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Abstract  In this paper, we obtain fixed point theorem for OWC (Occasionally Weakly Compatible) self-
mappings satisfying a generalized contractive type condition in CMS (Cone Metric Space). Our results are 
generalizing and improving some of the well known comparable results existing in this literature. 
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1. Introduction 

The fixed point theory is an important area of  
non-linear analysis. Recently Huang and Zhang [1] 
generalized the concept of metric space into cone metric 
space. And the concept of cone metric space initially 
introduced by the Huang and Zhang [1] and they replacing 
the real numbers by an ordered Banach space and they 
also proved some fixed point theorems in cone metric 
space. Later on many authors inspired with this results 
extended these results in many way (see for e.g., [2-11]) in 
different types of contractive type conditions in cone 
metric space. Recently Bhatt and Chandra [6]. In this 
paper, we proved a unique common fixed point theorem 
for OWC satisfying a generalized contractive condition in 
CMS.  

2. Preliminaries 

The following important preliminaries are useful in our 
main results. 
Definition 2.1. Let L be a real Banach space. A subset M 
of L is called a cone iff  

(i) M is a non-empty and closed also M ≠ {0}, 
(ii) u, v ∈   , and α, β ≥ 0, u, v ∈  M⇒  uα + vβ ∈  M, 
(iii) M ∩ (-M) = {0}. 
Given a cone M ⊂  L, we define a partial ordering  

≤ with respect to M by α ≤ β iff β – α ∈  M. A cone M is 
called normal if ∃ a number K> 0 ∀∋  α, β ∈  M,  
0 ≤ α ≤ β implies ||α||≤ K ||β||. 

The least positive number satisfying the above 
inequality is called the normal constant of M, while α << β 
stands for β – α ∈  interior of M. 

Definition 2.2. Let X be a nonempty set. And suppose that 
the mapping ρ : X × X→ L satisfying the following 
conditions: 

(1). 0 ≤ ρ (α, β) for all α, β∈X and ρ (α,β) = 0 if and 
only if α = β, 

(2). ρ (α, β) = 𝜌𝜌(β, α) for all α, β∈X; 
(3). ρ (α, β)≤ ρ (α, γ) + ρ (γ, β) for all α, β, γ∈X. 
Then 𝜌𝜌 is called a cone metric on X and (X, 𝜌𝜌) is called 

a CMS.  
Definition 2.3. Let (X, ρ ) be CMS. We say that {xn} is  

(i) a convergent sequence if for any b>>0, there exists a 
natural number N such that for all n>N, 𝜌𝜌(xn, x) <<b, for 
some fixed x in X .We denote this xn→x (as n )∞→ . 

(ii) a Cauchy sequence if for every b in M with b>>0, 
there exists a natural number N such that for all n, m>N, 
ρ  (xn,xm)<<b. 
Definition 2.4. A cone metric space (X, ρ ) is said to be 
complete if every Cauchy sequence is convergent.  
Definition 2.5 [9]. Let A and B be self-mappings of  
a set X. If q = Aα = Bα for some α in X, then α is called a 
coincidence point of A and B, and q is called a point of 
coincidence of A and B.  
Proposition 2.1. Let A and B be OWC self-mappings of a 
set X if and only if there is a point α in X which is 
coincidence point of A and B at which A and B are 
commute. 
Lemma 2.1. Let X be a set, A and B are OWC self-
mappings of X. If A and B have a unique point of 
coincidence q = Aα = Bα, then q is the unique.  

3. Main Results 

In this section, we prove a unique common fixed point 
theorem for OWC self-mappings in CMS (Cone Metric 
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Space). Ours result is improvement and generalization of 
the results of [6]. 

Let Ф: + +→   be a function satisfying the condition 
Ф(t) < t for each t > 0. 

Now we prove the our main theorem 
Theorem 3.1. Let (X, 𝜌𝜌) be a CMS and M be a normal 
cone. And suppose that l, m are two self- mappings of X 
and they satisfy the following conditions: 
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for each x, y ∈  X. 
(ii) l and m are OWC. 
Then l and m have a unique common fixed point. 
Proof. Given (by (ii)) l and m are occasionally weakly 

compatible, then there exists point p ∈  X such that  
lp = mp, lmp = mlp. We claim that, lp is the unique 
common fixed point of l and m. First we ascertain that  
lp is a fixed point of p. For if, llp ≠ lp, then by (i) we get 
that  
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Therefore, llp = lp and llp = mlp = lp. Thus lp is a 
common fixed point of l and m. 

Uniqueness: suppose that p, q ∈  X such that lp = mp = 
p and lq = mq = q and p ≠ q. Then by (i) we get that 
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Therefore, p = q. Therefore, l and m have a unique 
common fixed point. This completes the proof of the 
theorem. 

4. Conclusion 

Our results are more general then the results of [6]. 
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