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Abstract  In this article, more general and many new travelling wave solutions have been constructed through new 
extension of the (G′/G)-expansion method which is known as new generalized (G′/G)-expansion method. The key 
idea of this technique is to take full advantage of a higher ordinary nonlinear differential equation that has five 
different general solutions. The presentation of the travelling wave solutions is quite new and additional parameters 
are also used in the solution form. To illustrate the novelty and efficiency of this method, the (3+1)-dimensional 
Kadomstev-Petviashvili equation is desired to be investigated. The obtained solutions reveal the wider applicability 
to handle higher-dimensional nonlinear problems which arising in mathematical physics. 
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1. Introduction 

The investigation of nonlinear evolution equations 
(NLEEs) is one of the main themes in natural sciences, 
especially in the physical branches such as biophysics, 
plasma physics, solid state physics, nonlinear optics, 
quantum field theory, particle physics, fluid dynamics and 
so on. Due to importance of exact solutions of NLEEs in 
nonlinear science and engineering, it is required to 
construct new exact travelling wave solutions. In the 
recent past, various methods have been developed to 
produce explicit solutions by a diverse group of scientists. 
Such as, the Bӓcklund transformation method [1], the 
Hirota’s bilinear method [2,3], the inverse scattering 
method [4], the Jacobi elliptic function method [5], the 
tanh-coth method [6,7], the F-expansion method [8], the 
exp- function method [9,10] and others [11-16]. 

Later on, Wang et al. [17] introduced a method with 
linear ordinary differential equation (LODE) which is 
called the ( )/G G′ -expansion method. Later on, many 
researchers [18-22] implemented this technique and 
proved that it is simple for producing travelling wave 
solutions. 

In order to depict the effectiveness of the ( )/G G′ -
expansion method, further research is carried out by a 
diverse group of scientists. For example, Zhang et al. [23] 

introduced an improved ( )/G G′ -expansion method. 
Therefore, a good number of researchers studied various 
nonlinear PDEs to produce analytical solutions [24-28]. 
Zayed [29] proposed another extension of ( )/G G′ -

expansion method, where ( )G ξ  satisfied the Jacobi 

elliptic equation: ( ){ } ( ) ( )2 4 2
2 1 0G e G e G eξ ξ ξ′ = + + . 

Moreover, Zayed [30] extended the ( )/G G′ - method  

in which ( )G ξ  satisfied the Riccati equation: 

( ) ( )2G A BGξ ξ′ = + , A and B are arbitrary parameters. 
Akbar et al. [31] introduced a generalized and improved 
( )/G G′ -expansion method and implemented to the KdV 
equation, the ZKBBM equation and the strain wave 
equation in microstructured solids for obtaing new 
travelling wave solutions. Consequently, Naher et al. [32] 
implemented this method to construct traveling wave 
solutions of the (3+1)-dimensional nonlinear PDE. In 
[33,34], Naher and Abdullah introduced another extended 
( )/G G′ -expansion method to investigate several PDEs 
and produced various soliton solutions. 

Very recently, Naher and Abdullah [35] proposed new 
generalized ( )/G G′ -expansion method. The significant 
of this method over the other methods are that it produces 
many new and more general solutions with some arbitrary 
parameters and it can handle NLEEs without boundary 
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and initial conditions. Abundant exact and analytical 
solutions were produced with this novel and effective 
method by Naher and Abdullah [36]. 

The objectives of this work are: (i) to construct a rich 
class of new and more general exact travelling wave 
solutions, and (ii) to illustrate the comparison between 
newly generated results and the results obtained in the 
open literature. For this motivation, new generalized 
( )'/G G -expansion method is introduced and to  
exhibit the novelty and advantages of the method by 
implementing to the higher dimensional NLEEs,  
namely the (3+1)-dimensional Kadomstev-Petviashvili 
(KP) equation. 

2. Algorithm of the New Generalized 
(G′/G)-expansion Method 

Consider a general nonlinear partial differential 
equation: 

 ( ), , , , , , , , ... 0,t x y z t t xt xx xxxP u u u u u u u u u =  (1) 

where ( ), , ,u u x y z t=  is an unknown function, P  is a 

polynomial in ( ), , ,u x y z t  and its derivatives in which  
the highest order derivatives and nonlinear terms  
are involved and the subscripts stand for the partial 
derivatives. 

The most important algorithms of the method as below: 
Step 1. Suppose that the combination of real variables 

x  and t  by a variable ξ  

 ( ) ( ), , , , ,u x y z t u x y z V tξ ξ= = + + ±  (2) 

where V  denotes the speed of the travelling wave. Now 
using Eq. (2), Eq. (1) is transformed into an ODE for 

( ) :u u ξ=  

 ( ), ', , ,... 0,Q u u u u′′ ′′′ =  (3) 

where Q  is a function of ( )u ξ  and the superscripts 
indicate the ordinary derivatives with respect to .ξ  

Step 2. According to possibility, Eq. (3) can be 
integrated term by term one or more times, yields 
constant(s) of integration. The integral constant may be 
zero, for simplicity. 

Step 3. Suppose that the travelling wave solution of Eq. 
(3) can be expressed as follows:  

 ( ) ( ) ( )
0 1

,
M MJ J

J J
J J

u a bξ β ξ β ξ −

= =
= +      ∑ ∑  (4) 

where ( ) ( )dβ ξ λ ξ= +    and ( )λ ξ  is:  

 ( ) ( ) ( )( )' /G Gλ ξ ξ ξ= . (5) 

Here Ma  or Mb  may be zero, but both of them  
cannot be zero at a time, ( )0,1,2,..., ,Ja J M=  

( )1,2,...,Jb J M=  and d  are arbitrary constants to be 

determined later and ( )G G ξ=  satisfies the second order 
nonlinear ODE: 

 ( )2 2 0,AGG BGG C G EG′′ ′ ′− − − =  (6) 

where prime denotes the derivative with respect to ξ . 
, ,A B C  and E  are real parameters. 
Step 4. To determine the positive integer ,M taking the 

homogeneous balance between the highest order nonlinear 
terms and the highest order derivatives appearing in Eq. 
(3). 

Step 5. Substituting Eq. (4) and Eq. (6) along with Eq. 
(5) into Eq. (3) with the value of M  obtained in Step 4 

and yields polynomials in ( )( ) ( )0,1,2,...Md Mλ ξ+ =  

and ( )( ) ( )1,2,3,... .Md Mλ ξ −
+ =  Then, each coefficient 

of the resulted polynomials to be zero, yields a  
set of algebraic equations for ( )0,1,2,..., ,Ja J M=

( )1,2,..., ,Jb J M d=  and .V  
Step 6. Suppose that the value of the constants can be 

found by solving the algebraic equations which are 
obtained in step 5. Substituting the values of 

( )0,1,2,..., ,Ja J M=  ( )1,2,..., ,Jb J M d=  and V  into 
Eq. (4), many new and more comprehensive exact 
travelling wave solutions of the nonlinear partial 
differential equation (1) can be obtained.  

Using the general solution of Eq. (6), the following 
solutions of Eq. (5) are: 
Family 1. When 0,B A C≠ Ψ = −  and  

 ( )2 4 0,B E A CΩ = + − >  

 

( )

1 2

1 2

'

sinh cosh
2 2

2 2
cosh sinh

2 2

G
G

C C
B

C C

λ ξ

ξ ξ

ξ ξ

 =  
 

   Ω Ω
+      Ψ ΨΩ    = +

Ψ Ψ    Ω Ω
+      Ψ Ψ   

 (7) 

Family 2. When 0,B A C≠ Ψ = −  and  

 ( )2 4 0,B E A CΩ = + − <  

 

( )

1 2

1 2

'

sin cos
2 2

2 2
cos sin

2 2

G
G

C C
B

C C

λ ξ

ξ ξ

ξ ξ

 =  
 

   −Ω −Ω
− +      Ψ Ψ−Ω    = +

Ψ Ψ    −Ω −Ω
+      Ψ Ψ   

 (8) 

Family 3. When 0,B A C≠ Ψ = −  and  

 ( )2 4 0,B E A CΩ = + − =  

 ( ) 2

1 2

'
2

CG B
G C C

λ ξ
ξ

 = = +  Ψ + 
 (9) 
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Family 4. When 0,B A C= Ψ = −  and 0,E∆ = Ψ >  

 

( )

1 2

1 2

'

sinh cosh

cosh sinh

G
G

C C

C C

λ ξ

ξ ξ

ξ ξ

 =  
 

   ∆ ∆
+      Ψ Ψ∆    =

Ψ    ∆ ∆
+      Ψ Ψ   

 (10) 

Family 5. 0,B A C= Ψ = −  and 0,E∆ = Ψ <  

 

( )

1 2

1 2

'

sin cos

cos sin

G
G

C C

C C

λ ξ

ξ ξ

ξ ξ

 =  
 

   −∆ −∆
− +      Ψ Ψ−∆    =

Ψ    −∆ −∆
+      Ψ Ψ   

 (11) 

3. Implementation of the New 
Generalized (G′/G)- Expansion Method 

Let us consider the (3+1)-dimensional KP equation: 

 26 6 0.xt x xx xxxx yy zzu u u u u u u+ + − − − =  (12) 

Now, using the wave transformation Eq. (2) into the Eq. 
(12), which yields: 

 ( ) ( )22 6 6 0.V u u uu u′′ ′ ′ ′′′′− + + + − =  (13) 

Eq. (13) is integrable, therefore, integrating twice with 
respect to ξ  and setting the constants of integration to 
zero: 

 ( ) 22 3 0,V u u u′′− + + − =  (14) 

Taking the homogeneous balance between nonlinear 
term 2u  and the highest order derivative u′′ in Eq. (14), 
yields 2.M =  

Therefore, the solution of Eq. (14) is of the form: 

 
( ) ( ) ( )

( ) ( )

2
0 1 2

1 2
1 2 ,

u a a d a d

b d b d

ξ λ λ

λ λ− −

= + + + +

+ + + +
 (15) 

where 0 1 2 1 2, , , ,a a a b b  and d  are constants to be 
determined. 

Substituting Eq. (15) together with Eqs. (5) and (6) into 
Eq. (14), the left-hand side is converted into polynomials in 

( ) ( )0,1,2,...Md Mλ+ =  and ( ) ( )1,2,3,... .Md Mλ −+ =  
Collecting each coefficient of these resulted  
polynomials to zero, yields a set of algebraic equations 
(for simplicity, the algebraic equations are not presented) 
for 0 1 2 1 2, , , , ,a a a b b d  and .V  Solving these algebraic 
equations with the help of symbolic computation software 
Maple, the following set of results are obtained: 

 
 

Case 1:  

 

( )

( )

( )

2

0 2

1 2

2

2 1 22

2 2

2

2
,

2 2
,

2 , 0, 0,

2 4
, ,

d Bd E
a

A
B d

a
A

a b b
A

A B E
V d d

A

Ψ Ψ + −
=

− Ψ + Ψ
=

Ψ
= = =

− + + Ψ
= =

 (16) 

where , , ,A C A B CΨ = − , E  and d  are free parameters.  
Case 2: 

 

( )

( )

( )

2 2 2

0 2

1 2

2

2 1 22

2 2

2

6 6 2
,

3
2 2

,

2 , 0, 0,

2 4
, ,

B d Bd E
a

A
B d

a
A

a b b
A

A B E
V d d

A

+ Ψ + Ψ − Ψ
=

− Ψ + Ψ
=

Ψ
= = =

− − − Ψ
= =

 (17) 

where , , ,A C A B CΨ = − , E  and d  are free parameters.  
Case 3: 

 

( )

( )

2

0 2

1 2 1
2 2

2

4 2 2 2

2 2 2

4
,

6
0, 0, 0,

2 4
, ,

2

8 16 ,
8

B E
a

A
a a b

A B E BV d
A

B EB Eb
A

− + Ψ
=

= = =

− − − Ψ −
= =

Ψ

+ Ψ + Ψ
=

Ψ

 (18) 

where , , ,A C A B CΨ = −   and E  are free parameters.  
Case 4:  

 

( )

( )

( )

2

0 1 22

3 2 2 2

1 2

2 2

2

4 2 3 2

2 2 2

2 2

2
, 0, 0,

2 2 3 2
,

2 4
, ,

2 2
2

2
,

d Bd E
a a a

A
d d B Ed dB BE

b
A

A B E
V d d

A
d d B Ed

d B dBE E
b

A

Ψ Ψ + −
= = =

− Ψ + Ψ − Ψ + −
=

− + + Ψ
= =

 Ψ + Ψ − Ψ
 
 + − + =

 (19) 

where , , ,A C A B CΨ = − , E  and d  are free parameters.  
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Case 5:  

 

( )

( )

2

0 2

2

1 2 12

2 2

2

4 2 2 2

2 2 2

4
,

20, , 0, ,
2

2 2 8
,

8 16 ,
8

B E
a

A
Ba a b d

A
A B E

V
A

B EB Eb
A

− + Ψ
=

Ψ −
= = = =

Ψ

− + + Ψ
=

+ Ψ + Ψ
=

Ψ

 (20)

 where , , ,A C A B CΨ = −  and E  are free parameters.  
Case 6:  

 

( )

( )

2

0 2

2

1 2 12

2 2

2

4 2 2 2

2 2 2

4
,

3
20, , 0, ,

2

2 2 8
,

8 16 ,
8

B E
a

A
Ba a b d

A
A B E

V
A

B EB Eb
A

+ Ψ
=

Ψ −
= = = =

Ψ

− − − Ψ
=

+ Ψ + Ψ
=

Ψ

 (21)

 where , , ,A C A B CΨ = −  and E  are free parameters.  
Substituting Eq. (16) to Eq. (21) into Eq. (15), along 

with Eq. (7) and simplifying, yields following travelling 
wave solutions (if 1 0C =  but 2 0C ≠ ) respectively: 

 
( )

( )
1

2 2
2

1 , , ,

1 coth 4 ,
22

u x y z t

B E
A

ξ
  Ω = Ω − + Ψ   Ψ   

 

( ) ( )2 2
1 2

12 , , , 3 coth 4 ,
26

u x y z t B E
A

ξ
  Ω = Ω − + Ψ   Ψ   

 

 

( )

( )
( )

1

4 2 2 2 2

2
2

3 , , ,

3 8 16 tanh1 2 ,
6

4

u x y z t

B B E E

A
B E

ξ
  Ω

+ Ψ + Ψ   Ω Ψ  =
 
− + Ψ 
 

 

 

( )
( )2

1 2

1

1

2

2

2
4 , , ,

coth
2 2 2

coth ,
2 2 2

d Bd E
u x y z t

A

Bb d

Bb d

ξ

ξ

−

−

Ψ Ψ + −
=

  Ω Ω
+ + +    Ψ Ψ Ψ  

  Ω Ω
+ + +    Ψ Ψ Ψ  

 

where  

 

( )

( )

3 2 2 2

1 2

2 2

2

2 2 3 2
,

2 4
,

d d B Ed dB BE
b

A
A B E

V
A

− Ψ + Ψ − Ψ + −
=

− + + Ψ
=

 

( )4 2 3 2 2 2 2

2 2

2 2 2 2
,

d d B Ed d B dBE E
b

A

Ψ + Ψ − Ψ + − +
=  

( )
( )2

1 2

4 2 2 2 2
2

2 2

2

2

4
5 , , ,

8 16 4 1 sech
28

coth
2

,
2

B E
u x y z t

A

B EB E
A

A

ξ

ξ

− + Ψ
=

     + Ψ + Ψ Ψ Ω + −         Ω ΨΨ        
 Ω

Ω   Ψ +

 

 

( )

( )

( )

1

2 2

2
4 2 2 2 2

6 , , ,

2 4 3 coth
21 ,

6 3 8 16 tanh
2

u x y z t

B E

A
B EB E

ξ

ξ

  Ω
+ Ψ + Ω   Ψ  =  

 Ω + + Ψ + Ψ    Ω Ψ  

 

Substituting Eq. (16) to Eq. (21) into Eq. (15) along 
with Eq. (7) and simplifying, the exact solutions become 
(if 2 0C =  but 1 0C ≠ ) correspondingly: 

 
( )

( )
2

2 2
2

1 , , ,

1 1 sech 4 ,
22

u x y z t

B E
A

ξ
   Ω = Ω − − + Ψ     Ψ     

 

( ) ( )2 2
2 2

12 , , , 3 tanh 4 ,
26

u x y z t B E
A

ξ
  Ω = Ω − + Ψ   Ψ   

 

 

( )

( )

( )

2

4 2 2 2

2 2 2

3 , , ,

3 8 16
1 ,

6 1 sech 4
2

u x y z t

B B E E

A B Eξ

 + Ψ + Ψ Ω =    Ω × − − + Ψ      Ψ    

 

( )
( )2

2 2

1

1

2

2

2
4 , , ,

sinh
2

2 2
cosh

2

sinh
2

,
2 2

cosh
2

d Bd E
u x y z t

A

Bb d

Bb d

ξ

ξ

ξ

ξ

−

−

Ψ Ψ + −
=

   Ω    Ψ Ω   + + +  Ψ Ψ  Ω      Ψ   

   Ω    Ψ Ω   + + +  Ψ Ψ  Ω      Ψ   
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( )

( )
2

2 4 2 2 2

2 2 2

2
2

2

2 2

5 , , ,

4 8 16
8

4 csch 1
2

cosh 1
2

,
2 cosh

2

u x y z t

B E B EB E
A A

A

ξ

ξ

ξ

− + Ψ  + Ψ + Ψ
= +  Ψ 

   Ψ Ω × +     Ω Ψ     
  Ω Ω −   Ψ   +

 Ω
  Ψ 

 

 

( )

( )

2
2

2 2 2

4 2 2 2
2

2

46 , , , 1 sech
23 2

8 16
csch 1 ,

22

B Eu x y z t
A A

B EB E

A

ξ

ξ

  + Ψ Ω Ω = + −    Ψ   

+ Ψ + Ψ   Ω + +   ΨΩ    

 

Substituting Eq. (16) to Eq. (21) into Eq. (15), together 
with Eq. (8) and simplifying, the travelling wave solutions 
become (if 1 0C =  but 2 0C ≠ ; 2 0C =  but 1 0C ≠ )) 
respectively: 

 
( )

( )
3

2 2
2

1 , , ,

1 4 csc 1 ,
22

u x y z t

B E
A

ξ
   − −Ω = + Ψ +Ω −     Ψ     

 

 

( )

( )
3

2
2

2 2

2 , , ,

4
csc 1 ,

26 2

u x y z t

B E

A A
ξ

− + Ψ   Ω −Ω = − −   Ψ   

 

 
( )

( )

( )

2

3 2

4 2 2 2
2

2

4
3 , , ,

6

8 16
sec 1 ,

22

B E
u x y z t

A

B B E E

A
ξ

− + Ψ
=

+ Ψ + Ψ   −Ω − −   ΨΩ    

 

 

( )
( )2

3 2

1

2

2 2

2
4 , , ,

2

2 cot
2

4 ,

2 cot
2

d Bd E
u x y z t

A

b
d B

b

d B

ξ

ξ

Ψ Ψ + −
=

 
 

Ψ +   −Ω Ψ + + −Ω    Ψ  
 
 
 Ψ +
   −Ω Ψ + + −Ω     Ψ   

 

 
( )

( )2
2

3 2 2

4 2 2 2
2

2

4
5 , , , cot

22

8 16 tan ,
22

B E
u x y z t

A A

B EB E
A

ξ

ξ

− + Ψ  Ω −Ω
= −   Ψ 

   + Ψ + Ψ −Ω
−      ΨΩ   

 

( )
( )

( )

2
2

3 2 2

4 2 2 2
2

2

4
6 , , , csc 1

23 2

8 16
sec 1 ,

22

B E
u x y z t

A A

B EB E

A

ξ

ξ

+ Ψ   Ω −Ω = − −   Ψ   

+ Ψ + Ψ   −Ω − −   ΨΩ    

 

 

( )

( )
4

2 2

2 2 2

1 , , ,

4 cos
21 ,

2 cos sin2 2

u x y z t

B E

A

ξ

ξ ξ

  −Ω
+ Ψ   Ψ −  =  

   −Ω −Ω +Ω       Ψ Ψ    

 

 

( )4

0 1

2

2

2 , , ,

sin
2

2
2 cos

2

sin
2

,
2

2 cos
2

u x y z t

Ba a d

Ba d

ξ

ξ

ξ

ξ

  −Ω
−Ω   Ψ  = + + − 

Ψ  −Ω Ψ    Ψ  

  −Ω
−Ω   Ψ  + + − 

Ψ  −Ω Ψ    Ψ  

 

 ( )

2 2
0 2

4
2

tan 4
2

3 , , , ,
tan

2

ia b
u x y z t

i

ξ

ξ

 Ω
Ω − Ψ  Ψ =

 Ω
Ω   Ψ 

 

 

( )4
1

0 1

2

2

4 , , ,

tan
2 2 2

tan ,
2 2 2

u x y z t

B i ia b d

B i ib d

ξ

ξ

−

−

  Ω Ω
= + + −    Ψ Ψ Ψ  

  Ω Ω
+ + −    Ψ Ψ Ψ  

 

where 

 

( )

( )

3 2 2 2

1 2

2 2

2

2 2 3 2
,

2 4
,

d d B Ed dB BE
b

A
A B E

V
A

− Ψ + Ψ − Ψ + −
=

− + + Ψ
=
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( )4 2 3 2 2 2 2

2 2

2 2 2 2
,

d d B Ed d B dBE E
b

A

Ψ + Ψ − Ψ + − +
=  

 

( )4

2 2
0

2 4 4
2 2

2 2

5 , , ,

4 tan
2

tan 16
2

,
4 tan

2

u x y z t

ia

ia b

i

ξ

ξ

ξ
=

  Ω
Ψ Ω   Ψ  

  Ω − Ω − Ψ   Ψ  
 Ω

Ψ Ω   Ψ 

 

 

( )4

22
0 2

2
2

2

6 , , ,

sec 1
24

4
,

sec 1
2

u x y z t

a ia

b

i

ξ

ξ

  Ω Ω = − −   ΨΨ    

Ψ
−

  Ω Ω −   Ψ   

 

Substituting Eq. (16) to Eq. (21) into Eq. (15), along 
with Eq. (9) and simplifying, yields exact solutions 
respectively: 

( ) ( )
2

2 22
5 2

1 2

11 , , , 4 4
2

Cu x y z t E B
C CA ξ

   = Ψ − Ψ +  +   
 

 

( )

( )

2 2 2

5 2

2
2

1 2
22

2
2

1 2

6 6 22 , , ,
3

2 2
2

2
2

B d Bd Eu x y z t
A

B d CBd
C CA

CBd
C CA

ξ

ξ

+ Ψ + Ψ − Ψ
=

 Ψ + Ψ   − + +  Ψ +   

  Ψ  + + +  Ψ +   

 

 
( )

( )2

5 2

24 2 2 2
1 2

2 2
2

4
3 , , ,

6

8 16
8

E B
u x y z t

A

C CB EB E
CA

ξ

− Ψ +
=

  ++ Ψ + Ψ
+    Ψ   

 

 
( )

1
2

5 0 1
1 2

2
2

2
1 2

4 , , ,
2

,
2

CBu x y z t a b d
C C

CBb d
C C

ξ

ξ

−

−

  
= + + +   Ψ +  

  
+ + +   Ψ +  

 

 
( )

( )2 22
2

5 2 2
1 2

24 2 2 2
1 2

2 2
2

4 25 , , ,

8 16
8

E B Cu x y z t
C CA A

C CB EB E
CA

ξ

ξ

− Ψ +  Ψ
= +  + 

  ++ Ψ + Ψ
+    Ψ   

 

( )

( )

( )

5
22

2 2 2

1 2
2 2 2

4 2 2 2 1 2

2

6 , , ,

4 3
8 4

1
24

3 8 16

u x y z t

CB E
C C

A C CB EB E
C

ξ

ξ

  Ψ Ψ + Ψ +    +  =  
Ψ   +

 + + Ψ + Ψ  
   

 

Substituting Eq. (16) to Eq. (21) into Eq. (15), together 
with Eq. (10) and simplifying, the obtained travelling 
wave solutions become (if 1 0C =  but 2 0C ≠ ; 2 0C =  
but 1 0C ≠ )) respectively: 

 ( ) 2
6 2

21 , , , coth 1u x y z t
A

ξ
  ∆ ∆ = −   Ψ   

 

 
( )
( )

6

2 2
2

2 , , ,

2
2coth csch

3

u x y z t

E A C

A
ξ ξ

    − ∆ ∆ = +       Ψ Ψ     

 

 ( ) ( ) 2
6 2

2
3 , , , 4 3sech

3

E A C
u x y z t

A
ξ

  − − ∆ = −    Ψ   
 

 

( )

( )

6

3 3 2
2 2

2

4 4 2 3 2 2

2

4 , , ,

2 2

coth
2

2

coth

u x y z t

d Edd E
d

A

d Ed E

d

ξ

ξ

  
  

Ψ − Ψ  Ψ − Ψ −   ∆  Ψ + ∆     Ψ   =   
  
  Ψ − Ψ + Ψ  +
    ∆  Ψ + ∆      Ψ    

 

 

( )6

2

2 2
2 2

5 , , ,

2 coth
4 2

coth

u x y z t

E
E E

A A A

ξ

ξ

 ∆
Ψ   Ψ− Ψ Ψ = + +

 ∆
  Ψ 

 

 
( ) ( )

( )

6 2

2 2
2

4
6 , , ,

3
2

2 csch sech

E A C
u x y z t

A
E A C

A
ξ ξ

−
=

    − ∆ ∆ + + −       Ψ Ψ     

 

 ( ) 2
7 2

21 , , , 1 secu x y z t h E
A

ξ
   Ψ ∆ ∆ = − −     Ψ Ψ     

 

 ( ) 2
7 2

22 , , , 3 tanh
3

u x y z t E
A

ξ
  ∆ = ∆ − Ψ   Ψ   
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( )

( )

7

22 2 2

2 2

3 , , ,

6 cosh 2 sinh

3 sinh

u x y z t

E A C E

A

ξ ξ

ξ

   ∆ ∆
− − Ψ∆      Ψ Ψ   =

 ∆
∆   Ψ 

 

 

( )7

2 2 2

2 2 3 2 2

2
2

4 , , ,

tanh

2

tanh

tanh

u x y z t

d

E Ed E

A d

ξ

ξ

ξ

  ∆
Ψ ∆   Ψ  

 
 ∆ − Ψ∆ − Ψ + Ψ   Ψ  =

  ∆
Ψ + ∆    Ψ  

 

 

( )7

2

2 4 2 2

2 2

5 , , ,

4 tanh

2 tanh 2

tanh

u x y z t

E

E

A

ξ

ξ

ξ

  ∆
− Ψ∆   Ψ  
  ∆ + ∆ + Ψ   Ψ  =

 ∆
∆   Ψ 

 

 

( )7

2

2 2 2
2

6 , , ,

4 6 tanh
1

3 6 coth

u x y z t

E

A E

ξ

ξ

  ∆
Ψ + ∆   Ψ  =  

 Ψ ∆ +    ∆ Ψ  

 

Substituting Eq. (16) to Eq. (21) into Eq. (15), along 
with Eq. (11) and simplifying, yields following exact 
solutions (if 1 0C =  but 2 0C ≠ ; 2 0C =  but 1 0C ≠ )) 
respectively: 

 

( )8

2

2 2 2

1 , , ,

sin
2

sin 1 sin

u x y z t

E

A

ξ

ξ ξ

  −∆
Ψ   Ψ  −

=  
    −∆ −∆ +∆ −         Ψ Ψ     

 

 

( )8
2 2 2

2 2

22

2

2 , , ,

6 2 4 cot
3

2 cot ,

u x y z t

d E d id
A A

i id
A

ξ

ξ

  Ψ − Ψ Ψ −∆ ∆ = − +    Ψ Ψ   

  Ψ ∆ ∆ + +    Ψ Ψ   

 

 
( )

( )
8

22
2

2 2

3 , , ,

22 sec 1
3

u x y z t

E A CE i
A A

ξ
  −− Ψ ∆ = − −   Ψ∆    

 

 

( )

( )

( )

8

2 2

3 2

1

2

4 2 2 2

2

4 , , ,

2 2

2 cot

2

cot

u x y z t

d E

d Ed

d
A

d Ed E

d

ξ

ξ

−

−

 
 
 Ψ − Ψ
 
 − Ψ − Ψ
 
   −∆ −∆  = × +     Ψ Ψ    
 + Ψ − Ψ + 
 
   −∆ −∆ × +    Ψ Ψ     

 

 

( )8

2 2

2 4 2 2 4

2 2 2

5 , , ,

4 sin cos

2 cos 2 sin

sin cos

u x y z t

E

E

A

ξ ξ

ξ ξ

ξ ξ

    −∆ −∆
− Ψ∆       Ψ Ψ    
    −∆ −∆ − ∆ − Ψ       Ψ Ψ    =

   −∆ −∆
∆       Ψ Ψ   

 

( )

( )

( )

2

22 4 2

8
2 2

2 cot

2

3 cot 3

6 , , ,
3 cot

iE A C

i E A C

u x y z t
iA

ξ

ξ

ξ

  ∆
− ∆   Ψ  

 
 ∆ − ∆ − −   Ψ  =

 ∆
∆   Ψ 

 

 ( ) ( ) 2
9 2

21 , , , sec 1u x y z t E A C
A

ξ
   − −∆ = − + ∆ −     Ψ     

 

 

( )9

2 2

2

2

2

2 , , ,

cos

12

sin

6 2
1 cos

3

6 cos sin

,
cos

u x y z t

id

d
i

d E
i

A

i id

i

ξ

ξ

ξ

ξ ξ

ξ

   ∆
Ψ    Ψ   Ψ   

 ∆  − −∆     Ψ   Ψ − Ψ −
  ∆
  =  Ψ  
 

     ∆ ∆ Ψ − −∆        Ψ Ψ      +  ∆    Ψ  

 

 

( )9

2 2 2 2

2 2

3 , , ,

2 sin 6 cos

3 sin

u x y z t

i iE E

iA

ξ ξ

ξ

   ∆ ∆
− ∆Ψ + Ψ      Ψ Ψ   =

 ∆
∆   Ψ 
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( )

( )

( )
( )

9
2

2 2

3 3 2

4 4 2 3 2 2

2
2

4 , , ,

2 tan

2 2 tan

2

tan

u x y z t

id E d i

id Ed d i

d Ed E

iA d i

ξ

ξ

ξ

   ∆  Ψ − Ψ Ψ − ∆     Ψ    
   ∆  − Ψ − Ψ Ψ − ∆     Ψ    
 
+ Ψ − Ψ + Ψ 
 
  =

  ∆ Ψ − ∆    Ψ   

 

 

( )9

2

2 2 2 4 2 2

5 , , ,

4 tan
1

tan 2 tan 2

u x y z t

E

A E

ξ

ξ ξ

  −∆
− Ψ∆   Ψ  =  

   −∆ −∆ ∆ − ∆ − Ψ       Ψ Ψ    

 

 

( )9

2 2

2 2 2

2

6 , , ,

4 6 sec 1

6 csc 1

3

u x y z t

E

E

A

ξ

ξ

   −∆ ∆Ψ − ∆ −    Ψ    
 

   −∆ − Ψ −    Ψ    =
∆

 

4. Discussions 

The advantages and validity of this executed method 
over the basic ( )'/G G -expansion method have been 
examined as below. 

Advantages: The key advantage of new generalized 
( )'/G G -expansion method over the basic ( )'/G G -
expansion method is that this method provides more 
general and huge number of new exact travelling wave 
solutions with various arbitrary parameters. The analytical 
solutions of NLEEs have its vital importance to disclose 
the internal mechanism of the complex physical phenomena. 
Apart from the physical application, the exact solutions 
help the numerical solvers to compare the exactness of 
their results and assist them in the stability analysis. 

Validity: A good agreement is found between our obtained 
solutions and published results in the earlier literature, if 
the parameters take particular values, which validate the 
obtained solutions. Bekir and Uygun [37] used the basic 
( )'/G G -expansion method to the (3+1)-dimensional KP 
equation and obtained only six solutions (F.1) to (F.6) (see 
Appendix). On the other hand, fifty-four solutions have been 
generated via the new generalized ( )'/G G -expansion 
method. Bekir and Uygun [37] presented the solution form 

as ( ) ( ) ( )( )
0

' /
m i

i
i

u a G Gξ ξ ξ
=

= ∑ , where 0ma ≠  and 

LODE is used as an auxiliary equation: 
( ) ( ) ( ) 0G G Gξ λ ξ µ ξ′′ ′+ + = . In this case, there are only 

three solutions with the general solution of LODE and 
also has a very few options of solution style. On the other 
hand, the solution form of this article is  

( ) ( )
( )

( )
( )0 1

,
J JM M

J J
J J

G G
u a d b d

G G
ξ ξ

ξ
ξ ξ

−

= =

′ ′
= + + +

      
      
      

∑ ∑  

where Ma  or Mb  may be zero, but both of them cannot 
be zero at a time and second order nonlinear ODE 
(SONLODE) is used as an auxiliary equation:  

 
( ) ( ) ( ) ( )

( )( ) ( )( )2 2 0,

AG G BG G

C G E G

ξ ξ ξ ξ

ξ ξ

′′ ′−

′− − =
 

where , ,A B C  and E  are arbitrary parameters. It is 
important to point out that there are five solutions with  
the general solutions of SONLODE. Moreover,  
several choices of multipattern solutions are available,  
and those could be used to investigate the real-world 
problems through considering various values of arbitrary 
parameters. 

5. Conclusions 

In this article, the new generalized ( )'/G G -expansion 
method has successfully been applied to the (3+1)-dimensional 
KP equation. In the basic ( )'/G G -expansion method,  

the auxiliary equation ( ) ( ) ( ) 0G G Gξ λ ξ µ ξ′′ ′+ + = ,  
has three different general solutions. But in the  
new generalized ( )'/G G -expansion method, the  
second order nonlinear ODE as the auxiliary equation 

( ) ( ) ( ) ( ) ( ){ } ( ){ }2 2 0,AG G BG G C G E Gξ ξ ξ ξ ξ ξ′′ ′ ′− − − =  
and has five different general solutions. Due to 
investigation with the higher order nonlinear ODE  
of the higher dimensional evolution equation many  
new and more explicit soliton solutions are constructed 
with several arbitrary parameters. These parameters  
might be important to demonstrate more complex  
physical phenomena. This study also shows that new 
generalized ( ) ( )( )' /G Gξ ξ -expansion method is quite 
efficient and well suited to be implemented for 
constructing new exact solutions of various NLEEs which 
frequently arise in mathematical physics, engineering 
sciences and many scientific real-world problems. 
Furthermore, the obtained solutions could be used as 
models in real world problems, such as tsunami waves and 
earthquake etc. 
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Appendix 

Bekir and Uygun’s solutions [37] 
Bekir and Uygun’s [37] produced exact solutions of the (3+1)-dimensional KP equation via the basic  

( )'/G G -expansion method which are as follows: 
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When  2 4 0,λ µ− >  

( )

2
2 2

1 2
2

1
2 2

1 2

4 4
sinh cosh

2 24 1 ,
2 4 4

cosh sinh
2 2

C C

u

C C

λ µ λ µ
ξ ξ

λ µξ
λ µ λ µ

ξ ξ

     − −     +       −     = −           − −    +           

  (F.1) 

where ( )2 4 2x y z tξ λ µ= + + + − +  and 1 2,C C are arbitrary constants. 

( )

2
2 2

1 2
2 2

2
2 2

1 2

4 4
sinh cosh

2 24 5 2 ,
2 6 34 4

cosh sinh
2 2

C C

u

C C

λ µ λ µ
ξ ξ

λ µ λ µξ
λ µ λ µ

ξ ξ

    − −    +
     −     = + +        − −    +
    

    

  (F.2) 

where ( )2 4 2x y z tξ λ µ= + + + − −  and 1 2,C C are arbitrary constants. 

When 2 4 0,λ µ− <  

( )

2
2 2

1 2
2 2

3
2 2

1 2

4 4
sin cos

2 24 2 ,
2 24 4

cos sin
2 2

C C

u

C C

µ λ µ λ
ξ ξ

µ λ λξ µ
µ λ µ λ

ξ ξ

    − −    − +
     −     = − +        − −    +
    

    

  (F.3) 

where ( )2 4 2x y z tξ λ µ= + + + − +  and 1 2,C C  are arbitrary constants. 

( )

2
2 2

1 2
2 2

4
2 2

1 2

4 4
sin cos

2 24 6 2 ,
2 6 34 4

cos sin
2 2

C C

u

C C

µ λ µ λ
ξ ξ

µ λ λ µξ
µ λ µ λ

ξ ξ

    − −    − +
     −     = + +        − −    +
    

    

  (F.4) 

where ( )2 4 2x y z tξ λ µ= + + + − −  and 1 2,C C  are arbitrary constants. 

When 2 4 0,λ µ− =  

( )
( )

2 2
2

5 2
1 2

2
2 ,

2
Cu

C C

λξ µ
ξ

= − +
+

  (F.5) 

where ( )2 4 2x y z tξ λ µ= + + + − +  and 1 2,C C  are arbitrary constants. 

( )
( )

2 2
2

6 2
1 2

2 5 2 ,
6 3

Cu
C C

λ µξ
ξ

= + +
+

   (F.6) 

where ( )2 4 2x y z tξ λ µ= + + + − −  and 1 2,C C  are arbitrary constants. 
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