1-9. doi: 10.12691/ajams-12-1-1. 

1. Introduction 

Buildings account for as much as 40% of the world's 
total energy consumption [1] and contribute to 30% of 
greenhouse gas emissions [2]. Therefore, diminishing the 
energy consumption within the construction sector will 
significantly contribute to addressing global energy usage 
and environmental carbon emissions concerns [3]. In the 
pursuit of creating energy-efficient and comfortable 
indoor environments, the management of Heating, 
Ventilation, and Air Conditioning (HVAC) systems has 
emerged as a pivotal area of research and application. As 
the world faces increasingly complex challenges related to 
climate change, resource conservation, and sustainability, 
the optimization of HVAC systems has become an 
imperative task for both researchers and practitioners. One 
of the fundamental aspects of HVAC system optimization 
is the intelligent prediction and adaptation of room 
occupancy patterns. Occupancy in a room or building 

directly influences the HVAC system's operation. 
Efficiently managing temperature, ventilation, and airflow 
in spaces with varying levels of occupancy can lead to 
substantial energy savings, reduce environmental impact, 
and enhance the overall quality of indoor environments.  

The advancement in Internet-of-Things (IoT) and 
communication technologies has played a pivotal role in 
facilitating the integration of various wireless technologies 
into occupancy sensing. These wireless technologies 
include Radio Frequency Identification (RFID) [4], Wi-Fi 
[5], and Bluetooth Low Energy (BLE) [6], all with the aim 
of enhancing the range, speed, precision, level of detail, 
and energy efficiency of existing sensing methods. 
Nevertheless, despite their merits, terminal-based approaches 
encounter constraints due to the necessity of deploying 
specialized sensors and implementing third-party software 
components, such as BLE beacons, Wi-Fi access points, and 
mobile applications. These requirements lead to increased 
implementation costs, and disruption of occupants' daily 
routines, and raise concerns regarding privacy. 

Furthermore, there are other methods rely on passive 
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sensing technologies, which encompass CO2  sensors [7], 
Passive Infrared (PIR) sensors [8], ultrasonic detection 
sensors [9], sound detection sensors [10], camera systems 
[11], and intelligent power meters [12]. These non-
terminal strategies indirectly accumulate occupancy data 
for specific zones within a building where these sensors 
are strategically positioned.  

Machine learning techniques have been widely used in 
numerous sectors recently and achieved gratifying results 
[13,14,15,16,17]. In addition to the progress made in 
sensing technologies, the recent utilization of machine 
learning for occupancy detection has yielded significant 
enhancements in accuracy compared to conventional 
methods. These enhancements can be credited to machine 
learning algorithms' capacity to analyze extensive datasets 
gathered from the building and discern patterns and 
relationships with the building's occupancy. Kadouce et al. 
[18] employed a support vector machine (SVM) classifier 
to deduce whether occupants were present or absent. They 
accomplished this by training the SVM with sensory 
datasets derived from a variety of sources, including 
motion sensors, pressure detectors, lighting controls, door 
and switch contactors, as well as flow meters. Sangogboye 
et al. [19] focused on modeling occupant presence in two 
commercial buildings using machine learning techniques 
applied to motion data. Their findings demonstrated that 
SVM exhibited robust performance in accordance with 
their results. Razavi et al. [20], conducted an analysis of 
electricity consumption data from over 5000 residential 
homes. They assessed the performance of a diverse range 
of machine learning models, including Support Vector 
Machines (SVM), K-Nearest Neighbors (KNN), Random 
Forest (RF), Gradient Boosting (GB), and neural networks. 
Their objective was to predict both current and future 
occupancy status. In a separate investigation, Park et al.  
[21] introduced an occupancy detection model based on 
Long Short-Term Memory (LSTM) architecture. They 
utilized energy consumption data obtained from smart plugs 
to discern the presence of occupants in residential homes. 

Utilizing supervised learning techniques such as 
Random Forest, Decision Trees, and Bagging, Koklu et al. 
[22] conducted occupancy detection and assessed the 
models' performance through classification accuracy 
metrics. Assessing the accuracy of classification involves 
the computation of true positives (correctly recognized 
examples belonging to the class), true negatives (correctly 
recognized examples not part of the class), false positives 
(incorrectly assigned examples to the class), and false 
negatives (examples not recognized as class examples). 

The central objective of this investigation is to 
demonstrate the robust applicability of the comprehensive 
framework introduced in [23]. This framework aims to 
enlighten individuals with a strong background in data 
science, who may have limited exposure to the field of 
sensor research, and aid in their adaptation for practical 
use across various research domains. We have employed 
this prediction framework to address the challenge of 
room occupancy prediction. While we have updated the 
framework by incorporating various classification 
methods, we have adhered to the established methodology. 
Our current study provides empirical evidence of the 
framework's high performance in predictive tasks. 
Additionally, our research has unveiled a counter-intuitive 

revelation: machine learning models do not explicitly 
consider a temporal structure if the temporal structure of 
the target variable has been fully reflected in responses 
variable. This unexpected superiority challenges 
conventional assumptions and underscores the potential 
practical utility of machine learning models in the context 
of room occupancy prediction. 

This research generalized a prediction framework 
which is proposed in [23]. An empirical data analysis is 
performed to test the framework by utilizing the dataset 
referenced in [24]. The dataset comprises more than 
10,000 data points, each associated with 16 distinct 
features, representing the readings of specific sensors. The 
experiment incorporated five distinct sensor types: 
temperature, illumination, sound, CO2 , and passive 
infrared (PIR). The primary objective of this investigation 
is to accurately estimate the occupancy levels within a 
laboratory setting. 

The remaining sections of the paper are organized as 
follows: In Section 2, we provide a comprehensive 
exploration of the acquired data and the prediction 
methodology. This section offers an extensive elucidation 
of the various models under the prediction framework in 
our study, including Multinomial Logistic Regression, 
Linear Discriminant Analysis, Multi-class Support Vector 
Machine (MSVM), Random Forest (RF), XGBoost, 
LightGBM, and a Multi-layer Perceptron classifier. It also 
encompasses a detailed description of the evaluation 
metrics we employed and presents a thorough overview of 
the entire implementation process. Furthermore, Section 3 
includes a comprehensive performance comparison across 
different models, followed by an in-depth analysis. 
Additionally, we incorporate a SHAP (SHapley Additive 
exPlanations) analysis within Section 4. Section 5 
explores why time series models may not be necessary for 
this specific dataset from two perspectives. The first 
perspective addresses the redundancy of time-dependent 
information in the target variable, it already presents in 
responses variables of the dataset, while the second 
considers the sampling frequency. 

Lastly, in Section 6, we summarize the key conclusions 
derived from this study and outline potential directions for 
future research. 

2. Data and Methodologies 

2.1. Data 
The data are collected based on the experiment from the 

research [24]. The purpose of the experiment was to 
estimate occupancy by the signal information from non-
intrusive sensors. Seven sensor nodes and one edge node 
were arranged in the setup, and the sensor nodes used 
wireless transceivers to send data to the edge every thirty 
seconds. In this experiment, five distinct kinds of non-
intrusive sensors were used: digital passive infrared (PIR), 
light, sound, temperature, and CO2. Calibration of the PIR, 
sound, and CO2 sensors required considerable labor. 
Before the CO2  sensor was used for the first time, zero-
point calibration was done by hand. This involved keeping 
the sensor in a clean environment for more than 20 
minutes and then lowering the calibration pin (HD pin) for 
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more than 7 seconds. In essence, the sound sensor is a 
microphone with an analog amplifier of variable gain 
attached. Two trimpots are available for the PIR sensor: 
one for adjusting sensitivity and the other for adjusting 
how long the output remains high after motion detection. 
These two were both set to their maximum settings. The 
temperature, light, and sound sensors were located in 
sensor nodes S1–S4, a 2CO  sensor was located in sensor 
node S5, and one PIR sensor each was placed on the ceiling 
ledges of S6 and S7 at an angle that optimized the sensor's 
field of view for motion detection. Over the course of four 
carefully planned days, the number of occupants in each 
room varied from zero to three. The manual recording of 
the room's occupancy count served as the basis for accuracy. 
The data description is provided in Table 1. 

Table 1. Data Description 

Variable Name Type Description Units 
Date Date  YYYY/MM/DD 
Time Time  HH:MM:SS 

S1_Temp Continuous  C 
S2_Temp Continuous  C 
S3_Temp Continuous  C 
S4_Temp Continuous  C 
S1_Light Integer  Lux 
S2_Light Integer  Lux 
S3_Light Integer  Lux 
S4_Light Integer  Lux 

S1_Sound Continuous 
amplifier 

output read 
by ADC 

Volts 

S2_Sound Continuous 
amplifier 

output read 
by ADC 

Volts 

S3_Sound Continuous 
amplifier 

output read 
by ADC 

Volts 

S4_Sound Continuous 
amplifier 

output read 
by ADC 

Volts 

S5_CO2 Integer  PPM 

S5_CO2_Slope Continuous Slope of 
CO2 values  

S6_PIR Binary 

Binary 
value 

conveying 
motion 

detection 

 

S7_PIR Integer 

Binary 
value 

conveying 
motion 

detection 

 

Room_Occupa
ncy_Count Integer Ground 

Truth  

Source: The table is summarized from the data source website 
https://archive.ics.uci.edu/ dataset/864/room+occupancy+estimation. 

2.2. Exploratory Data Analysis 
There are 10129 entries in total and all features are 

numerical variables. In this study, 70% is selected as the 
training set. The summary statistics of features in the 
training set are displayed in Table 2. The features “Date" 
and “Time" are excluded all the classification models. The 
rationales and discussions are provided in Section 5. The 
values of the target variable “Room_Occupancy_Count" 

are integers and ranges from 0 to 3. 

Table 2. Summary Statistics of Training data. Count = 8103 

Statistics Mean STD Min Q1 Median Q3 Max 

S1_Temp 25.45 0.35 24.94 25.19 25.38 25.63 26.38 

S2_Temp 25.55 0.59 24.75 25.19 25.38 25.63 29.00 

S3_Temp 25.05 0.43 24.44 24.69 24.94 25.38 26.19 

S4_Temp 25.75 0.36 24.94 25.44 25.75 26.00 26.50 

S1_Light 24.92 50.52 0.00 0.00 0.00 11.00 165.00 

S2_Light 25.39 66.47 0.00 0.00 0.00 13.00 258.00 

S3_Light 33.97 58.00 0.00 0.00 0.00 49.00 280.00 

S4_Light 13.09 19.43 0.00 0.00 0.00 21.00 74.00 

S1_Sound 0.17 0.32 0.06 0.07 0.08 0.08 3.88 

S2_Sound 0.12 0.26 0.04 0.05 0.05 0.06 3.44 

S3_Sound 0.16 0.41 0.04 0.06 0.06 0.07 3.67 

S4_Sound 0.10 0.12 0.05 0.06 0.08 0.10 3.40 

S5_CO2 461.0
1 

201.1
3 

345.0
0 

355.0
0 360.00 465.0

0 
1270.0

0 
S5_CO2_

Slope -0.02 1.17 -6.30 -0.05 0.00 0.00 8.98 

S6_PIR 0.09 0.28 0.00 0.00 0.00 0.00 1.00 

S7_PIR 0.08 0.27 0.00 0.00 0.00 0.00 1.00 

2.3. Methodologies 

The initial introduction of the prediction framework can 
be traced back to the study presented in [23], where it was 
primarily employed for addressing a water quality 
prediction challenge, constituting a regression problem. In 
this paper, we adapt and extend   the prediction framework 
to encompass classification problems, and its efficacy is 
evaluated using room occupancy prediction data. The 
classification models which are used in this paper is 
illustrated as follows.  

Benchmark. The benchmark model provides a basic 
performance threshold to compare against more complex 
models. It uniformly predicts the most frequent class in 
the training data for all samples. While simple, it 
establishes a minimum accuracy level to improve upon. 

Multinomial Logistic Regression. Multinomial logistic 
regression extends the logistic regression model to multi-
class classification tasks. It estimates the probability of 
each class using a softmax activation function. The cross-
entropy loss is optimized to find the regression 
coefficients. Regularization helps prevent overfitting. 

Linear Discriminant Analysis (LDA). LDA finds a 
linear combination of features that maximizes the 
separation between classes. It assumes normal 
distributions with equal covariance for each class. The 
within-class and between-class scatter matrices are 
computed. Eigendecomposition provides projection 
directions to transform the data before classification. 

Multi-layer Perceptron (MLP) Classifier. The MLP 
classifier uses a feedforward artificial neural network 
model. Multiple layers of nodes with nonlinear activation 
functions allow modeling complex relationships. The 
network is trained via backpropagation to optimize a 
cross-entropy loss function. Regularization methods and 
dropout prevent overfitting. 

Multiclass Support Vector Machine (MSVM). MSVM 
extends SVM for multiple classes using the one-vs-one or 
one-vs-all approaches. It maximizes the margin between 
classes by mapping inputs to a high-dimensional feature 
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space with a kernel function. Optimization finds the 
maximum margin hyperplanes between classes. 

Random Forest (RF). RF trains an ensemble of 
decision trees on random subsets of features and data. 
Each tree makes an independent prediction and the results 
are aggregated through voting or averaging to make the 
overall prediction. Randomness reduces overfitting and 
improves generalization. 

LightGBM. LightGBM employs gradient boosting to 
train an ensemble of decision trees. Unlike traditional 
gradient boosting frameworks, trees are grown leaf-wise 
rather than level-wise to minimize loss and enhance 
accuracy. Through sampling, less informative instances 
are filtered out to mitigate noise. Additionally, multiple 
leaves can share the same child node to bolster 
generalization. Regularization is applied to curb 
overfitting, while parallel and GPU-based learning 
mechanisms significantly augment efficiency. 

XGBoost. XGBoost stands for eXtreme Gradient 
Boosting, and as the name suggests, it implements 
gradient boosted decision trees with a focus on speed and 
performance. A notable feature is the regularization of the 
objective function to simplify the model complexity. 
Employing quantile sketching, it approximates the tree 
learning process, thus accelerating training. The 
framework is designed for parallel and distributed 
computing, leveraging multiple CPUs and machines. Out-
of-core computing is another feature, wherein disk space 
is utilized to enhance performance further. The algorithm 
is finely tuned for sparse data handling and allows 
extensive customization through hyperparameter tuning. 

2.4. Evaluation Metrics 
Since we approach this task as a classification problem, 

we employ Balanced Accuracy, F-1 Score, and Area 
Under ROC Curve (AUC) as our evaluation metrics. 
Given that it involves multiple classes, we additionally 
incorporate the sample size of each class as weights to 
consolidate the measurements into a single metric: 
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where M  is positive sample size and N  is negative 
sample size, and set 𝐶𝐶 represents different classes. In the 
context of all three metrics, our goal is to maximize them 
as much as possible. Balanced Accuracy takes into 
account imbalanced datasets, ensuring an accurate 
representation of model performance across different 
classes. F-1 Score provides a balance between precision 
and recall, making it particularly useful when dealing with 
situations where false positives and false negatives carry 

different costs. AUC, on the other hand, quantifies the 
model’s ability to distinguish between positive and 
negative instances across various thresholds. These 
metrics collectively offer a comprehensive perspective on 
the effectiveness of classification models. 

2.5. Implementation 

This section outlines the proposed prediction 
methodology, detailing its development through 
hyperparameter optimization, prediction generation, and 
assessment using specific scoring metrics. The 
implementation process involves the following steps: 

1.  Selection of Scoring Function: To fine-tune and 
assess hyperparameters, we employ the Area Under 
the Receiver Operating Characteristic Curve (AUC-
ROC) for all candidate techniques. 

2.  Defining Hyperparameter Space: Each method’s 
hyperparameter space is defined by specifying the 
relevant parameters. 

3.  Cross-validation: We utilize cross-validation to 
perform hyperparameter optimization, aiming to 
identify the optimal hyperparameters for each method. 

4.  Performance Evaluation: The evaluation metrics are 
computed on the test dataset for the best-tuned 
models within each method. 

5.  Results Storage: The outcomes, including the 
performance of each approach and the significance of 
its features, are saved for facilitating model comparison. 

 

Figure 1. Flowchart of The Proposed Room Occupancy Prediction 
Framework 
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3. Results 

The prediction results are summarized in this section. 
The 5--fold cross validation is employed in tuning the 
hyper-parameters. Due to the sensitivity of machine 
learning algorithms to the scale of the features, 
standardization is applied to all the features. 

The model performance summary is displayed in Table 
Table 3. The model is sorted by the Weighted AUC score. 
Based on the performance of Benchmark model, we can 
see the necessity of employing advanced models. 
Furthermore, the random forest model achieves the best 
performance under the selected metrics. 

The hyper-parameters tuning time is presented in Table 
Table 4. The number of fits in each model’s hyper-
parameter tuning is indicated by the term “Total Fits" in 
the tables. The term “Tuning Time" refers to the duration 
of each model’s whole hyper-parameter tuning operation. 
“Fitting Time (Best Model)" refers to the amount of time 
spent training each model’s best hyper-parameters. The 
term “Average Tuning" refers to the typical tuning time 
for hyper-parameters. From the the tuning time table, the 
tree methods have satisfying results and efficiency. 

Table 3. Room Occupancy Prediction Results (Numerical Features: 
Standardized) 

Models Weighted 𝐹𝐹1-
Score 

Weighted 
AUC 

Balanced 
Accuracy 

Benchmark 0.70988 N/A 0.25000 
Logistic 

Regression 
0.98177 0.99654 0.94155 

LDA 0.98159 0.99714 0.94216 
MSVM 0.99214 0.99951 0.97635 
MLP 0.99704 0.99988 0.99196 

LightGBM 0.99703 0.99994 0.99007 
XGBoost 0.99703 0.99994 0.98981 

RF 0.99852 0.99996 0.99490 

Table 4. Running Time Summary in Seconds (Numerical Features: 
Standardized) 

Models Total 
Fits 

Tuning 
Time 

Average 
Tuning 

Fitting Time 
(Best Model) 

Logistic 
Regression 

15 2.04 0.10 0.14 

LDA 15 0.15 0.03 0.01 
MSVM 20 3.27 1.36 0.16 

MLP 40 4007.15 97.81 100.18 
LightGBM 2000 295.56 0.23 0.15 
XGBoost 5760 3199.18 4.52 0.56 

RF 1200 120.17 0.53 0.10 

4. SHapley Additive exPlanations (SHAP) 

For single predicted point, The localized contributions 
to that specific forecast are quantified by the SHAP values 
[25]. We provide the definition for the SHAP value: 
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In this equation, ( )i F ,xΦ  represents the SHAP value 
corresponding to feature 𝑥𝑥𝑖𝑖  within the context of a model 
F  constructed using a set of features X . Here, M  stands 
for the total number of input features, 'X  denotes the set 
of all potential feature combinations that include feature 𝑥𝑥𝑖𝑖 , 
and 'Z  represents the number of features within a 
specific feature combination denoted as 'Z . Furthermore, 
( )'F Z  and ( )' iF Z x  correspond to distinct predictive 

models trained on 'Z  and 'Z  with feature ix  removed, 
respectively. Therefore, the SHAP value is determined by 
aggregating the marginal contributions ( ) ( )' ' iF Z F Z x−   

from all feasible feature combinations ( )'Z  through a 
weighted average. 

SHAP values are calculated using the Python 
implementation of SHAP, as described by Lundberg and 
Lee in [25]. In this study, we computed SHAP values for 
several candidate models. 

Figure 2 is the illustration of SHAP values for the 
random forest model (best model). From the plot, the 
features “S1_Light" and “S2_Light" have notable impact 
in forecasting the room occupancy. Their impact are much 
higher than the other features.  

 

Figure 2. Average Impact (SHAP value) on model output for Random 
Forest 

5. Discussion:Redundancy in Temporal 
Features 

Throughout our study, the dataset has exhibited both 
temporal and spatial dimensions. Surprisingly, our 
prediction framework has demonstrated strong performance 
without explicitly incorporating the temporal dimension.  

Our analysis reveals intriguing insights into the 
temporal aspects of our dataset, shedding light on the 
potential redundancy and high correlation (illustrated in 
Figure 3) between certain features. Notably, the 
autocorrelation results (detailed in Table 5) of our numeric 
columns provide evidence of the underlying temporal 
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dynamics. For instance, let's consider the `S5_CO2' 
column, which pertains to carbon dioxide levels. It 
exhibits an extraordinarily high autocorrelation coefficient 
of approximately 0.999. This remarkable finding 
underscores that the current 2CO  level is intimately 
connected with its past values. Essentially, as more 
individuals enter a room, the `S5_CO2' readings tend to 
follow a consistent pattern of escalation, while their 
departure leads to a noticeable decline in the readings. 
Similarly, the `S5_CO2_Slope' representing the rate of 
change in CO2 levels, also demonstrates a strong positive 
autocorrelation with a coefficient of about 0.998. This 
implies that the temporal aspect of our data, encapsulated 
by the 2CO  slope, is inherently linked to its past values. 
As more individuals arrive, the 2CO  slope tends to 
exhibit a higher positive value, whereas their departure 
results in a more pronounced negative slope. Furthermore, 
it's intriguing to note that various other sensors, such as 
temperature and light sensors (`S1_Temp,' `S2_Temp,' 
`S3_Light,' etc.), display substantial autocorrelation 
coefficients, indicating consistent temporal patterns in 
their readings over time. This pattern of high 
autocorrelation coefficients across multiple sensors 
suggests that our dataset may indeed have inherent 
redundancy or temporal dependencies.  

In essence, our findings support the notion that the 
temporal and spatial cues within the dataset might be subtly 
embedded within other features. The machine learning 
model can adeptly learn and leverage these temporal 
dynamics to make accurate predictions, emphasizing the 
richness of information present in our data. 

Furthermore, our dataset exhibits a notably high 
sampling frequency in the temporal dimension, with data 

points recorded at 30-second intervals. This high-
frequency data collection could potentially empower 
traditional models to implicitly incorporate temporal and 
spatial information, capitalizing on the fine granularity of 
the data points. 

Table 5. Autocorrelation Coefficients of the non-time Features 

Autocorrelation Results: 
S1_Temp: 0.9968 
S2_Temp: 0.9982 
S3_Temp: 0.9975 
S4_Temp: 0.9939 
S1_Light: 0.9975 
S2_Light: 0.9955 
S3_Light: 0.9970 
S4_Light: 0.9996 
S1_Sound: 0.4947 
S2_Sound: 0.5516 
S3_Sound: 0.5672 
S4_Sound: 0.4689 
S5_CO2: 0.9999 

S5_CO2_Slope: 0.9978 
S6_PIR: 0.6015 
S7_PIR: 0.7439 

Room_Occupancy_Count: 0.9962 

 
The time series plots in Figure 4 illustrate the temporal 

patterns of various sensor data columns. These patterns 
are crucial in understanding the concept of redundant time 
information, where certain features exhibit high 
autocorrelation, indicating a strong linear relationship with 
their past values. 

 
Figure 3. Flowchart of The Proposed Room Occupancy Prediction Framework 
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Figure 4. Time Series Plots for Selected Sensors 

 
Figure 5. Time Series Plots for Selected Sensors 

For instance, consider Figure 4a, which shows the time 
series plot for `S1_Temp,' representing the temperature at 
Sensor 1. The consistently high autocorrelation observed 
in this plot suggests a significant temporal dependency, 
implying that the current temperature is closely related to 
its past values. Similar patterns can be observed in other 
sensors, such as `S2_Temp,' `S3_Temp,' and `S4_Temp.' 

These findings emphasize that the dataset contains 
valuable temporal information that traditional machine 
learning models can leverage, even when the specific 
significance of each feature is not explicitly defined. This 
temporal redundancy plays a vital role in understanding 
and predicting the behavior of our data. 

Another noteworthy observation is that the spatial and 
temporal patterns within the dataset may follow relatively 
straightforward and linear relationships. In such cases, 
traditional machine learning models like logistic regression 
or decision trees might suffice in capturing these patterns 
without necessitating specialized spatial or temporal 
modeling. However, without comprehensive knowledge of 
the data collection, recording, and sensor aggregation 
procedures, we may not directly discern these patterns. 

In Figure 5, we present a scatter plot depicting the 
relationship between the `S5_CO2_Slope' and the 
`Room_Occupancy_Count'. Each data point on the plot 
represents a specific measurement, where the x-axis 
corresponds to the `S5_CO2_Slope' values, and the y-axis 
represents the `Room_Occupancy_Count'. 

Upon visual inspection, it becomes evident that there is 
a discernible linear increasing trend in the data points. 
This trend indicates that as the `S5_CO2_Slope' value 
increases, there is a corresponding rise in the 
`Room_Occupancy_Count'. The linear regression line 
fitted to the data further reinforces this observation. 

The linear regression analysis provides numerical 
support for the observed trend. The intercept value of 
approximately 0.4008 indicates the expected 
`Room_Occupancy_Count' when the `S5_CO2_Slope' is 
zero. The positive slope of approximately 0.4611 
quantifies the rate at which the `Room_Occupancy_Count' 
increases concerning changes in the `S5_CO2_Slope' This 
suggests that, on average, for each unit increase in the 
`S5_CO2_Slope' we can anticipate an increase of 
approximately 0.4611 in the `Room_Occupancy_Count'. 
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This observation of a linear association between the 
`S5_CO2_Slope' and the `Room_Occupancy_Count' 
aligns with the idea that the dataset may exhibit linear 
spatial and temporal patterns. These linear patterns may be 
indicative of straightforward cause-and-effect relationships 
within the data. In cases like these, traditional machine 
learning models, such as linear regression, can effectively 
capture these patterns without the need for specialized 
spatial or temporal modeling techniques. 

It's important to note that while we can observe these 
linear patterns, a comprehensive understanding of the data 
collection, recording, and sensor aggregation procedures is 
essential for precise interpretation. Without such 
knowledge, we may not be able to fully elucidate the 
underlying mechanisms driving these patterns. 

In summary, the robust performance of traditional 
machine learning models, even in the absence of explicit 
consideration for the temporal dimension, can be 
attributed to the presence of feature redundancy, the 
simplicity of linear spatial and temporal patterns, and the 
advantages offered by a high-frequency data sampling 
approach. While these findings are intriguing, it is essential 
to remain open to the possibility that explicitly modeling 
the temporal dimension could unveil deeper insights or 
enhance predictive capabilities in certain scenarios. 

6. Conclusion and Future Work 

In our investigation of room occupancy prediction, we 
generalized the framework presented in [23], utilizing 
various machine learning approaches. Differing from its 
application in [23], our focus was on room occupancy 
prediction as a classification problem. Our study demonstrates 
that this framework is adaptable to classification tasks and 
yields excellent predictive performance. Notably, among all 
the methodologies we examined, the random forest model 
stood out with the best performance. 

An interesting observation is that, when compared to 
the original paper of the data source [24], our predictive 
performance surpassed the original paper's results, even 
without accounting for time dependencies. Our analysis 
unveiled valuable insights into the temporal aspects of our 
dataset, highlighting the potential redundancies and 
significant correlations among certain features. 
Particularly, the autocorrelation results from our numeric 
columns provided evidence of underlying temporal 
dynamics. Furthermore, our dataset boasted a notably high 
temporal sampling frequency, with data points recorded at 
30-second intervals. This high-frequency data collection 
potentially empowers traditional models to implicitly 
integrate temporal and spatial information, making the 
most of the fine granularity of the data points. 

Our findings challenge the assumption made in the 
original paper that incorporating time-dependent and spatial 
features would invariably enhance predictive model accuracy. 

Conversely, we observed limitations in the data 
collection process outlined in the original paper [24]. In 
that paper, sensor nodes were deployed at corners, the 
middle, and the ceiling of the room to predict the number 
of people in the room based on sensor readings. However, 
the position of individuals within the room was not 
considered. A straightforward implication is that by taking 

into account the positions of people, more accurate sensor 
data could be obtained, potentially leading to improved 
prediction performance. For future research, we plan to 
redesign the data collection process, considering the 
positions of people. In this context, we may be able to 
predict not only the presence but also the specific number 
of individuals in the room, transforming the task from a 
simple classification problem to a more detailed 
occupancy estimation. 
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