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Abstract In this article, more general and many new travelling wave solutions have been constructed through new
extension of the (G'/G)-expansion method which is known as new generalized (G'/G)-expansion method. The key
idea of this technique is to take full advantage of a higher ordinary nonlinear differential equation that has five
different general solutions. The presentation of the travelling wave solutions is quite new and additional parameters
are also used in the solution form. To illustrate the novelty and efficiency of this method, the (3+1)-dimensional
Kadomstev-Petviashvili equation is desired to be investigated. The obtained solutions reveal the wider applicability
to handle higher-dimensional nonlinear problems which arising in mathematical physics.
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1. Introduction

The investigation of nonlinear evolution equations
(NLEES) is one of the main themes in natural sciences,
especially in the physical branches such as biophysics,
plasma physics, solid state physics, nonlinear optics,
quantum field theory, particle physics, fluid dynamics and
so on. Due to importance of exact solutions of NLEEs in
nonlinear science and engineering, it is required to
construct new exact travelling wave solutions. In the
recent past, various methods have been developed to
produce explicit solutions by a diverse group of scientists.
Such as, the Backlund transformation method [1], the
Hirota’s bilinear method [2,3], the inverse scattering
method [4], the Jacobi elliptic function method [5], the
tanh-coth method [6,7], the F-expansion method [8], the
exp- function method [9,10] and others [11-16].

Later on, Wang et al. [17] introduced a method with
linear ordinary differential equation (LODE) which is

called the (G'/G) -expansion method. Later on, many
researchers [18-22] implemented this technique and

proved that it is simple for producing travelling wave
solutions.

In order to depict the effectiveness of the (G'/G) -

expansion method, further research is carried out by a
diverse group of scientists. For example, Zhang et al. [23]

introduced an improved (G'/G) -expansion method.
Therefore, a good number of researchers studied various
nonlinear PDEs to produce analytical solutions [24-28].
Zayed [29] proposed another extension of (G'/G) -

expansion method, where G(&) satisfied the Jacobi
elliptic equation: {G'(r:)}z:eZG4(§)+elGZ(§)+eO :
Moreover, Zayed [30] extended the (G'/G) - method
G(&) satisfied the

G'(&)=A+ BGZ(§), A and B are arbitrary parameters.

Akbar et al. [31] introduced a generalized and improved
(G'/G) -expansion method and implemented to the KdV

equation, the ZKBBM equation and the strain wave
equation in microstructured solids for obtaing new
travelling wave solutions. Consequently, Naher et al. [32]
implemented this method to construct traveling wave
solutions of the (3+1)-dimensional nonlinear PDE. In
[33,34], Naher and Abdullah introduced another extended

(G'/G) -expansion method to investigate several PDEs

and produced various soliton solutions.

Very recently, Naher and Abdullah [35] proposed new
generalized (G’/G) -expansion method. The significant
of this method over the other methods are that it produces

many new and more general solutions with some arbitrary
parameters and it can handle NLEEs without boundary

in  which Riccati equation:
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and initial conditions. Abundant exact and analytical
solutions were produced with this novel and effective
method by Naher and Abdullah [36].

The objectives of this work are: (i) to construct a rich
class of new and more general exact travelling wave
solutions, and (ii) to illustrate the comparison between
newly generated results and the results obtained in the
open literature. For this motivation, new generalized

(G7G) -expansion method is introduced and to

exhibit the novelty and advantages of the method by
implementing to the higher dimensional NLEEsS,
namely the (3+1)-dimensional Kadomstev-Petviashvili
(KP) equation.

2. Algorithm of the New Generalized
(G'/G)-expansion Method

Consider a general nonlinear partial differential
equation:
P(u,ut,ux,uy,uz,utt,uxt,uxx,uxxx...)=O, (1

where u=u(x,y,z,t) is an unknown function, P is a
polynomial in u(x,y,z,t) and its derivatives in which

the highest order derivatives and nonlinear terms
are involved and the subscripts stand for the partial
derivatives.
The most important algorithms of the method as below:
Step 1. Suppose that the combination of real variables
x and t by a variable &

u(x,y, z,t)=u(é), E=x+y+zxVt, 2

where V denotes the speed of the travelling wave. Now
using Eq. (2), Eq. (1) is transformed into an ODE for

u=u(é):
Q(u,u'u",u",..)=0, 3

where Q is a function of u(§) and the superscripts
indicate the ordinary derivatives with respect to &.

Step 2. According to possibility, Eq. (3) can be
integrated term by term one or more times, yields
constant(s) of integration. The integral constant may be
zero, for simplicity.

Step 3. Suppose that the travelling wave solution of Eqg.
(3) can be expressed as follows:

W(@)=3 &[] i%lbj AT, @

where B(&)=[d+4(&)] and A(&) is:
1) =(6'(6)/6(2)). ®

Here ay, or by, may be zero, but both of them
a;(3=012,.,M),
by (J=12,..,M) and d are arbitrary constants to be

cannot be zero at a time,

determined later and G :G(cf) satisfies the second order
nonlinear ODE:

2

AGG"-BGG'-C(G')” ~EG? =0, (6)

where prime denotes the derivative with respect to &.
A,B,C and E are real parameters.
Step 4. To determine the positive integer M, taking the

homogeneous balance between the highest order nonlinear
terms and the highest order derivatives appearing in Eq.

@).
Step 5. Substituting Eq. (4) and Eq. (6) along with Eq.
(5) into Eq. (3) with the value of M obtained in Step 4

and yields polynomials in (d +A(§))M (M=012,..)

and (d +/1(§))7M (M =1,2,3,...). Then, each coefficient
of the resulted polynomials to be zero, yields a
set of algebraic equations for aj(J=012..,M),
by (J=12,..,M),d and V.

Step 6. Suppose that the value of the constants can be
found by solving the algebraic equations which are
obtained in step 5. Substituting the wvalues of
a;(J=0212..,M), b;(J=12..,M),d and V into
Eg. (4), many new and more comprehensive exact
travelling wave solutions of the nonlinear partial
differential equation (1) can be obtained.

Using the general solution of Eqg. (6), the following
solutions of Eq. (5) are:

Family 1. When B #0,%¥ = A-C and

Q=B?+4E(A-C)>0,

(g

_ (Ja Ja
e +\/5015|nh(2‘{J§J+C2cosh(2qJ§J (7)
oy 2w
Clcosh(;/gg}czsinh(;/ge‘EJ

Family 2. When B #0,%¥ = A-C and

Q=B?+4E(A-C)<0,

VA J-a
B E—Clsm[ng+czcos(2q]§] (8)
Clcos[\/z_\y_gfj+czsin[\/2§§]

=—+
2¥  2¥
Family 3. When B #0,%¥ = A-C and

Q=B?+4E(A-C)=0,

G'j B C, )

(S
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Family 4. When B=0,% = A-C and A =YE >0,

ol
7 Clsinh(\/\PZg?J+C2 cosh(\\/yxf] (10)

C, cosh [\/‘55} C, sinh (\{PZéJ

Family 5. B=0,% =A-C and A=¥YE <0,

—C;sin (He;}r C, cos(\/\;_AfJ (11)

b

C cos[?é} +C,sin [\/\;_A(,KJ

A
oy

3. Implementation of the New
Generalized (G'/G)- Expansion Method

Let us consider the (3+1)-dimensional KP equation:
Uy +6U2 +6U Ugx —Uyx —Uyy —Uz; =0. (12)

Now, using the wave transformation Eq. (2) into the Eq.
(12), which yields:

-(v +2)u"+6(u')2+6uu'—u’”':0. (13)
Eq. (13) is integrable, therefore, integrating twice with

respect to & and setting the constants of integration to
zero:

~(V +2)u+3u2-u"=0, (14)

Taking the homogeneous balance between nonlinear

term u? and the highest order derivative u” in Eq. (14),
yields M =2.
Therefore, the solution of Eq. (14) is of the form:

U(E)=ag+ag(d+4)+a(d+1)°

(15)
+by(d+2) by (d+2) 72,

where ag,3,a,,b,b, and d are constants to be
determined.

Substituting Eq. (15) together with Egs. (5) and (6) into
Eq. (14), the left-hand side is converted into polynomials in
(d+A)M(M=012.) and (d+4) ™ (M =123.).
Collecting each  coefficient of these resulted
polynomials to zero, yields a set of algebraic equations
(for simplicity, the algebraic equations are not presented)
for ay,ay,a,,b,b,,d and V. Solving these algebraic
equations with the help of symbolic computation software
Maple, the following set of results are obtained:

Case 1:
2w(d2LP+ Bd —E)
8 = 22 ;
—2\P(B+2d‘P)
T
(16)

2
a, zzAlz,bl:o,b2 —o,

—(2A2 + B2 +4E‘P)
V= ,d=d,
A2
where ¥ = A—-C,AB,C, E and d are free parameters.
Case 2:

(Bz+6d2‘I’2+GBd‘P—2E\P)

%= 3A2
~ —2‘P(B+2d‘P)

&
A2

) %))
ay ZzAlz,blzo,bZ =0,

—(2A2 g2 —4E‘P)

V= ,d=d,

A2
where ¥ = A-C,AB,C, E and d are free parameters.
Case 3:

—(B2 +4E‘{’)
8 =———5—
6A2
a =0,a,=0,b =0,
~(2a?-B2-4E¥) g (18)
V = ’d =—,
A2 A Y
0 B4 + 8EB2Y +16E2y?2
2 = '
8A%p2

where ¥ = A-C,A B,C and E are free parameters.
Case 4:

Z‘P(dz‘l’+ Bd—E

ag = 2 , 9 =0,a, =0,
—2(2d3‘P2+3dzB‘P—2Ed‘P+dBZ—BE)
by = ,
A2
—(2A2+BZ+4E‘P) (19)
V= d=d,
A2
, d*w? 1+ 2d3BY - 2Ed ¥
+d?B?% — 2dBE + E?
b2 = ]

A2

where ¥ = A-C,AB,C, E and d are free parameters.
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Case 5:
—(82 +4E‘I’)
q = )
A2
2 —
& =04a, :2l2,bl =0,d :g,
A (20)
—2(A2 +2B2 +8E\P)
V - 1
A2
A B4 + 8EB2Y +16E%¥?
2 = 1
gAZy?
where ¥ = A—C, A B,C and E are free parameters.
Case 6:
(82 +4E‘P)
80 =5
3A2
2 —
a]_:O,az =212,b1=0, d =2—B,
A (21)
—2(A2 _2B? —8E‘I’)
V= ,
A2
o B* + 8EB?Y +16E% P2
2 = f
8AZp?2

where ¥ = A-C, A B,C and E are free parameters.

Substituting Eq. (16) to Eq. (21) into Eqg. (15), along
with Eq. (7) and simplifying, yields following travelling
wave solutions (if C; =0 but C, = 0) respectively:

uly (x,y,z,t)
~ 1 Jocoth? @g —(BZ+4E‘P) ,
2A? 2¥
uzl(x,y,z,t)=i2{3Qcoth2(E 5]—(BZ+4E‘P)},
6A 2¥Y
u3(x,y,zt)
L 3(84+882E\p+1652w2)tanh2[@5]
-~ | Q 2¥
6A?
—(Bz+4E‘I’)
2‘P(d2‘1’+Bd—E)
udy(x,y,z,t)= 2
-1
+by d+£+@coth @5
2¥ 29 2¥
-2
+b, d+£+@coth @5 ,
2¢ 2% 2¥
where

—2(2d3‘P2 +3d2BY — 2Ed ¥ + dB2 —BE)
q.: A2 1

—(2A2 + B2 +4E‘P)

V=

A2
2(d4‘1’2 +2d3BY — 2Ed2¥ + d2B? — 2dBE + EZ)

b, =
A2

—(Bz+4E‘{’)
u5q (X, y,z,t):T

4 2 22 2
L[ BY+BEB®WHIGE W || 4¥2( o @5
gAZy?2 Q 2¥

Ja

mﬁ’j
2A?

uby (x,y,2,t)

Qcoth? (
+

2(82 +4E‘P)+3§200th2 @(5
1 2¥
T 6A2| 3

+—
Q

(B4 +8EB2Y +16E2‘P2)tanh2 (%g}

Substituting Eq. (16) to Eq. (21) into Eq. (15) along

with Eqg. (7) and simplifying, the exact solutions become
(if C, =0 but C; = 0) correspondingly:

ulp (x,y,z,t)

bl o]

u2, (x,y,2,t) :LZ{?,Qtanh2 (g gJ—(BZ +4E‘P)},

6A
ud, (x,,2,t)
3(84 +8B2EY +16E2‘I’2)
1 Q

“6A” x{l—sechz[géj}—(Bz +4E‘P) |

Z‘P(dz‘{’+ Bd —E)

udy (x,y,z,t) = 2
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u5, (X, ,2,t)
2

:—(B +4E‘I’) B4 +8EB2W +16E2W2
A2 8AZp2

[e5{or()
fur( 54

2A? cosh? (@fJ
2¥

2
B +4EY Q. {1 sech (EQEJ}
2A 2¥Y

+

ub, (x,y,z,t) = e

B4 + 8EB2W +16E2y?2
( ){cschz [gf}rl},

2A20)

+

Substituting Eq. (16) to Eq. (21) into Eq. (15), together
with Eq. (8) and simplifying, the travelling wave solutions
become (if C;=0 but C, #0; C,=0 but C;#0))
respectively:

ulz(x,y,z,t)
1 (2 J-Q
2AZ{(B +4E‘P)+Q{cse{ o ]—1}},

u2z(x,y,z,t)

_—(BZ+4E‘P) Qz {CSC (E 5]_1},

6A2 2A

—(BZ+4E‘I’)
u3z(x,y,z,t)=
s(0y.2) 6A2
(B*+8B%EW +16E%¥?) a
secz[ §J—1 ,

2A20 2¥

\P(dZLP+ Bd—E)
AZ

udz(x,y,z,t)=

¥

+by
2dV¥ + B+\/ﬁcot[\/2_\y_gé]

492

2
[2d‘I‘+ B+\/5cot(*/2"\y_95j]

+b2

—(B? +4EW ey
ubs(x,y,z,t)= ( )— cot? Q(f
A2 2A? 2¥
B* +8EB%W +16E°¥? | ,(/-Q
- 5 tan®| ——¢& |,
20A 2¥Y

B2 +4EW -
ubs(x,y,z,t)= ( 32 )_ 2£A22 {CSCZ (—QfJ—l}

B* + 8EB?Y +16E%y? -
| ) {Secz[m fJ_l |

2A%0 2¥
uly (X, y,z,t)
(B +4E‘P)cosz [—“Q g}
-1 2

2A% cos® [\/zf cfj +Qsin? (% gj

u24(x,y,2,t)
-Q sin(\/E §J
=ap+q d+£— 2¥
2 Z‘I’cos(\/5 5]
2¥

2
B \/Esin(\/z_\y_ggJ
2¥ Z\PCOS(@Q(‘J |
2¥Y

+ao d+

apQtan ('*/_ ] 4, W2
u34(x,y,z,t)= . ,
Qtanz[fch
uds(x,y,2,t)

+b2 d i_ﬁt n ﬁf ,
v v 29
where
—2(2d3‘P2+3dzB‘P—2Ed‘P+dBZ—BE)
by = 5 :
A
—(2A2+Bz+4E‘P)
V= ,

A2



2(d4‘P2 +2d3BW — 2Ed2¥ + d2B? — 2dBE + E2)

b, = ,
2 A2
u4(x,y,2,t)
4a, P2 Q2 tan? @
vt 1302

—a2£22 tan? ['\/5 5} —16b2‘I'4
2¥

5]

4‘P2£2tan2
2¥

uby (x,y,z,t)

_ gy 222 e2(VQ )

=ay 257 {sec (Z‘P éJ 1}
4b, W2

Q{sec2 (Maf}—l}
2Y
Substituting Eq. (16) to Eq. (21) into Eqg. (15), along

with Eqg. (9) and simplifying, yields exact solutions
respectively:

2
uls (X, y,2,t) = #{4\{’2 (ﬁ] ~(4EW+ Bz)}

B2 +6d%¥2 +6BdY — 2E¥
3A2

_M d +£+ L
A2 2¥ C1+C2§

2
2?2 B C,
+—qd+—+
A2 2¥ Cl+C2§

u2s(x,y,zt)=

—(4E\I’+Bz)
uds (x,y,z,t)=————=
5( ) 6A2
2
. B* +8EB%Y +16E2 W2 (C1+C2§j
8AZ Y2 C,

-1
B C,
4 t)= 2v
u 5(x7y,Z, ) a0+bl£d+2‘{’+[cl+c2§)]

s (Y2t =5 a2 (C+Cyt

{ B* + 8EB2Y +16E2y2 j(q+C2§J2

—(4E‘P+BZ) 2\{,2( c, JZ

8AZp2 C,
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u6s (x,y,zt)

2
43 CZ‘PZ}

8‘1‘2(Bz+4E‘P)+£ Cie
1 2

1
24292 2
+3(B4 +8EB2Y +16E2‘{’2)(Mj

2

Substituting Eq. (16) to Eq. (21) into Eq. (15), together
with Eq. (10) and simplifying, the obtained travelling
wave solutions become (if C; =0 but C, #0; C, =0

but C; = 0)) respectively:
2A 2| VA
uls (x,y,2,t)=—<coth®| — & |-1

u2g(x,y,z,t)

= &;C){Zcothz (%éj-ﬁ-CSChz (%é}}

3A
-2E(A-C
u3g (, y,Z.t)=#{4—33ech2[£§J}
3A ¥
udg (x,y,2,t)
(dz\yz_E\P)_ 2d3¢3 — 2Ed 2
d‘P+«/Zcoth[\/\§§J
A
L| gt —2Ed?we 4+ ERY?
2
[dl}w«/Kcoth{ge;D
uSg (X, y,2,t)
2EW coth? ﬂg
_—4E‘{’+ v . 2EY
=— >
A A Azcothz(\/ZgJ
b4
4E(A-C
u66(x,y,z,t):¥
3A
2E(A-C
+¥{2+CSC|’]2{ﬂéJ—SEChZ{ﬂéj}
A ¥ v

uly (x,y,z,t)= i—f{%(l—sec h? (ggD— E}

u27(x,y,z,t) =£{3Atamh2 [\/Zgj— E‘I’}

E2
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u3; (x,y,2,t) udg(x,y,2,t)
6E2(A-C) Coshz[\/gf]—ZE‘PAsinhz(\/Egj
_ ¥ ¥ 4292 _gy
3A2A5inh2[\/xfj —(2d3‘P2 —2Ed‘P)
g
-1
uds (x,y,z,t) :iz {d +Qcot(£ é:J}
\/X A v v
dZ‘PZAtanhz(\ng +(d4‘P2—2Ed2‘P+E2)
2
-2
~EWAtanh? (*/Z(g}— Ed?y3 + E2yp?2 «dd +ﬂcot V-A £
_ ¥ ¥ ¥
5 L i
A2 [d‘{um/Xtanh[\gng usg (%, y,z,t)
J-A “A
u57(x, y,z,t) —4E\I’A3|n2[LP §Jcos2 [LP fJ
~4E¥Atanh? ({Efj —2A? cos? (A & |-2E%9?2 sm4(\/_A 5}
B b 4 b4
+2A2 tanh4(\/X§J+2E2\P2 A%Asin? (\/— Jcos [_A &
b4 4
2 2(~A :
ACAtanh (\PEEJ 2E(A—C)Acot2[h\/§§J
ué; (x,y,z,t
7l ) n 31?2 cot4[| AfJ—3E2(A—C)Z
, 4E‘P+6Atanh2[?§j u6g (X,y, z,t) =

3A2A cot? (' A gj
¥

" 32 22
+6E ¥ coth? ﬂé
A ¥

-2 2| v—A
Substituting Eq. (16) to Eq. (21) into Eg. (15), along ulg (X, y.2.t)= A2 {E(A_C)“LA(SEC ( p 5}—1]}
with Eq. (11) and simplifying, yields following exact

solutions (if C; =0 but C, #0; C,=0 but C;#0)) u2g(x,y,zt)

respectively: I
ulg(x, y,z,t) d‘Pcos[l\/» 5]
12d¥
E‘Psinz{\/\}g‘ - —Asm['\/_ 5]
I 6d2w2 —2EY -
Azsinz(\/\;jéj [1 smz(\/z D =3% cos(h/i EEJ
u2g(xy,2,t) {d‘l’cos[\/» J \/_sm('\/— J}
6d°W2 —2E¥ 4dp? g J-A ivA ¥
- . — + cot & + :
3A A v v OSZ(I\/X éJ
292 | WA (VA ‘ ) ’ _
+ A2 + ¥ Cco 7 5 ’ u39(X,y,Z,t)
u38(x,y,z,t) —ZEA‘PSinz(it/Pfo'FGEZ\PZCosz(i\l/},Xgl

3A2 AZA

=_2E\P_2E2(A_C)2 {Secz(i\\/}?g}—l} ) 3A%Asin? (h/Z‘f]
g
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Udg (x,y,z,t)

2(d?w? - ){d‘P—I\/_tan[l\/— ]}
—(2d3\P3—2Ed‘{’2){d‘{’—lftan(|\/_ J}

+(d4‘}’4—2Ed2‘{’3+E2‘P2)

o ]

uSg (X, Y, 2,t)
—4EWAtan® (—‘_A gJ
1 Y
AZAtanz(“ A J —2A2tan4[—“_A gJ—zEZqJZ
k4 ¥
ubg (X, y,2,t)

4EAY —6A2 {secz (“‘A 5] —1}
7
7

—6E2y? {cscz [*/_Agj—l}

3A%A

4. Discussions

The advantages and validity of this executed method
over the basic (GYG) -expansion method have been

examined as below.
Advantages: The key advantage of new generalized

(G'7G) -expansion method over the basic (G/G) -

expansion method is that this method provides more
general and huge number of new exact travelling wave
solutions with various arbitrary parameters. The analytical
solutions of NLEEs have its vital importance to disclose
the internal mechanism of the complex physical phenomena.
Apart from the physical application, the exact solutions
help the numerical solvers to compare the exactness of
their results and assist them in the stability analysis.
Validity: A good agreement is found between our obtained
solutions and published results in the earlier literature, if
the parameters take particular values, which validate the
obtained solutions. Bekir and Uygun [37] used the basic

(G'7G) -expansion method to the (3+1)-dimensional KP

equation and obtained only six solutions (F.1) to (F.6) (see
Appendix). On the other hand, fifty-four solutions have been

generated via the new generalized (G '/G) -expansion
method. Bekir and Uygun [37] presented the solution form

as u(g):iai (G
i=0

G(§))i , where a, =0 and

LODE is used as an auxiliary equation:
G"(&)+AG'(&)+uG(£)=0. In this case, there are only
three solutions with the general solution of LODE and

also has a very few options of solution style. On the other
hand, the solution form of this article is

u(¢)= J%O""J {d *[%HJ +J§1b3 {d {%H_J

where ay, or by, may be zero, but both of them cannot

be zero at a time and second order nonlinear ODE
(SONLODE) is used as an auxiliary equation:

AG(£)G"(¢)-BG(£)6'(¢)
<(e'(¢)) ~E(6(9))" =0,

where A/B,C and E are arbitrary parameters. It is
important to point out that there are five solutions with
the general solutions of SONLODE. Moreover,
several choices of multipattern solutions are available,
and those could be used to investigate the real-world
problems through considering various values of arbitrary
parameters.

5. Conclusions

In this article, the new generalized (G'/G) -expansion

method has successfully been applied to the (3+1)-dimensional
KP equation. In the basic (G'/G) -expansion method,

the auxiliary equation G"(&)+AG'(&)+uG(£)=0 ,
has three different general solutions. But in the
new generalized (GY/G) -expansion method, the

second order nonlinear ODE as the auxiliary equation

AG(£)G"(£)-BG(£)6'(¢)-C {6 ()} ~E{6(&))" =

and has five different general solutions. Due to
investigation with the higher order nonlinear ODE
of the higher dimensional evolution equation many
new and more explicit soliton solutions are constructed
with several arbitrary parameters. These parameters
might be important to demonstrate more complex
physical phenomena. This study also shows that new

generalized (G'(£)/G(&)) -expansion method is quite

efficient and well suited to be implemented for
constructing new exact solutions of various NLEEs which
frequently arise in mathematical physics, engineering
sciences and many scientific real-world problems.
Furthermore, the obtained solutions could be used as
models in real world problems, such as tsunami waves and
earthquake etc.
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