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Abstract  The discrete wavelet transformation (DWT) is of considerable use in the domain of time series analysis. 
A fundamental problem in DWT is the distortions occurring at the edges while utilizing finite-length series. 
Insufficient information at boundary regions can lead to questionable accuracies of the transformation at the edges 
which will thus make a profound effect on further applications. Since the generally used methods to handle edge 
distortion such as zero padding has their own drawbacks, there are studies that have been done to alleviate the 
problem using mathematical techniques. With the main objective of finding an evidence-based strategy to reduce the 
edge effect inherent to DWT using statistical terminologies, this research compares the effect of statistical and 
machine learning-based denoising and extrapolating techniques in reducing-edge distortion using daily catchment 
flow series. The most suitable mother wavelet function and the decomposition level for the given series were 
considered as “biorthogonal 3.1” and level 2 and the edge effect was quantified using MAPE metric. The 
extrapolating techniques outperformed the denoising methods resulting Vanilla LSTM model with the lowest MAPE 
values and according to the averaged results taken considering 10 different points of the series, the Vanilla-LSTM 
and the SARIMA-LSTM hybrid model convincingly alleviate the edge distortion of all coefficients in a more 
generalized manner. 
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1. Introduction 

One frequently used way of collecting experimental 
data is as a sequence of values at successive equally 
spaced intervals in time. These sequences are called time 
series and the fundamental problem with time-series  
data is processing them to extract accurate and meaningful 
information. Practical time series are mostly complex  
in nature, noisy and strongly non - stationary.  
According to [1], non - stationary time series cannot  
be analyzed by using correlation methods or  
frequency-domain representations such as classical 
Fourier transformation. Usually, the most distinguishable 
information of a time series is captured by the frequency 
component of a series. The information which cannot be 
observed in the time domain can be observed in the 
frequency domain. But on some occasions, having both 
time and frequency domain information at once can 
become necessary and meaningful. A concept in the time-
frequency domain that takes information in time and 
frequency simultaneously into account will be necessary 
for such instances. 

To overcome this problem in analyzing non - stationary 
time series, Gabor [2] introduced the short-time Fourier 

transform. The idea behind it was to break a series into 
sub-samples and then apply Fourier transformation into 
each sub-sample. The one major drawback of this method 
was, using the same window to analyze the entire series. 
Hence, the frequency resolution becomes similar across 
the entire series. As an alternative to the above approaches, 
wavelet analysis has been proposed. 

Wavelet analysis was originally invented to in seismic 
signal analysis and it has a higher resolution in both 
frequency and time domain [3]. The idea behind it first 
came to the spotlight in the late 1970s when J. Morlet, a 
geophysical engineer, came up with an idea to analyze 
different frequency bands with different window functions. 
These windows had compact support in both time and 
frequency domains. The honor of developing a wavelet 
with better localization properties goes to Alfred Haar, a 
German mathematician who discovered the first 
orthonormal wavelet basis function in 1909 [4].  

The wavelet transform is the decomposition of a series 
into a set of basis functions consisting of expansions, 
shrinking and translations of a mother function called a 
wavelet [3]. Wavelet transformation is about looking at 
different scales and resolutions of a series. It can view  
a series in multiresolution and multi-scaled view and  
that property makes it outstanding among other 
transformations.  
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There are two types of wavelet transformations known 
as discrete wavelet transformation and continuous wavelet 
transformation. Discrete wavelet transformation has 
become a standard tool for time series and signal 
processing applications of several areas in research and 
industry. It can be described as an implementation of the 
wavelet transformation by using a set of discretized and 
restricted wavelet scales and translations. Wavelets for the 
transformation are generated by a single basic wavelet 
called the mother wavelet function by scaling and 
translation [5].  

The procedure in wavelet analysis is to adopt the 
wavelet prototype function, mother wavelet; thus, the 
original series can be represented in terms of wavelet 
coefficients [6]. A wavelet can be described as a  
mini-wave-like oscillation with an amplitude that begins 
at zero. If one can select the most suitable mother wavelet 
function adapted to the data series, data can be sparsely 
represented and this makes wavelets an outstanding tool in 
various applications such as data compression [7]. 

A wavelet in wavelet transformation can be described 
as a mini-wave that is localized in time with a finite length. 
Each type of wavelet has a different shape, smoothness, 
and compactness and is useful for different purposes. 
Wavelets are limited in time and frequency. Hence, 
instead of lasting forever like a wave having no limit in 
time, it dies out quickly. This time-limiting quality provides 
wavelets with more resolution in the time domain.  

The time localized property of wavelets allows wavelet 
transformation to obtain time/location information of a 
series. Hence, a signal can be multiplied with the wavelet 
at different locations in time. This procedure starts at the 
beginning of the signal and slowly moves towards the end 
of the signal. This is known as convolution. In most  
real-world applications, a particular series may have a 
finite support. As the wavelets get closer towards the end 
of the signal, computing convolution becomes harder 
since it has to consider non – existent values beyond the 
boundary [8,9,10].  

Insufficient information in the boundary regions can 
lead to questionable accuracies of wavelet transformation 
at the edges of a series. The impacts of boundary effects 
influence extensively for some systems which have longer 
period sequences and thus require a high resolution in the 
frequency domain [11]. This is called edge distortion and 
can affect the accuracy of the transformation at the edges 
of the series.  

If explained more comprehensively, the discrete 
wavelet transformation of the edge of a finite length series 
can behave in a different and complicated way rather than 
the usual transformation. This can be witnessed by 
splitting a series from the middle of the series and 
applying the discrete wavelet transformation. The 
transformation at the split point differs from the 
transformation of the original series at the same point. 
This happens because the split series do not have 
supporting observations for the transformation after the 
edge. But the original series will not have that problem at 
the said point since it’s continuous. 

This study proposes a novel methodology to handle the 
adverse effects that causes due to wavelet edge distortion 
through a comprehensive scientific comparison among 
potential methods. 

2. Literature Review 

According to Su, Liu, & Li, [12], “Boundary effects are 
caused by incomplete data in the boundary regions when 
the analysis window gets closer to the edge of a signal.” 
Strang & Nguyen [13] has explained that border distortion 
is a result of choosing the wrong extension method when 
computing the convolution of finite length signals (p.339).  

Edge effects have been defined using different names 
such as edge distortion and boundary effect by researchers 
in their studies [12,14]. According to Mallat [15], the 
edges of a signal or a series have to be treated differently 
than the other parts of the signal to avoid distortions. 
There are two alternative approaches to handle border 
effects such as, accepting the loss and truncating those 
questionable results or artificial extensions at the end of 
the boundaries [12]. 

There are various basic methods that are proposed to 
reduce the edge distortion such as zero padding, circular 
convolution, and symmetric extension [13]. These 
common extension methods can have their own 
drawbacks [12] and circular convolution and symmetric 
extension methods can lead to undesirable edge effects 
[16]. Basnayake et al., [14] have done a study on an 
algorithm that can handle the non-stationarity and non-
linearity of a time series by building expert models to 
different data segments to avoid the forecasting error due 
to non-stationarity.  

This study has proposed wavelet-based denoising to 
address the edge distortion that arises when using the 
discrete wavelet transform technique to decompose the 
real-time series into different data segments. The 
“Heuristic Sure” threshold that uses a level-dependent 
estimation of level noise has been selected as the most 
suitable wavelet threshold to denoise the time series. The 
wavelet denoising based algorithm has been proven 
effective in forecasting nonlinear and non-stationary time 
series data. 

Williams & Amaratunga [16], have developed a 
discrete wavelet transformation technique that does not 
show the evidence of edge distortion by extrapolating a 
series. This study suggests a mathematical extrapolation 
method by determining the coefficients of a best-fit 
polynomial for the data points which are considered. The 
proposed method is proven to perform better than the 
circular convolution-based discrete wavelet transform and 
can be applied to orthogonal wave bases.  

A study was done by Su et al., [10] that discusses the 
problem of having border effects in time-frequency 
analysis when using wavelet transformation. This study 
proposes a smooth extension to the series using Fourier 
transformation to avoid distortion. This method can 
preserve the waving characteristics of the time series 
which makes it more ideal than an alternative technique. 
According to the final results of the study, this extension 
scheme provides effective performance and the author 
suggests using this method in other time-frequency 
analysis techniques other than the wavelet transformation 
which exhibits border effects. 

The discrete wavelet transformation is in considerable 
practical usage for applications related to sequential data. 
Utilization of such applications relies on the accuracy and 
the precision of the transformation and it could become 
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problematic if the transformation results in questionable 
accuracies. Traditional methods which can be used to 
handle edge distortion are highly controversial and come 
with its own drawbacks. Thus, mathematicians and 
researchers have done several past studies to handle the 
edge effect and many of these approaches are 
mathematically supported. Mathematical approaches 
being deterministic in nature can always produce the same 
output from a starting condition or an initial state. Hence, 
a statistical approach that considers the native randomness 
in non – stationary time series would be beneficial and 
more effective for handling edge distortion in discrete 
wavelet transformation. Hence, this research is focused on 
using denoising and extrapolating techniques to handle 
edge distortion in DWT of time-series data, using both 
statistical and machine learning terminologies. 

3. Methodology 

This study uses the daily catchment flow data of 
Mahaweli reservoir from 1996 to 2015 which was 
obtained from the Mahaweli Authority. Mahaweli 
hydropower complex associated with the Mahaweli 
reservoir has six major power stations with a capacity of 
666MW. The power stations under the Mahaweli 
hydropower complex are Victoria, Kotmale,  Randenigala, 
Ukuwela, Rantambe, Bowatenna and Nilambe. Original 
data for the catchment flow to the upmost reservoir of 
Kothmale have been collected daily. These daily time 
series consist of 7305 observations with no missing values. 

The first orthonormal wavelet basis function is  
the Haar wavelet which was introduced by the German 
mathematician Alfred Haar in 1909 [4].  

The wavelet function can be defined as follows by ψ. 
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Here a is the scale and b is the translation where t is 
time. Scaling is for either dilating or compressing the 
series. Low frequencies are represented by dilated or 
stretched scales and high frequencies are represented by 
small or compressed scales. The translation is related to 
the location of the mother wavelet and shifting it in time 
[17]. 

Discrete wavelet transformation is conducted by 
filtering the signal at different cut-off frequencies and 
different scales. It analyses a series by decomposing it into 
separate detailed and approximation coefficients. Both 
high and low pass filters are used in this process to 
analyze high and low frequencies respectively [17].  

There are several ways to define discrete wavelet 
transformation mathematically. The DWT of a continuous 
series x(t) can be defined as, 
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Where ψ(m,p) is the wavelet function which is created 
from the scales and translated mother wavelet function 
using scale m and translation p. Hence ψ(m,p) can be 
written as follows [18]. 
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The intuition behind DWT is explained by Polikar, [17] 
as follows: 

Consider a series x[n]. The procedure starts with 
sending the series x[n] through a half-band digital low 
pass filter with the impulse response g[n]. Filtering a 
series according to the mathematical operation known as 
the convolution of the series with the impulse response 
and can be defined as follows. 
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Half band low pass filters remove all the frequencies 
higher than half of the highest frequency of the series. 
Since half of the frequencies are removed after sending a 
series through a low pass filter, half of the samples can be 
eliminated according to Nyquist’s rule. Discarding 
samples of the series will sub-sample the series by two 
hence the scale is doubled now. Low pass filtering 
removes information that has high frequencies keeping the 
scale unchanged. But the sub-sampling process changes 
the scale of the series.  

The signal is decomposed simultaneously by using a 
high pass filter h[n]. The filtering and sub-sampling 
processes of two filters add up to one level of 
decomposition. The low pass filters output the 
approximation coefficient while the high pass filters 
output the detail coefficient. This filtering procedure 
continues with the number of decomposition levels one 
would state. A level two decomposition can be 
represented as in Figure 1, 

 
Figure 1. Level 2 decomposition in DWT 

Here h and g are high and low pass filters respectively 
and d1 and d2 are the first and second level detail 
coefficients whereas a2 is the second level approximation 
coefficient. This process can be continued until a desired 
number of levels have been reached. The original series 
can be reconstructed using approximation and detailed 
coefficients by upsampling by two and passing through 
high and low pass synthesis filters and adding them [19]. 

Discrete wavelet transformation produces several detail 
and approximation coefficients depending on the 
decomposition level provided. The edge effect can be 
identified in each of these components separately. The 
difference between the transformations of the original 
series and the distorted series can be captured as the edge 
effect. 
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Most researchers prefer unit free measures for 
comparing time series. One such method is the mean 
absolute percentage error (MAPE) which calculates the 
error as a percentage of the actual value and is widely 
used to compare the error of the forecasts [20]. MAPE can 
be calculated as follows: 

 1
1 n t t

t
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where At is the actual value and the Ft is the forecasted 
value, n is the number of time points and t represents the 
time. This can be adapted to calculate the edge effect by 
taking the original series as the actual series and distorted 
series as the other series. Then the error percentage can be 
measured among the two series considering the same time 
step. 

Single exponential smoothing is the simplest form of 
exponential smoothing. This technique can only be used 
for non-seasonal time series which do not show any 
specific trend. Many real-world time series consist of 
trends and seasonality, but these can be measured and 
removed to produce more stationary series [21]. Single 
exponential smoothing consist of one single parameter 
called smoothing parameter α. Considering a specific 
value of α, one–step forecasts can be iteratively produced 
through the series and then the mean square error can be 
calculated for each considered value of α. The α value 
which produces the least MSE value can be considered as 
the optimal smoothing parameter for a given time series 
[22]. 

Holt-Winters method is another smoothing technique 
which is also known as the triple exponential smoothing. 
It has the ability to handle data with seasonal variations 
and trend components [21]. In the triple exponential 
smoothing model, there are three parameters α, β and γ 
which are smoothing factors for level trend and 
seasonality. Other than that, there are other parameters 
that explain the type of time-series properties. They are, 
trend type, seasonality type, dampen type, damping 
coefficient and seasonal period. 

Time series extrapolating also known as time series 
forecasting is used in many domains to gain future 
information in a useful manner. Chris Chatfield, [23] 
explains that “Univariate forecasts are methods where 
predictions depend only on the present and past values of 
the single series being forecasted, possibly augmented by 
a function of time such as a linear trend.” 

Time series forecast models need to learn past and 
present patterns of data to accurately predict values over 
time. Deep learning models have the ability to learn from 
raw and imperfect data and extract important features to 
improve forecasting [24]. LSTMs are a special type of 
RNN deep learning model that is designed to handle the 
long-term dependency problem. They have the ability to 
handle it with the vanishing gradient problem [25]. 
LSTMs have gates that regulate the flow of information 
through the network. These gates decide which 
information should be passed and which are not to the cell 
state which is the memory of the network. 

Auto-Regressive Moving Average (ARMA) models are 
important in modeling stationary series. Auto-Regressive 
Integrated Moving Average (ARIMA) which is an 

extended version of ARMA models can process non-
stationary series by differencing finitely many times. 
Trend patterns can be removed by differencing a time 
series hence ARIMA(p,d,q) models can be used to 
represent non-seasonal data with a trend [26]. If the time 
series consists of seasonal patterns, seasonality also 
should be modeled using an additional term. This is a 
special case of ARMA models known as Seasonal 
ARIMA (SARIMA). 

SARIMA models can be represented using the notation 
as SARIMA(p,d,q)×(P,D,Q)s. Here, p is the trend AR 
order, q is the trend MA order and d is the trend difference 
order. There are four additional terms to model the 
seasonality where P is the seasonal AR term, Q is the 
seasonal MA term, D is the seasonal difference order and 
s is the seasonal period. 

A hybrid approach using ARIMA and ANN models has 
been proposed by [27], for the purpose of time series 
forecasting. According to the results in this study, a hybrid 
approach using ARIMA and ANN models has been 
proven effective in forecasting time series rather than the 
existing models. 

A complex time series can be further decomposed as 
linear and non-linear components using decomposing 
techniques. The linear component can be modeled by 
econometric models such as SARIMA for seasonal series. 
ANNs can model complex non-linear relationships  
hence can be used to model the non-linear component. 
Among ANN models, RNNs and LSTMs have the ability 
to model sequential data. The LSTM model can handle 
long-term dependencies rather than the RNN models. 
Hence, LSTM models will be used to model the  
non-linear component. 

A time series can be either additive or multiplicative. 
Additive model: 

 t t ty L N= +  (6) 

Multiplicative model:  

 t t ty L N= ×  (7) 

Suppose Lt represents the linear component and tN  
represents the non-linear component. The model building 
procedure is as follows. 

Consider a time series ,ty  t = 1,2,3,…. A series of 

forecasts ˆtL  can be generated by modeling the linear 
component using ARIMA/SARIMA models. Then a series 
of non-linear components ( te ) can be generated by 
comparing the actual value ty  with the forecasted value L 
ˆtL . 

In accordance with the additive model, t t te y L= −  and 
according to the multiplicative model, / .t t te y L=  These 
are non-linear components and can be modeled using 
LSTM networks. Suppose the forecasts of the LSTM 
model is denoted by ˆtL . Then the final results can be 
obtained by concatenating the two results. For an additive 
model, the final forecast will be,  

 ˆ ˆˆt t ty L N= +  (8) 

For a multiplicative model, the forecast will be, 
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 ˆ ˆˆt t ty L N= ×  (9) 

4. Results and Discussion 

This study was conducted using a univariate time  
series which is daily catchment flow data from 1st  
January 1996 to 31st December 2015 that have been 
obtained from Mahaweli authority in Sri Lanka. The 
dataset consists of 7305 observations with no missing 
values.  

According to the preliminary analysis, the catchment 
flow series is a series without a trend which consist of 
annual and biannual seasonal components. Considering 
the most dominant periodicity, priority was given to the 
annual seasonality. Hence, the annual seasonality will be 
considered in further analysis. The series was considered 
non-stationary without conducting formal tests, due to the 
presence of multiple seasonality. 

As implied in literature, the edge distortion occurs as a 
result of having no information after the edge of a finite 
length series. Edge distortion in DWT of the catchment 
flow series can be observed as follows. 

First, the original series was split at the 6012th 
observation considering it as the last observation of the 
series. From here onwards, the split catchment flow series 
means the series with 6012 data points whereas the 6012th 
is the last observation. The original catchment flow series 
represents the catchment flow series with 7305 observations.  

Then the discrete wavelet transformation was applied to 
both original and the split catchment flow series separately. 
In the next step, each wavelet coefficient of the original 
and the split series were compared. The following figures 
denote those discrete wavelet coefficients of the aforesaid 
two series. In each figure, the coefficients of the original 
series are represented by the orange lines and the 
coefficients of the split series are represented by the blue 
lines. 

 
Figure 2. Detail 1 coefficients of original and split catchment flow series 

 
Figure 3. Detail 2 coefficients of original and split catchment flow series 
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Figure 4. Approximation 2 coefficients of original and split catchment flow series 

The split catchment flow series ends from the 6012th 
point and the original catchment flow series is longer than 
that with 7305 observations. If the discrete wavelet 
transformation at the edge of the split series is different 
from the transformation of the original series at the 6012th 
point, there is an edge distortion at the edge of the split 
catchment flow series due to the discontinuity in the series. 
The original catchment flow series transforms in the usual 
way at the 6012th point as it continues (does not end) at 
the considered point. 

According to the above plots (Figure 2, Figure 3 & 
Figure 4), a distortion between the original and the split 
sequences can be observed in each coefficient. In each 
figure, the blue line deviates from the orange line which is 
the original catchment flow series. The distortion of the 
transformed split series from the transformation of the 
original series can be evaluated using the MAPE measure 
and the calculated MAPE values are as follows. 

Table 1. MAPE of the edge effects 

Discrete wavelet coefficient MAPE (%) 
Detail 1 coefficient 10.000 
Detail 2 coefficient 85.655 
Approximation 2 coefficient 1.035 

 
The MAPE value captures the deviation of the blue line 

from the orange line. Detail 2 coefficient has the highest 
edge distortion whereas the approximation coefficient 
shows a slight deviation. Thus, it can be concluded that 
there is a distortion in the transformation of the split series 
from the transformation of the original series when the 
series is split at the 6012th observation. i.e. The 
transformation of the final series is distorted at the edge of 
the series. 

(Note: Before conducting the discrete wavelet analysis, 
the most suitable mother wavelet function and the 
decomposition level must be decided. This has been 
calculated in a previous study done by [14] using the same 
catchment flow series used in this study. According to that, 
the most suitable mother wavelet function is “biorthogonal 
3.1” and the decomposition level is 2. Hence, similar 
parameters were used in this study). 

For this study, initially, seven methods were compared 
in reducing-edge effect considering 6012th observation as 
the last observation of the series under two major 
approaches which are denoising and extrapolating 
techniques. Finally, the same techniques were applied 
considering 10 other points as the last observation of the 
series and the edge effect was examined. 

As the first approach, the denoising techniques were 
applied to handle the edge distortion. First, the original 
series (with 7305 observations) was denoised by using a 
statistical technique and transformed using the discrete 
wavelet transformation. Then the split series (with 6012 
observations) was denoised by using the same statistical 
technique and applied discrete wavelet transformation. 
Then the distortion of the denoised transformed split 
series from the denoised transformed original series can be 
calculated using the MAPE metric. This is the calculated 
edge effect after denoising the series. This edge effect can 
be compared with the real edge effect in the catchment 
flow series at the considered point. 

As the initial approach first the single exponential 
smoothing, and then the Holt-Winters method was applied 
to smooth the series. According to the results obtained by 
denoising the series using both methods, only the edge 
effect of detail 2 was reduced. As the denoising techniques 
did not come up with satisfying results, the need for an 
alternative approach was noticed.  

As the next approach of the study, several statistical 
extrapolating approaches have been utilized in order to 
handle the edge distortion. In this approach, first, the split 
catchment flow series (with 6012 observations) was 
extrapolated using several statistical techniques. Then the 
discrete wavelet transformation was applied on both the 
original catchment flow series and the extrapolated 
catchment flow series. As the next step, the edge 
distortion was calculated.  

According to the results of both extrapolation methods 
using SES smoothing and Holt-Winters smoothing, only 
the edge effect of detail 1 and 2 coefficients reduced As 
the above methods do not handle the edge effect as 
expected, the LSTM networks were used. The Vanilla 
LSTM and Bidirectional LSTM were used and among 
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them, the Vanilla LSTM reduced the edge effect of all 
three discrete wavelet coefficients while the Bidirectional 
LSTM effectively reduced the edge effect of detail 1  
and 2 coefficients only. Finally, a SARIMA-LSTM model 
was used to extrapolate the catchment flow series. This 
hybrid model reduced the edge effect in detail 1 and 2 
coefficients only. A summary of the results obtained after 
applying the above-described methods is given in the table 
below. 

Table 2. Summary of the MAPE of Edge Effects 

 Method 
MAPE (%) 

D1 D2 A2 

 Real Edge effect 10.00 85.65 1.03 

Noise-reducing 
Single exponential 
smoothing 19.85 69.78 1.69 

Holt winters 57.53 47.25 3.34 

Forecasting 

Single exponential 
smoothing 1.01 2.91 1.23 

Holt winters 0.25 18.69 1.83 

Vanilla LSTM 0.45 2.77 0.94 

Bidirectional LSTM 9.02 2.01 1.95 
SARIMA LSTM 
hybrid model 7.81 16.67 1.83 

 
All the above methods were applied considering one 

location in the time series. However, the nature of the 
edge effect can vary according to the nature of the last 
observations of a series. Examining several instances can 
be less biased rather than sticking to only one instance. 
Hence, it was decided to apply the above-explained 
techniques contemplating the edge effects at different 
splits.  

Suppose x is the last observation of the catchment flow 
series. The edge effect was calculated when x is equal to 
6012, 6080, 6500, 6550, 6600, 6650, 6700, 6750, and 
6850. Then, the above denoising and extrapolating 
techniques that were discussed in the advanced analysis 
were applied to examine the change in the edge effect of 
DWT. The change in edge effect at each instance was 
measured by using the MAPE criteria. Finally, the MAPE 
values of each statistical technique were averaged. The 
below table represents the averages of the MAPE values 
calculated considering each technique at different points 
of the series. According to the following average MAPE 
values, the noise reduction techniques are not as effective 
as extrapolating techniques. 

Initially, the study was conducted considering the edge 
effect at one point of the series. Hence the following 
results will be discussed contemplating the results 
obtained using the finite split series where the 6012th 
observation was the last observation.  

Outcomes of this study suggest that the single 
exponential smoothing performs far better as a denoising 
technique compared to the Holt-Winters method in the 
context of reducing the edge effect. Above denoising 
techniques reduced the edge effect of the detail 1 and 2 
coefficients only. Moreover, the reduction of the edge 
effect is not as high as expected. These results do not 
explain a clear relationship between denoising and edge 
effect also.  

Table 3. Summary of the average MAPE of Edge Effects 

 Method 
Average  

MAPE (%) 
D1 D2 A2 

 Real Edge effect 10 24.03 13.54 

Noise-
reducing 

Single exponential 
smoothing 13.21 33.98 6.27 

Holt winters 31.70 52.53 8.86 

Forecasting 

Single exponential 
smoothing 22.49 15.81 16.28 

Holt winters 9.63 17.40 10.39 
Vanilla LSTM 9.21 14.16 6.57 

Bidirectional LSTM 23.69 19.24 11.88 
ARIMA – LSTM 

hybrid model 9.88 10.78 9.87 

 
Denoising a series alters the resulting sequence. The 

discrete wavelet coefficients of a denoised series are far 
different from the discrete wavelet coefficients of the 
original series. However, the reduction of the edge effect 
can be measured as a percentage using MAPE and 
compared with the initial edge effect after denoising  
the series. On the other hand, denoising a series can 
produce meaningful information by removing unwanted 
fluctuations. Hence this technique has its own advantages 
and disadvantages. The effectiveness of using this 
technique to handle edge distortion depends on the 
purpose of the transformation. 

When the series was extrapolated using SES and Holt 
Winter’s method, the edge distortion in the resulting 
coefficients of the DWT seems to be reduced in detail 
coefficients 1 and 2. However, the forecasting error (MSE) 
of the results obtained by the SES method was 0.004 and 
the MSE of the Holt-Winters method was 0.006. Hence 
the model with the lowest MSE value performed better in 
handling the edge effect. Moreover, out of the two LSTM 
networks used, the Vanilla LSTM model performed 
considerably better than the bidirectional LSTM network. 
The edge effect of all three wavelet coefficients has been 
decreased after extrapolating the split series using Vanilla 
LSTM. The mean squared error of the forecasts given by 
Vanilla LSTM and bidirectional LSTM are 0.004 and 
0.014 respectively. The model with the lowest forecasting 
error has shown the most effective results in reducing-
edge effect. However, in this study, the forecasting error 
of the hybrid model is higher than the forecasting error 
given by the Vanilla LSTM model alone. Thus, the 
Vanilla LSTM has outperformed the hybrid model in 
reducing the edge distortion as well. 

Almost all the extrapolation techniques have 
outperformed the noise reduction techniques. However, in 
general, the Vanilla LSTM excelled significantly in 
reducing-edge distortion and extrapolation using SES was 
also nearly more effective than the other techniques. 
Compared to the mean squared error of extrapolation, it is 
a fact that the reduction of the edge distortion of the 
wavelet transformation is directly proportional to the 
decrease in the MSE of the extrapolation. The edge effect 
can be reduced with the decrease in the extrapolation error. 

According to the average MAPE values of the edge 
distortions recorded after applying the above techniques at 
several points of the series, the hybrid model and the 
Vanilla LSTM model have shown the most effective  
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results in handling the edge distortion by reducing the 
edge effect in all three discrete wavelet coefficients. The 
Hybrid model had a moderate performance in the previous 
individual instance considered. However, according to the 
collective results, it has been able to reduce the edge 
distortion successfully resulting in lower average MAPE 
values. In most of the instances considered, extrapolating 
using SES is not as effective compared to the one split  
(at 6012th observation) considered earlier. 

In both individual instances and collective instances, 
the Vanilla LSTM outperformed all the techniques. 

5. Conclusion 

Conclusions derived on completion of the research are 
listed as follows. Most effective models in reducing-edge 
distortion in discrete wavelet transformation have been 
found as vanilla LSTM and extrapolation using Single 
Exponential Smoothing. According to the averaged results, 
the Vanilla LSTM and Hybrid model can be used as 
extrapolation techniques to handle the edge distortion in a 
more generalized manner. The statistical denoising 
methods do not perform as expected in reducing the edge 
effect of discrete wavelet transformation. Both denoising 
techniques reduced the edge effect up to some extent and 
that also only in detail 1 and 2 coefficients. On average, 
the denoising techniques do not perform well in handling 
edge distortion. 
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