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Abstract  Water resources are essential for sustaining human livelihoods and environmental well-being. Accurate 
water quality prediction plays a pivotal role in effective resource management and pollution mitigation. In this study, 
we assess the effectiveness of five distinct predictive models—linear regression, Random Forest, XGBoost, 
LightGBM, and MLP neural network—in forecasting pH values within the geographical context of Georgia, USA. 
Notably, LightGBM emerges as the top-performing model, achieving the highest average precision. Our analysis 
underscores the supremacy of tree-based models in addressing regression challenges, while revealing the sensitivity 
of MLP neural networks to feature scaling. Intriguingly, our findings shed light on a counter-intuitive discovery: 
machine learning models, which do not explicitly account for time dependencies and spatial considerations, 
outperform spatial-temporal models. This unexpected superiority of machine learning models challenges 
conventional assumptions and highlights their potential for practical applications in water quality prediction. Our 
research aims to establish a robust predictive pipeline accessible to both data science experts and those without 
domain-specific knowledge. In essence, we present a novel perspective on achieving high prediction accuracy and 
interpretability in data science methodologies. Through this study, we redefine the boundaries of water quality 
forecasting, emphasizing the significance of data-driven approaches over traditional spatial-temporal models. Our 
findings offer valuable insights into the evolving landscape of water resource management and environmental 
protection. 
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1. Introduction 

In today's era, the significance of our water resources' 
quality is unparalleled, influencing every aspect of human 
existence and the natural world. Water, a fundamental 
necessity for survival, holds implications that extend well 
beyond quenching mere thirst. The presence of polluted 
water sources and deteriorated aquatic ecosystems has 
given rise to a multitude of problems encompassing public 
health, ecological balance, economic factors, and societal 
fairness. The proactive monitoring and projection of water 
quality play a pivotal role in protecting aquatic ecosystems 
such as rivers, lakes, and oceans. Deteriorated water 
quality can lead to the devastation of habitats, adverse 
effects on aquatic organisms, and disruption of the overall 
ecological equilibrium. 

Among the critical parameters for evaluating water 
quality, the water's pH stands out as one of the most 
critical factors. It quantifies the level of acidity or 

alkalinity within the water. Water possessing a pH value of 
11 or higher has the potential to induce irritation in the eyes, 
skin, and mucous membranes, underscoring the importance 
of pH assessment in water quality investigations. As 
highlighted by Geetha et al. (2016) [1], the Internet of 
Things (IoT) is also contributing to advancements in water 
quality monitoring. Consequently, the prediction of water 
quality, particularly in relation to pH levels, has become 
increasingly imperative in recent times. 

Recognizing the significance of maintaining water 
quality, the need extends beyond mere monitoring to 
encompass proactive prediction. This proactive approach 
guarantees timely public alerts regarding potential 
contamination, subsequently averting the associated health 
risks and economic losses. There are many traditional 
water quality prediction methods, such as multiple linear 
regression [2] and auto-regressive integrated moving 
average (ARIMA) [3]. However, the linear nature of 
multiple linear regression poses a limitation in detecting 
nonlinear relationships among water quality parameters 
[4]. Similarly, the primary drawback of ARIMA lies in its 
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underlying assumption of linearity [5]. During the process 
of model identification, the time series data must undergo 
scrutiny to determine their stationarity, a crucial aspect in 
constructing the ARIMA model. Notably, conventional 
methodologies struggle to effectively capture the non-
linear [6] and non-stationary [7] characteristics inherent in 
water quality due to their intricate and complex nature. 

In recent years, machine learning approaches have been 
widely applied to multiple domains and achieved 
gratifying results (e.g., [8-10, 28-30]). When it comes to 
estimating water quality using machine learning, Lu et al. 
[11] applied two hybrid decision tree-based water quality 
machine learning models: extreme gradient boosting 
(XGBoost) and random forest (RF), proposed to obtain 
more accurate short-term water quality prediction results, 
by using the water resources of Gales Creek site in 
Tualatin River. Huang et al. (2019) [12] established a 
prediction system for urban estuary water quality and used 
the gradient boosting machine model to fill and predict the 
flow. Wang et al. (2022) [13] applied several machine 
learning models—multiple linear regression, artificial 
neural networks, random forest, and extreme gradient 
boosting (XGBoost)—were developed to predict NH4+ -N 
in the Xiaoqing River estuary, China. The shapely additive 
explanations method [14] was used to interpret the 
XGBoost model and discover the influence of the upper 
reaches of the river on the estuary. In the research [15], Li 
et al. (2022) evaluated five tree-based models, namely 
classification tree, random forest, CatBoost, XGBoost, 
and LightGBM, and employed a state-of-the-art 
explanation method SHAP to explain the models. 

As the volume of data continues its relentless expansion, 
traditional approaches are proving inadequate to cope with 
the demands of researchers. With the advent of increased 
computing power, data-driven models like artificial neural 
networks (ANNs) have undergone substantial 
improvements. These models excel at capturing the 
inherent functional relationships inherent within water 
quality data, as evidenced by examples in Zhang et al. 
(1998) [16].  Even in situations where articulating intricate 
data relationships proves challenging, ANNs have proven 
their effectiveness. Moreover, ANNs require fewer initial 
assumptions [17] while delivering heightened precision 
[18] compared to established techniques. Furthermore, 
Singh et al. (2009) [19] utilized the ANN model to predict 
the water quality of the Gomti River in India, showcasing 
the versatility of these models. García-Alba et al., 2019 
[20] employed an ANN-based model to predict estuary 
bathing water quality, integrating laboratory analysis, 
machine learning, and numerical simulation for real-time 
water quality management. Peng et al. (2019) [21] 
proposed a framework for real-time prediction of daily 
water quality, successfully applying it to Lake Chaohu in 
China, thereby improving predictions for parameters such 
as dissolved oxygen and total phosphorus.  

The primary aim of this inquiry is to offer 
enlightenment to individuals who possess a strong 
background in data science but may be less acquainted 
with the realm of environmental research. We present a 
comprehensive framework for the application of data 
science knowledge and methodologies, facilitating their 
conversion into tangible applications across diverse 
research domains. This encompasses areas such as water 

quality prediction, enabling the practical utilization of 
these skills in various contexts.  

In this study, we test the proposed framework by 
applying the dataset used in [22]. This input data consists 
of daily water quality samples from 37 sites, providing 
measurements related to pH values in Georgia, USA. The 
input features consist of 11 common indices including the 
volume of dissolved oxygen, temperature, and specific 
conductance. The proposed framework is examined by 
forecasting water quality in terms of the “power of 
hydrogen (pH)” value based on the input data. 

The remaining sections of the paper are structured as 
follows: In Section 2, we delve into the acquired data and 
the prediction methodology. This section extensively 
elucidates the various models employed in our study, 
encompassing Linear Regression, XGBoost, LightGBM, 
Random Forest, and a Multiple-layer Perceptron Neural 
Network. It also encompasses a thorough description of 
the evaluation metrics employed and provides a 
comprehensive overview of the entire implementation 
process. Moreover, this section entails an in-depth 
performance comparison across different models, 
followed by a detailed analysis. Additionally, we include a 
SHAP (SHapley Additive exPlanations) analysis within 
this section. Section 3 succinctly elucidates why our 
machine learning models outperform the original model, 
which accounts for both time dependency and spatial 
factors. Lastly, Section 4 encapsulates the main 
conclusions drawn from the study and outlines potential 
avenues for future research. 

Table 1. Data Description 

Variable Name Size Description 
features 1×11 A list of water indices to measure. 

location_ids 37×1 IDs of the water stations. 

teX  1×282 

Test set input data: water indices for 282 
contiguous dates until 2018-01-01; each 
element is a 37 ×11 matrix: 37 spatial 

locations by 11 features. 

trX  1×423 

Training set input data: water indices for 
423 contiguous dates from 2016-01-28; 

each element is a 37×11 matrix: 37 
spatial locations by 11 features. 

teY  37×282 
Test set output data: water quality for 37 
locations in 282 contiguous dates until 

2018-01-01. 

trY  37×423 
Training set output data: water quality for 
37 locations in 423 contiguous dates from 

2016-01-28. 

location_group 1×3 
The groups of water stations, each group 
forms a connected spatial network (i.e., 

water system). 

2. Material and Methods 

2.1. Data 
The daily monitoring data for 37 sites in Georgia, USA 

from 2016 to 2018 was collected by the United States 
Geological Survey1. The dataset presented in the original 

1 USGS: https://www.usgs.gov/. Accessed Feb, 2018 
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paper (Zhao, Gkountouna, and Pfoser 2019), and it 
consists of 11 features with measurements related to PH 
values. The training set includes 37 423×  elements and 
the test set includes 37 282×  elements. More details are 
presented in Table 1. 

Table 2. Summary Statistics for Numerical Features 

Original feature Name Simplified 
Name 

at 25 degrees Celsius (Maximum) X1 
pH, water, unfiltered, field, standard units 

(Maximum) X2 

pH, water, unfiltered, field, standard units (Minimum) X3 
at 25 degrees Celsius (Minimum) X4 

at 25 degrees Celsius (Mean) X5 
Dissolved oxygen, water, unfiltered, milligrams per 

liter (Maximum) X6 

Dissolved oxygen, water, unfiltered, milligrams per 
liter (Mean) X7 

Dissolved oxygen, water, unfiltered, milligrams per 
liter (Minimum) X8 

Temperature, water, degrees Celsius (Mean) X9 
Temperature, water, degrees Celsius (Minimum) X10 
Temperature, water, degrees Celsius (Maximum) X11 

pH, water, unfiltered, field, standard units (Median) Y 

2.2. Data Preparation & Feature Engineering 
To deal with the spatio-temporal data structure, the raw 

data need to be reorganized. 

2.2.1. Data Stacking 
The original dataset comprises 423trN =  and 

282teN =  consecutive dates within the training and test 
datasets, respectively. Each date corresponds to a data 
matrix of dimensions 37 11K p× = × , where K  denotes 
spatial locations, and 𝑝𝑝 represents the number of features. 

We amalgamated the training and test datasets 
chronologically and spatially, resulting in a total of 

( ) 15,651 11tr
trN p N K p× = × × = ×  data points in the 

training set, and ( ) 10,434 11te
teN p N K p× = × × = ×  

data points in the test set. In addition, the spatio-temporal 
features (Date, Location ID, Month, Week, Weekday, 
Season) are merged to the training and testing data. 

2.2.2. Featuring Engineering 
1.  Time Features: Temporal Decomposition: We 

extract the time-based feature and create the “Date" 
column, and extend it to “Year", “Month", “Day", 
“Day of the Week", etc. 

2.  Spatial Features: Location Encoding: When 
stacking the matrices, we added a column 
“Location_ID" and applied one-hot encoding for 
feature processing. This allows us to include spatial 
information in the model. 

2.3. Exploratory Data Analysis 
The features have long a name in the raw data. For 

convenience purposes, we mapped the variable names to 
their simplified version. More details are presented in Table 2. 

 
Figure 1. Correlation Heatmap of Numerical Features (excluding 
variable Y) 

Correlation heatmap between numerical features 
(excluding variable Y) is provided in Figure 1. We 
observed the feature 3X  and the feature 4X  are 
highly positively correlated. In addition, the feature 

7X  and 8X  have a highly positive correlation. 
Furthermore, the feature 9X , 10X  and 11X  are highly 
positively correlated. 

2.4. Methods and Implementation 

2.4.1. Candidate Methodologies 
A few models were employed to test the proposed 

framework in predicting the water quality. 
Benchmark 

A benchmarking approach is commonly required to 
rationalize the necessity of employing advanced models. In 
this study, we take the arithmetic average value of the target 
variable Y in the training set as a prediction as a benchmark. 

Table 3. Summary Statistics for Numerical Features (Training data) 

Statistics X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 Y 
Mean 0.07 0.89 0.03 0.04 0.57 0.86 0.60 0.58 0.56 0.54 0.55 0.66 

SD 0.16 0.03 0.12 0.13 0.12 0.03 0.15 0.17 0.20 0.21 0.19 0.03 
Min 0.00 0.58 0.00 0.00 0.12 0.72 0.08 0.03 0.06 0.03 0.09 0.57 
25% 0.00 0.87 0.00 0.00 0.49 0.84 0.52 0.48 0.39 0.37 0.40 0.65 
50% 0.00 0.90 0.00 0.00 0.57 0.85 0.61 0.59 0.53 0.51 0.53 0.67 
75% 0.01 0.91 0.00 0.00 0.66 0.88 0.71 0.71 0.74 0.72 0.72 0.68 
Max 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.96 
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Spatial-Autoregressive Dependency Learning II 
(SADL-II) 

A spatio-temporal model (SADL-II) was proposed in the 
original paper [22]. On the basis of spatial topological 
restrictions, SADL-II was suggested to automatically learn 
the conditional independence pattern as well as quantify the 
numerical values of the spatial dependency. It is considered 
as an alternative benchmarking model in this paper. 

Linear Regression with Elastic Net Regularization 
Multiple Linear Regression is a statistical technique 

used to model the relationship between multiple 
independent variables and a dependent variable. It extends 
the concept of simple linear regression by considering 
multiple predictors. The general form of Multiple Linear 
Regression is as follows: 

0 1 1 ,n nY X Xβ β β= + × + + × +   
where 0 1, , nβ β β  are 𝑛𝑛  coefficients and 𝜖𝜖  is a random 
error, 𝑌𝑌  is the target variable, and 1 2, , , nX X X  are 
predictors. 

Elastic Net is a linear regression technique that 
combines the features of both L1 (Lasso) [23] and L2 
(Ridge) [24] regularization methods. It is a regularization 
and variable selection technique used in machine learning 
and statistics to prevent overfitting and improve the 
stability and generalization of linear regression models. 
The loss function is as follows: 
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In this loss function, the new parameter 𝛼𝛼  is a 

“mixing" parameter that balances the two approaches. If 
α  is one, this is Lasso regression, and if 𝛼𝛼 is zero, then 
this is Ridge regression. 

Lasso can improve prediction accuracy and model 
interpretability by performing both feature selection and 
regularization. Lasso’s feature selection property provides 
a clear interpretation of the most important predictors in 
the model. The non-zero coefficients indicate the features 
that strongly impact the prediction outcome [23]. 
XGBoost 

XGBoost was first introduced in [25]. They provided an 
in-depth explanation of the algorithm, its optimization 
techniques, and empirical evaluation of its performance on 
various datasets. XGBoost scales beyond billions of 
examples using far fewer resources than existing systems. 
The objective function (loss function and regularization) 
at iteration 𝑡𝑡 that we need to minimize is the following: 
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where l  is the loss function, ft  is the t-th tree output, and 
Ω  is the regularization term to control the complexity of 
the model and prevent the model from overfitting. 
LightGBM 

LightGBM, an open-source machine learning 
framework created by Microsoft, is an optimized tool 

tailored for gradient boosting. Gradient boosting is a 
widely-used machine learning approach that constructs 
predictive models by combining the outcomes of 
numerous weak models, often in the form of decision trees. 
One of the primary distinctions that sets LightGBM apart 
from the traditional gradient boosting tree decision 
technique is the use of a method called GOSS (Gradient-
based One-Side Sampling). 

During the training process, GOSS retains all the data 
points with significant gradients while randomly 
subsampling the data with lower gradients. This strategic 
approach effectively reduces the search space, enabling 
GOSS to converge more swiftly. 

LightGBM has gained acclaim for its remarkable speed 
and efficiency, rendering it a preferred choice across a 
range of machine learning tasks, including classification, 
regression, and ranking. 
Random Forest 

In 2001, Leo Breiman [26] presented the Random Forest 
algorithm and discussed its principles and advantages. 
Random Forest is a powerful ensemble learning method in 
machine learning, primarily used for classification and 
regression tasks. It is an ensemble of decision trees, where 
multiple decision trees are trained independently, and their 
outputs are combined to make predictions. 
Multiple-layer Perceptron (MLP) neural network 

 

Figure 2. Flowchart of The Proposed Water Quality Prediction 
Framework. 

Multiple-layer Perceptron (MLP) neural network 
represents an artificial neural network model that 
leverages the backpropagation technique to iteratively 
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refine the connections between neurons, thereby 
enhancing its predictive accuracy. This implementation 
integrates the Multi-Layer Perceptron (MLP) algorithm 
[27], harnessing backpropagation and stochastic gradient 
descent strategies for training and evaluating datasets. It 
offers a range of customizable parameters, allowing 
users to finely tune the model’s performance by 
adjusting factors such as the number of hidden layers, 
activation functions, optimization solvers, and more. 
MLPRegressor stands as an effective solution for 
addressing regression tasks, demonstrating proficiency in 
capturing intricate non-linear relationships between input 
and output variables. 

2.5. Implementation 
In this section, we detail the proposed prediction 

framework through hyperparameter tuning, generating 
predictions, and assessing their effectiveness using 
tailored scoring metrics. Additionally, we capture the 
time taken for these tasks and endeavor to identify 
disparities in feature selection, as evidenced by 
variations in feature importance. 

 
1.  Choose the Scoring Function: For all candidate 

methods, we use the negative root of mean squared 
error as the scoring function for hyperparameter 
tuning and evaluation. 

2.  Define Hyperparameters: Set up the hyperparameter 
space for each method. 

3.  Start Time Recording: Begin recording the time 
taken for the entire procedure. 

4.  Initialize Models: Initialize the models for each 
candidate method. 

5.  Hyperparameter Tuning: Perform hyperparameter 
tuning using cross-validation to find the best 
hyperparameters for each method. 

6.  Final Predictions: Make final predictions on the 
testing data using the best-tuned models. 

7.  Score Calculation: Calculate the evaluation metrics 
on the test data for each method. 

8.  End Time Recording: Stop recording the time taken 
for the procedure. 

9.  Feature Importance: Obtain feature importance 
scores from the best-tuned models. 

10.  Save Results: Save the results of each method’s 
performance and feature importance for model 
comparison. 

2.6. Model Selection 

2.6.1. Evaluation Metrics 
Based on the nature of the problem, and to compare 

against the original paper, we have chosen the following 
metrics: root mean square error (RMSE), mean absolute 
percentage error (MAPE), weighted mean absolute 
percentage error (WMAPE), weighted under prediction 
(WUPRED) and weighted over prediction (WOPRED). 
These metrics are defined by the following equations: 

2

1
,

i in

i

y y
RMSE

n=

 
− 

 = ∑



 

1

1 ,
n

i i

ii

y y
MAPE

n y=

−
= ∑



 

1

1

,

n
i ii

n
ii

y y
WMAPE

y

=

=

−

=
∑

∑



 

1

1

{ }
,

n
i ii ii

n
ii

I y y y y
WUPRED

y

=

=

 
> − 

 =
∑

∑

 

 

1

1

{ }
,

n
i ii ii

n
ii

I y y y y
WOPRED

y

=

=

 
< − 

 =
∑

∑

 

 

where iy  represents the observed PH value, iy


 is the 
value of prediction. In the context of all five metrics, our 
goal is to minimize them as much as possible. RMSE 
assesses the error magnitude in the same units as the 
predicted values. In contrast, MAPE highlights relative 
percentage errors, effectively mitigating the influence of 
outliers on evaluations. WMAPE builds upon MAPE by 
introducing weighted adjustments that account for the 
varying importance of different data points. Meanwhile, 
WUPRED and WOPRED quantify errors when forecasts 
fall short or exceed actual values, shedding light on 
potential model biases. Collectively, these metrics provide a 
comprehensive evaluation of predictive performance, 
considering both error direction and magnitude, and can be 
invaluable in guiding enhancements to predictive models. 

2.6.2 Results 
This section presents the prediction results and error 

analysis results of PH values. During the cross validation 
process, 5-fold cross validation is selected. To test if the 
spatio-temporal features are contributing to the predictions, 
three model implementation strategies are derived: 

 
1.  Strategy 1: We select eleven numerical features as 

input features to predict the target variable. 
2.  Strategy 2: We select the standardized eleven 

numerical features as input features to predict the 
target variable. 

3.  Strategy 3: The standardized numerical features 
and the one-hot encoded categorical features are 
selected to predict the target variable. 

For strategy 1, the model performance summary is 
shown in Table 4. Based on the performance of  
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Benchmarking and other advanced models, we can 
conclude that employing advanced models is essential. In 
addition, the XGBoost beats all the other candidate 
models in terms of MAPE, WMAPE and WOFOREC. For 
metric WUFOREC, MLP has the best performance. 
Meanwhile, the lightGBM outperforms the other models 
under the metric RMSE. Tree-based methods have shown 
their superiority in regression problems. There are several 
candidate models outperform the SADL-II (Original Paper). 

Table 4. Water Quality Prediction Results (Numerical Features Only) 
Models RMS

E 
MAP

E 
WMAP

E 
WUPRE

D 
WOPRE

D 
SADL-II 
(Original 

Paper) 

11.50 N/A N/A N/A N/A 

Benchmarkin
g 

29.52 32.21 32.35 14.55 17.80 

LightGBM 10.88 9.34 9.48 5.20 4.28 
Linear 

Regression 
12.04 10.72 10.90 5.65 5.24 

MLP 11.62 10.00 10.15 5.13 5.02 
Random 
Forest 

11.47 9.71 9.87 5.34 4.52 

XGBoost 10.96 9.23 9.37 5.17 4.19 

 
For strategy 2 (model performance summary detailed in 

Table 5), we have the same conclusion for the tree based 
models as what we had in strategy 1. In addition, the 
performance of XGBoost and LightGBM had a slight 
improvement after the standardization of numerical 
features. However, the performance of MLP got worse 
than the linear regression with elastic net regularization 
after the standardization. 

Table 5. Water Quality Prediction Results (Numerical Features Only; 
Standardized) 

Models RMSE MAPE WMAPE WUPRED WOPRED 
SADL-II 
(Original 

Paper) 

11.50 N/A N/A N/A N/A 

Benchmarking 29.52 32.21 32.35 14.55 17.80 
LightGBM 10.84 9.33 9.46 5.16 4.30 

Linear 
Regression 

12.04 10.74 10.92 5.66 5.25 

MLP 14.20 12.92 13.16 3.83 9.33 
Random 
Forest 

11.47 9.71 9.87 5.35 4.51 

XGBoost 10.96 9.22 9.36 5.17 4.19 

 
In strategy 3 (model performance detailed in Table 6), 

the spatio-temporal features are involved. The lightGBM 
beats all the other models when it comes to the metric 
RMSE, MAPE and WMAPE. However, the general 
performance of models slightly degraded after the spatio-
temporal features are inputted. Same as the results in 
strategy 1 and strategy 2, there are several candidate 
models outperform the SADL-II (Original Paper). 

We also provided hyper-parameters tuning time for 
strategy 2 and strategy 3 in Table 7 and Table 8. In the 
tables, “Total Fits" stands for the number of fits in hyper-
parameters tuning of each model. “Tuning Time" is for 
running time of entire hyper-parameters tuning process of 
each model. “Fitting Time (Best Model)" stands for the 
training time for the selected best hyper-parameters of 
each model. “Average Tuning" is for the average hyper-

parameters tuning time. The tuning time for strategy 1 is 
similar to the one for strategy 2, therefore, it is not 
provided in the paper. In addition, the benchmark model 
does not have a hyper-parameters tuning process. In 
conclusion, the lightGBM has a lowest average tuning 
time when the spatio-temporal features are included. 
Otherwise, he linear regression with elastic net 
regularization is the most efficient one. 

Table 6. Water Quality Prediction Results (Numerical Features: 
Standardized; Categorical Features: One-Hot Encoding) 

Models RMSE MAPE WMAPE WUPRED WOPRED 
SADL-II 
(Original 

Paper) 

11.50 N/A N/A N/A N/A 

Benchmarking 29.52 32.21 32.35 14.55 17.80 
LightGBM 11.04 9.22 9.36 5.15 4.21 

Linear 
Regression 

11.91 10.79 10.96 6.14 4.82 

MLP 14.42 14.54 14.61 9.29 5.32 
Random 
Forest 

11.71 9.71 9.87 5.26 4.61 

XGBoost 11.14 9.29 9.44 5.28 4.16 

Table 7. Running Time Summary (Numerical Features: 
Standardized) 

Models Total 
Fits 

Tuning 
Time 

Average 
Tuning 

Fitting Time 
(Best Model) 

LightGBM 2000 159.92 0.08 0.19 
Linear 

Regression 
150 3.32 0.02 0.07 

MLP 40 1948.63 48.72 116.05 
Random 
Forest 

1200 1934.51 1.61 64.58 

XGBoost 5760 2429.88 0.42 4.30 

Table 8. Running Time Summary in Seconds (Numerical Features: 
Standardized; Categorical Features: One-hot encoding)(in second) 

Models Total 
Fits 

Tuning 
Time 

Average 
Tuning 

Fitting Time (Best 
Model) 

LightGBM 2000 213.44 0.11 0.46 
Linear 

Regression 
150 44.39 0.30 0.82 

MLP 40 2147.05 53.68 65.81 
Random 
Forest 

1200 3633.05 3.03 115.67 

XGBoost 5760 13320.13 2.31 4.16 

2.7. SHapley Additive exPlanations (SHAP) 
For each prediction, the SHAP values associated with 

environmental variables serve to quantify their localized 
contributions to that specific prediction (Lundberg and 
Lee 2017). The mathematical definition of the SHAP 
value is provided below: 

( ) ( ) ( )

( ) ( ) ( ) ( )

1

' '

' '

, ' ' '
'

' 1 ! ' !
' ' .

!

i i
Z X

i
Z X

M
F x Z F Z F Z x

Z

Z M Z
F Z F Z x

M

−

⊆

⊆

  
 Φ = × −       

− −
 = − 

∑

∑




 

In this equation, ( ),i F xΦ  represents the SHAP value 
corresponding to feature 𝑥𝑥𝑖𝑖  in the context of a model 𝐹𝐹 
constructed on a set of features X . M  represents the total 
number of input features, 𝑋𝑋′ denotes the set of all potential 
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feature combinations that include feature 𝑥𝑥𝑖𝑖 , and 'Z  
signifies the number of features within a particular feature 
combination 'Z . Additionally, ( )'F Z  and ( )' iF Z x  

represent distinct predictive models trained on 'Z  and 
' iZ x  (which is 'Z  with feature ix  removed), respectively. 

Thus, the SHAP value is determined by aggregating the 
marginal contributions ( ) ( )' ' iF Z F Z x−   from all feasible 

feature combinations ( )'Z  through a weighted average. 
SHAP values are computed using the Python 

implementation of SHAP, as described by Lundberg and 

Lee in [14]. In this study, we calculated SHAP values for 
some candidate models for all strategies. They provided 
similar results crossing the strategies, so we displayed  
the visualization of SHAP values for strategy 2 for 
illustration purposes. 

Figure 3 and Figure 4 are the illustration of SHAP 
values for LightGBM model. From the plots, the feature 
X6 (“Dissolved oxygen, water, unfiltered, milligrams per 
liter (Maximum)") has the significant impact in predicting 
the target variable. Its impact is much higher than the 
other features. From Figure 5, XGBoost’s SHAP values 
generally agree with the SHAP values of LightGBM. 

 

 
Figure 3. Average Impact (SHAP value) on model output for LightGBM 

 

 
Figure 4. Impact (SHAP value) on model output for LightGBM 

 

 
Figure 5. Average Impact (SHAP value) on model output for XGBoost 
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Figure 6. Average Impact (SHAP value) on model output for Linear Regression 

3. Findings 

We found some machine learning models are showing 
better performance than the spatial topological model 
described in the original paper. There could be several 
reasons why the machine learning models outperform the 
SADL-II model in the original paper that takes into 
account time dependency and spatial features. Here are a 
few possible explanations: 

3.1. Data Quality and Quantity 
The availability of a larger and higher-quality dataset 

can have a significant impact on model performance. The 
data provided by the original paper is extensive and 
contains no missing values, the machine learning models 
benefit from having more reliable information. 

3.2. Feature 
The efficacy of machine learning models is profoundly 

influenced by the quality and pertinence of the features 
employed for training. It is conceivable that the features 
provided by the original paper and we meticulously 
engineered have proven to be insightful and pertinent in 
predicting water pH values. Remarkably, the machine 
learning approaches leverage the automated feature selection 
during training time, which is done via the feature importance 
scores, aiding in feature selection and engineering. 

3.3. Model Complexity and Flexibility 
Machine learning models, especially ensemble methods 

like Random Forest and XGBoost, have the capability to 
capture complex relationships and patterns in the data. 
They can automatically learn interactions between features 
and nonlinear relationships that the original model might 
not have been able to capture effectively. 

These ensemble models combine multiple individual 
models to make predictions. This aggregation reduces the 
risk of overfitting, as the errors of individual models tend 
to cancel out, leading to more robust predictions on 
unseen data. And they strike a balance between bias and 
variance. By averaging or combining predictions from 
multiple models, they reduce variance while maintaining a 
low bias, resulting in more accurate predictions. 

3.4. Hyperparameter Tuning 
We employ a systematic hyperparameter tuning process 

for all candidate models. This process aims to strike a 
balance among model complexity, interpretability, and 
predictability. It enables us to find the model that best fits 
the data, even without prior expert knowledge in the water 
quality field. 

4. Discussion 

In our investigation to predict water pH values, we 
adopted several Machine learning approaches and 
extended our analysis to include temporal and spatial 
features. Surprisingly, despite adding these features, the 
improvement in prediction accuracy was not as significant 
as expected. However, the results still demonstrated 
superior performance compared to the original temporal 
spatial model proposed by Chang et.al [7] in their study. 

Our findings challenge the belief (from the original 
paper) that incorporating time-dependent and spatial 
features would invariably enhance the accuracy of 
predictive models. The success of machine learning 
models lies in the meticulous process of feature selection, 
engineering, and model optimization. 

Suitable feature engineering helps the machine models 
find hidden patterns in the data that the original model 
didn’t catch. Also, ensemble tree methods like 
LightGBM and XGBoost are good at finding 
complicated patterns in the data. 

In comparison to the original model’s approach of 
leveraging time dependencies and spatial dependencies, 
the machine learning models exhibited higher predictive 
accuracy. This discrepancy may be attributed to the more 
sophisticated modeling techniques and the capacity to 
harness the power of the ensemble approach, both of 
which are integral to modern machine learning 

Our study underscores the importance of a holistic 
approach to predictive modeling, wherein data 
preprocessing, feature engineering, model selection, and 
hyperparameter tuning collectively contribute to the 
overall performance. While time-dependent and spatial 
features can certainly enhance predictive capabilities, our 
results emphasize the critical role of model selection and 
optimization in achieving remarkable accuracy. 
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In summary, our exploration into predicting water pH 
values with machine learning has not only yielded 
superior results compared to the original model but also 
shed light on the multifaceted nature of predictive 
modeling. As the field of machine learning continues to 
evolve, the intricate interplay between features, algorithms, 
and optimization techniques emerges as a pivotal factor in 
determining the success of predictive endeavors. We will 
test this standardized framework on other spatial-temporal 
prediction tasks in future work. 
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