

Some Fixed Point Results in Extended Cone S_b - Metric Space

R. Hemavathy¹, P. Uma Maheswari^{2,*}

¹Department of Mathematics, Queen Mary's College (Affiliated to University of Madras), Chennai - 600004, Tamilnadu, India ²Department of Mathematics, Shri Krishnaswamy College for Women (Affiliated to University of Madras), Chennai - 600040, Tamilnadu, India *Corresponding author: umauva2011@gmail.com

Received September 17, 2022; Revised October 23, 2022; Accepted November 03, 2022

Abstract In this paper, we introduce a notion of extended Cone S_b -metric space and prove some fixed point results with various types of contractive conditions. Our results enlarge many results in the literature.

Keywords: cone metric space, extended S_b - metric space, fixed point

Cite This Article: R. Hemavathy, and P. Uma Maheswari, "Some Fixed Point Results in Extended Cone S_b - Metric Space." *American Journal of Applied Mathematics and Statistics*, vol. 10, no. 3 (2022): 76-79. doi: 10.12691/ajams-10-3-2.

1. Introduction and Preliminaries

In 2007, Huang and Zhang [1] introduced the idea of cone metric space, which is a generalization of metric space by replacing the real numbers by ordering Banach space. Consequently, several originators consider the development of cone metric space for mappings that satisfying different contractive conditions [2-14].

The concept of S – metric space was initiated by Sedghi et. al. [15] in 2012, which is distinct from other spaces and established some fixed point results in S - metric space. Many authors enlarged the idea of S - metric space and obtained some fixed point theorems in various contractive conditions [16-22].

A notion of S_b -metric space was initiated by Souayah and Mlaiki [23] in 2016. Dhamodharan and krishnakumar [24] expanded the idea of S - metric space to cone S-metric space in 2017 and established various fixed point results. Several authors developed the idea of cone S-metric space in fixed point theory. [1,23-33].

The concept of cone S_b -metric space was initiated by Singh and Singh [34] in 2018 and obtained some fixed point results. Nabil Mlaiki [31] introduced the concept of extended S_b -metric space and proved some fixed point theorems for mappings satisfying the different contractive conditions [34,35,36,37].

In this paper, we introduce the notion of extended cone S_b -metric space which is a generalization of cone S_b - metric space and prove some fixed point theorems in extended cone S_b - metric space.

Definition 1.1. [15] Let X be a nonempty set and a function $\Gamma: X^3 \rightarrow [0, \infty)$ satisfies the following conditions. 1. $\Gamma(v_1, v_2, v_3) \ge 0$.

2. $\Gamma(v_1, v_2, v_3) = 0$ if and only if $v_1 = v = v_3$,

3. $\Gamma(v_1, v_2, v_3) \leq \Gamma(v_1, v_1, t) + \Gamma(v_2, v_2, t) + \Gamma(v_3, v_3, t)$ for all $v_1, v_2, v_3, t \in X$.

Then Γ is called S- metric on X and the pair (X, Γ) is called an S-metric space.

Example 1.1. [15] Let X be a non-empty set and the metric d on X. Then

$$\Gamma(v_1, v_2, v_3) = d(v_1, v_3) + d(v_2, v_3)$$

is an S-metric on X.

Definition 1.2. [23] Let X be a nonempty set and let $b \ge 1$ be real number. Define a function $\Gamma_b : X_3 \to [0,\infty)$ is called an S_b-metric if it is satisfies the following conditions.

1. Γ_{b} (v₁, v₂, v₃) = 0 iff v₁=v₂= v₃,

2.
$$\Gamma_{\boldsymbol{b}}(v_1, v_1, v_2) = \Gamma_{b}(v_2, v_2, v_1)$$
 for all $v_1, v_2 \in X$.

3.
$$\Gamma_b(v_1, v_2, v_3) \le b (\Gamma_b(v_1, v_1, t) + \Gamma_b(v_2, v_2, t) + (v_2, v_2, t))$$

 $\Gamma_b(v_3, v_3, t)$ Then the pair (X, Γ_b) is called S_b-metric space.

Definition 1.3. [31] Let X be a nonempty set and $\zeta: X^3 \to [1,\infty)$. A function $\Gamma_{\zeta}: X^3 \to [0,\infty)$ satisfies the following conditions.

(i) $\Gamma_{\zeta}(v_1, v_2, v_3) = 0$ if and only if $v_1 = v_2 = v_3$,

(ii) $\Gamma_{\zeta}(v_1, v_2, v_3) \leq \zeta(v_1, v_2, v_3)(\Gamma_{\zeta}(v_1, v_1, t) + \Gamma_{\zeta}(v_2, v_2, t) + \Gamma_{\zeta}(v_3, v_3, t))$

Then the pair (X, Γ_{ζ}) is called extended S_b- metric space.

Definition 1.4. [1] Let E be the real Banach space and M be a subset of E is called a cone if it is satisfies the following conditions.

1. M is closed and non-empty $M \neq 0$,

2. $pv_1 + qv_2 \in M$ for all $v_1, v_2 \in M$ and non-negative real numbers p, q.

3. $M \cap (-M) = 0$.

For a given cone $M \subset E$, define a partial ordering \leq on E with respect to M by $v_1 \leq v_2$ if and only if

 $v_2 - v_1 \in M$, while $v_1 \le v_2$ will stand for $v_2 - v_1 \in int M$ (interior of M).

The cone M is called normal if there is a constant K > 0such that for all $v_1, v_2 \in E$, $0 \le v_1 \le v_2$ implies $||v_1|| \le K ||v_2||$. Then K is called the normal constant of M.

The cone M is called regular if every increasing sequence which is bounded from above is convergent.

Example 1.2. [1] Let E be the real vector space and K > 1 then,

$$E = \{ pv_1 + q : p, q \in R; v_1 \in \left[1 - \frac{1}{K}, 1 \right] \}$$

with supermom norm and the cone $M = \{pv_1 + q \in E: p \ge 0, q \ge 0\}$ in E. The cone M is regular and normal.

Definition 1.5. [1] Let X be a non-empty set and Γ : X x X \rightarrow E satisfies the following conditions.

1. $0 \le \Gamma(v_1, v_2)$ for all $v_1, v_2 \in X$ and $\Gamma(v_1, v_2) = 0$ if and only if $v_{1=v_2}$.

2.
$$\Gamma(v_1, v_2) = \Gamma(v_2, v_1)$$
 for all $v_1, v_2 \in X$.

3. $\Gamma(v_1, v_2) \leq \Gamma(v_1, v_3) + \Gamma(v_3, v_2)$

for all $v_1, v_2, v_3 \in X$. Then Γ is called a cone metric on X and (X, Γ) is called a cone metric space.

Definition 1.6. [24] Let M be a cone in E (real Banach space) with int $M \neq 0$ and \leq is a partial ordering with respect to M. Let X be a non-empty set and define a function Γ : $X^3 \rightarrow E$, if Γ satisfies all the conditions,

1. $\Gamma(v_1, v_2, v_3) \ge 0$

- 2. $\Gamma(v_1, v_2, v_3) = 0$ if and only if $v_1 = v_2 = v_3$
- 3. $\Gamma(v_1, v_2, v_3) \leq \Gamma(v_1, v_1, t) + \Gamma(v_2, v_2, t) + \Gamma(v_3, v_3, t)$ for all $v_1, v_2, v_3, t \in X$.

Then Γ is called a cone S-metric on X and (X, Γ) is called a cone S-metric space.

Example 1.3. [24] Let $E=R^2$, $M = \{(v_1, v_2) \in R^2: v_1 \ge 0, v_2 \ge 0\} \subset R^2$, X=R and $d: X \times X \times X \to E$ be the metric on X then $\Gamma: X^3 \to E$ defined by

$$\Gamma(v_1, v_2, v_3) = (d(v_1, v_3) + d(v_2, v_3), \alpha(d(v_1, v_3) + d(v_2, v_3)))$$

is a cone S-metric on X where $\alpha > 0$ is a constant.

Definition 1.7. [34] Let X be a nonempty set and M be a cone in E(real Banach space) and define $\Gamma_b : X^3 \to E$ is satisfies the following conditions

1. $\Gamma_b(v_1, v_2, v_3) \ge 0$.

- 2. $\Gamma_b(v_1, v_2, v_3) = 0$ if and only if $v_1 = v_2 = v_3$.
- 3. $\Gamma_b(v_1, v_2, v_3) \leq \mathbf{r}[\Gamma_b(v_1, v_1, t) + \Gamma_b(v_2, v_2, t) + \Gamma_b(v_3, v_3, t)]$

for all v_1 , v_2 , v_3 , $t \in X$, where $r \ge 1$ is a constant then Γ_b is called a cone S_b-metric on X and (X, Γ_b) is called an cone S_b-metric space.

2. Main Result

In this section, we introduce an extended cone S_{b} - metric space and prove some fixed point results in extended cone S_{b} -metric space.

Definition 2.1. Let X be a non-empty set and $\zeta : X^3 \rightarrow [1,\infty)$ be a function. If $\Gamma_{\zeta} : X^3 \rightarrow E$ (Real Banach Space) satisfies the following conditions.

1. $\Gamma_{\zeta}(v_1, v_2, v_3) \geq 0$.

2. $\Gamma_{\zeta}(v_1, v_2, v_3) = 0$ if and only if $v_{1=}v_2 = v_3$.

3.
$$\Gamma_{\zeta}(v_1, v_2, v_3) \leq \zeta(v_1, v_2, v_3) \left(\Gamma_{\zeta}(v_1, v_1, t) + \right)$$

 $\Gamma_{\zeta}(v_2,v_2,t)+\Gamma_{\zeta}(v_3,v_3,t)\big)$

for all $v_1, v_2, v_3, t \in X$.

Then (X, Γ_{ζ}) is called an extended cone S_b- metric space.

Remark 2.1. If $\zeta(v_1, v_2, v_3) = 1$, then the extended cone S_b-metric space reduces to a cone S- metric space.

Remark 2.2. If $\zeta(v_1, v_2, v_3) = b \ge 1$ then the extended cone S_b -metric space is said to be cone S_b -metric space.

Lemma 2.1. Let (X, Γ_{ζ}) be an extended cone S_b.metric space. Then we have $\Gamma_{\zeta}(v_1, v_1, v_2) = \Gamma_{\zeta}(v_2, v_2, v_1)$.

Definition 2.2. Let (X, Γ_{ζ}) be an extended cone S_b- metric space and M be a normal cone.

- 1) A sequence $\{v_n\} \in X$ converges to w if and only if $w \in X$ such that $\Gamma_{\zeta}(v_n, v_n, w) \to 0$ as $n \to \infty$. we can write this $\lim_{n\to\infty} v_n = w$.
- A sequence {v_n} is said to be Cauchy sequence if and only if Γ_ζ(v_n,v_n,v_m) → 0 as n, m→∞.
- If every Cauchy sequence {v_n} converges to w ∈ X, then (X, Γ) is said to be a complete extended cone S_b- metric space.

Example 2.1. Let $E = R^2$ and M be a cone in E. Let $X = [0,\infty)$ define a function $\Gamma_{\zeta} : X^3 \to E$ such that

$$\Gamma_{\zeta}(v_1, v_2, v_3) = \{ [|v_1 - v_3| + |v_2 - v_3|]^2, \alpha [|v_1 - v_3| + |v_2 - v_3|]^2 \},\$$

where $\alpha > 0$ is a constant and a function $\zeta : X^3 \to [1,\infty)$ by $\zeta(v_1, v_2, v_3) = \max\{v_1, v_2\} + v_3 + 1$ then (X, Γ_{ζ}) is a complete extended cone S_b - metric space

Theorem 2.1. Let (X, Γ_{ζ}) be a complete extended cone S_{b} - metric space and T be a self-mapping on X satisfying the following condition

$$\Gamma_{\zeta} \left(\mathrm{T}v_{1}, \mathrm{T}v_{2}, \mathrm{T}v_{3} \right) \\ \leq \begin{cases} c_{1}\Gamma_{\zeta} \left(v_{1}, v_{2}, v_{3} \right) + c_{2}\Gamma_{\zeta} \left(v_{1}, \mathrm{T}v_{1}, \mathrm{T}v_{1} \right) \\ + c_{3}\Gamma_{\zeta} \left(v_{2}, \mathrm{T}v_{2}, \mathrm{T}v_{2} \right) + c_{4}\Gamma_{\zeta} \left(v_{3}, \mathrm{T}v_{3}, \mathrm{T}v_{3} \right) \end{cases}$$
(1)

for all v_1 , v_2 , $v_3 \in X$ where $0 \le c_1 + c_2 + c_3 + c_4 < 1$ and $\lim_{n\to\infty} \zeta(T^n x, T^n x, T^m x) < \frac{1}{2b}$ for $0 \le b < \frac{1}{2}$, then T has a unique fixed point.

Proof. Let $v_0 \in X$, define a sequence $\{v_n\}$ by $T^n v_0 = v_n$ from (1)

$$\begin{split} &\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) \\ &= \Gamma_{\zeta}\left(\mathrm{T}v_{n-1}, \mathrm{T}v_{n}, \mathrm{T}v_{n}\right) \\ &\leq \begin{cases} c_{1}\Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right) + c_{2}\Gamma_{\zeta}\left(v_{n-1}, \mathrm{T}v_{n-1}, \mathrm{T}v_{n-1}\right) \\ + c_{3}\Gamma_{\zeta}\left(v_{n}, \mathrm{T}v_{n}, \mathrm{T}v_{n}\right) + c_{4}\Gamma_{\zeta}\left(v_{n}, \mathrm{T}v_{n}, \mathrm{T}v_{n}\right) \end{cases} \\ &\leq \begin{cases} c_{1}\Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right) + c_{2}\Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right) \\ + c_{3}\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) + c_{4}\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) \end{cases} \\ &\leq (c_{1} + c_{2})\Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right) + (c_{3} + c_{4})\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) \\ &\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) (1 - c_{3} - c_{4}) \leq (c_{1} + c_{2})\Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right) \\ &\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) \boxtimes \left(\frac{c_{1} + c_{2}}{1 - c_{3} - c_{4}}\right) \Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right) \end{split}$$

$$\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) \leq b\Gamma_{\zeta}\left(v_{n-1}, v_{n}, v_{n}\right)$$

where $b = \frac{(c_1 + c_2)}{(1 - c_3 - c_4)}$, $0 \le b < 1/2$ continue this process to obtain

 $\Gamma_{\zeta}\left(v_{n}, v_{n+1}, v_{n+1}\right) \leq b^{n} \Gamma_{\zeta}\left(v_{0}, v_{1}, v_{1}\right)$

for all m, $n \in N$ and n < m. Hence by triangle inequality

$$\begin{split} &\Gamma_{\zeta} \left(v_{n}, v_{n}, v_{m} \right) \\ &\leq \zeta \left(v_{n}, v_{n}, v_{m} \right) (2b)^{n} \Gamma_{\zeta} \left(v_{0}, v_{0}, v_{1} \right) \\ &+ \zeta \left(v_{n}, v_{n}, v_{m} \right) \zeta \left(v_{n+1}, v_{n+1}, v_{m} \right) (2b)^{n+1} \Gamma_{\zeta} \left(v_{0}, v_{0}, v_{1} \right) \\ &+ \cdots \\ &+ \zeta \left(v_{n}, v_{n}, v_{m} \right) \cdots \zeta \left(v_{m-1}, v_{m-1}, v_{m} \right) (2k)^{m-1} \Gamma_{\zeta} \left(v_{0}, v_{0}, v_{1} \right) \\ &\leq \Gamma_{\zeta} \left(v_{0}, v_{0}, v_{1} \right) \\ &[\zeta \left(v_{1}, v_{1}, v_{m} \right) \zeta \left(v_{2}, v_{2}, v_{m} \right) \cdots \\ &\zeta \left(v_{n-1}, v_{n-1}, v_{m} \right) \zeta \left(v_{n}, v_{n}, v_{m} \right) (2b)^{n} \\ &+ \zeta \left(v_{1}, v_{1}, v_{m} \right) \zeta \left(v_{2}, v_{2}, v_{m} \right) \cdots \\ &\zeta \left(v_{n}, v_{n}, v_{m} \right) \zeta \left(v_{2}, v_{2}, v_{m} \right) \cdots \\ &\zeta \left(v_{m-2}, v_{m-2}, v_{m} \right) \zeta \left(v_{m-1}, v_{m-1}, v_{m} \right) (2b)^{m-1}] \end{split}$$

by the hypothesis of the theorem

$$\lim_{n\to\infty}\zeta(v_n,v_n,v_m)(2b)<1$$

by Ratio test series

$$\sum_{n=1}^{\infty} (2b)^n \prod_{i=1}^n \zeta(v_i, v_i, v_m)$$

converges.

Let $A = \sum_{n=1}^{\infty} (2b)^n \prod_{i=1}^n \zeta(v_i, v_i, v_m)$ and An $= \sum_{i=1}^n (2b)^j \prod_{i=1}^j \zeta(v_i, v_i, v_m)$, for m > n, we have

$$\Gamma_{\zeta}(v_{n}, v_{n}, v_{m}) \leq \Gamma_{\zeta}(v_{0}, v_{0}, v_{1}) \left[A_{m-1} - A \right]$$

Taking limit as n, $m \to \infty$, the sequence $\{v_n\}$ is a Cauchy sequence. Since X is complete. $\{v_n\}$ converges to $v \in X$.

By (1) and the triangle inequality,

$$\begin{split} &\Gamma_{\zeta}(\upsilon,\upsilon,T\upsilon)\\ &\leq \zeta(\upsilon,\upsilon,T\upsilon)[2\Gamma_{\zeta}(\upsilon,\upsilon,v_{n}) +\Gamma_{\zeta}(T\upsilon,T\upsilon,v_{n})]\\ &\leq \zeta(\upsilon,\upsilon,T\upsilon)[2\Gamma_{\zeta}(\upsilon,\upsilon,v_{n}) +k\Gamma_{\zeta}(\upsilon,\upsilon,v_{n-1})] \end{split}$$

Taking limit as $n \rightarrow \infty$,

$$\Gamma_{\mathcal{L}}(\upsilon,\upsilon,T\upsilon) = 0$$

that implies Tv = v. Hence v is a fixed point of T. To prove that uniqueness, assume that there exists $v \neq w \in X$ such that Tv = v and Tw = w.

$$\Gamma_{\zeta}(w, \upsilon, \upsilon) = \Gamma_{\zeta} (Tw, T\upsilon, T\upsilon)$$

$$\leq c_{1}\Gamma_{\zeta}(w, \upsilon, \upsilon) + c_{2}\Gamma_{\zeta}(w, Tw, Tw)$$

$$+ (c_{3} + c_{4})\Gamma_{\zeta} (\upsilon, T\upsilon, T\upsilon)$$

$$\leq b\Gamma_{\zeta}(w, \upsilon, \upsilon) < \Gamma_{\zeta}(w, \upsilon, \upsilon)$$

which is a contradiction. Therefore, T has a unique fixed point.

If $c_1 = c$ and $c_2 = c_3 = c_4 = 0$ in Theorem 2.1, then the following corollary is obtained.

Corollary 2.1. Let (X, Γ_{ζ}) be a complete extended cone S_{b} - metric space and T be a self-mapping on X satisfying the following condition

$$\Gamma_{\zeta}\left(Tv_{1}, Tv_{2}, Tv_{3}\right) \leq c\Gamma_{\zeta}\left(v_{1}, v_{2}, v_{3}\right)$$

$$\tag{2}$$

For all v_1 , v_2 , $v_3 \in X$ where $0 \le c < 1/2$ and $\lim_{n\to\infty} \zeta(T^n x, T^n x, T^m x) < 1/2c$, then T has a unique fixed point.

If $c_1 = 0$ and $c_2 = c_3 = c_4 = c$ in the Theorem 2.1, then the following corollary is obtained.

Corollary 2.2. Let (X, Γ_{ζ}) be a complete extended cone S_b -metric space and T: $X \rightarrow X$ satisfy the following conditions

$$\Gamma_{\zeta} (Tv_1, Tv_2, Tv_3)$$

 $\leq c(\Gamma_{\zeta} (v_1, Tv_1, Tv_1) + \Gamma_{\zeta} (v_2 Tv_2, Tv_2) + \Gamma_{\zeta} (v_3, Tv_3, Tv_3))$

for all v_1 , v_2 , $v_3 \in X$ where $0 \le c < 1/2$ and $\lim_{n\to\infty} \zeta(T^n x, T^n x, T^m x) < 1/2c$, then T has a unique fixed point.

Example 2.2. Let $E = R^2$ and M be a cone in E. Let $X = [0, \infty)$ define a function $\Gamma_{\zeta} : X^3 \to E$ such that

$$\Gamma_{\zeta} (Tv_1, Tv_2, Tv_3) = \left\{ \left(|v_1 - v_3| + |v_2 - v_3|^2, \alpha |v_1 - v_3| + |v_2 - v_3|^2 \right) \right\}$$

where $\alpha > 0$, is a constant and a function $\zeta: X^3 \rightarrow [1,\infty)$ defined by

$$\zeta(v_1, v_2, v_3) = max\{v_1, v_2\} + v_3 + 1$$

Then (X, Γ_{ζ}) is a complete extended cone S_b-metric space. Consider the mapping T: $X \to X$ defined by

$$Tv_1 = \frac{v_1}{2}$$

Then

$$\begin{split} &\Gamma_{\zeta} \left(\mathrm{T} v_{1}, \mathrm{T} v_{2}, \mathrm{T} v_{3} \right) \\ &= \begin{cases} \left(\left| \frac{v_{1}}{2} - \frac{v_{3}}{2} \right| + \left| \frac{v_{2}}{2} - \frac{v_{3}}{2} \right| \right)^{2}, \\ &\alpha \left(\left| \frac{v_{1}}{2} - \frac{v_{3}}{2} \right| + \left| \frac{v_{2}}{2} - \frac{v_{3}}{2} \right| \right)^{2} \\ &\leq \frac{1}{4} \Gamma_{\zeta} \left(v_{1}, v_{2}, v_{3} \right) \end{cases} \end{split}$$

where $c \in [0, \frac{1}{2})$, thus T satisfies all the conditions of Corollary 2.1 and hence T has a unique fixed point.

3. Conclusion

Fixed point theory plays an essential role in all branches of Mathematics. In this paper, we introduced an extended cone S_b -metric space and proved some fixed results in various contractive conditions. Our results extends several results in existing literature.

Acknowledgements

The authors would like to express their thanks to the editors and reviewers for valuable advice in helping to improve the manuscript.

Conflict of Interest

There is no conflict of interest.

References

- L. G. Huang and X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl. 332(2), 1468-1476 (2007).
- [2] S. Aleksic, Z. Kadelburg, Z. D. Mitrovic and S. Radenovc, A new survey: Cone metric spaces. *Journal of the International Mathematical Virtual Institute*, Vol. 9, 93-121, (2019).
- [3] R. Krishnakumar and D. Dhamodharan, Fixed point theorems in normal cone metric space, Int. J. Math. Sci. Engg. Appl. 10(III), 213-224 (2016).
- [4] Kifayat Ullah, Bakht Ayaz Khan, Ozer and Zubair Nisar, Some convergence results Using K* iteration process in Busemann spaces, *Malaysian Journal of Mathematical Sciences*, 13(2), 231-249 (2019).
- [5] M.Kır, Sayed K. Elagan, Ö.Özer, Fixed point theorem for F contraction of Almost Jaggi type contractive mappings, *Journal of Applied & Pure Mathematics*, 1, No. 5 - 6, 329-339 (2019).
- [6] Naimat Ullah, Mohammed Shehu Shehu shagari and Akber Asam, Fixed point theorems in Complex valued Extended b-metric space, *Moroccan Journal of Pure and Applied analysis*, 5(2), 140-163 (2019).
- [7] Naimat Ullah, Mohammed Shehu Shehu shagari, Tahir, Aziz Ullah khan and mohammed atta Ullah Khan, Common fixed point theorems in Complex valued non-negative extended b-metric space, *e-Journal of Analysis and Applied Mathematics*, 2021, 35-47 (2021).
- [8] Özen Özer, Saleh Omran, Common Fixed Point Theorems in C*-Algebra Valued b-Metric Spaces, AIP Conference Proceedings 1773, 050005 (2016).
- [9] Özen Özer, A. Shatarah, An in depth guide to fixed point theorems, an investigation of the fixed point analysis and practices, 2021 ISBN: 978-1-53619-565-1. NOVA Science Publisher, New York, U.S.A.
- [10] Özen Özer, Saleh Omran, On the generalized C*- valued metric spaces related with Banach fixed point theory, *International Journal of Advanced and Applied Sciences*, 4(2), 35-37(2017).
- [11] Özen Özer, Saleh Omran, A result on the coupled fixed point theorems in C*- algebra valued b-metric spaces. *Italian Journal of Pure and Applied Math.* (42) 722-730(2019).
- [12] Ö.Özer, S.Omran, A note on C*- algebra valued G-metric space related with fixed point theorems, *Bulletin of the Karaganda University-Mathematics*, 3(95), 44-50(2019).
- [13] Ö.Özer, A.Shatarah, A kind of fixed point theorem on the complete C*- algebra valued S-metric spaces, *Asia Mathematika*, 4(1), 53-62 (2020).

- [14] Ö. Özer, S. Omran, Determination of the some results on the coupled fixed point theory in C*- algebra valued metric spaces, *Journal of the Indonesian Mathematical Society (JIMS)*, 26(02), 258-265(2020).
- [15] G. S. Saluja, Some fixed point results under contractive type mappings in cone S_b - metric spaces, *Palestine Journal of Mathematics*. Vol. 10(2), 547561 (2021).
- [16] J. K. Kim, S. Sedghi and N. Shobkolaei, Common fixed point theorems for the R-weakly commuting mappings in S-metric spaces, J. Comput. Anal. Appl. 19(4), 751-759 (2015).
- [17] M. U. Rahman and M. Sarwar, Fixed point results of Altman integral type mappings in S-metric spaces, *Int. J. Anal. Appl.* 10(1), 58-63 (2016).
- [18] S. Sedghi, N. Shobe and A. Aliouche, A generalization of fixed point theorems in S-metric spaces, *Mat. Vesnik* 64(3), 258-266 (2012).
- [19] S. Sedghi and N. V. Dung, Fixed point theorems on S-metric space, *Mat. Vesnik* 66(1), 113-124 (2014).
- [20] S. Sedghi et al., Common fixed point theorems for contractive mappings satisfying φ-maps in S-metric spaces, Acta Univ. Sapientiae Math. 8(2), 298-311 (2016).
- [21] N.Tas, N. Yilmaz ozgur, Common fixed points of continuous mapping on S-metric space, *Mathematical Notes*, 2018.
- [22] N. Yilmaz ozgur and N.Tas, Some fixed point theorems on Smetric spaces, *Mat. Vesnik* 69(1), 39-52 (2017).
- [23] S. Sedghi, A.Gholidahn chand K. P. R. Rao, Common fixed point of two R-weakly commuting mappings in S_b-metric spaces, *Math. Sci. Lett.* 6(3), 249-253 (2017).
- [24] D. Dhamodharan and R. Krishnakumar, Cone S-metric space and fixed point theorems of contractive mappings, *Annals of Pure Appl. Math.* 14(2), 237-243 (2017).
- [25] Bagathi Srinuvasa, Gajula Naveen Venkata Ki, Muhammad Sarwar, Nalamalapu Konda Redd, Fixed point theorems in ordered S_b-metric spaces by using (α,β)-admissible geraghty contraction and applications, *Journal of Applied Sciences*, 18(1),9-18(2018).
- [26] Carlos Frasser, Ozen Ozer, First order ordinary differential equations and applications, Lambert Academic Publishing (2020).
- [27] D. Dhamodharan, Yumnam Rohen, A. H. Ansari. "Fixed point theorems of C-class functions in S_b-metric space", *Results in Fixed Point Theory and Applications*, 2018.
- [28] Fadail Z.M., Savic A, Radenovic S., New distance in cone Smetric spaces and common fixed point theorems. J Math Comput SCI-JM. 26(4):368378 (2022).
- [29] A. Gupta, Cyclic contraction on cone S-metric space, Int. J. Anal. Appl. 3 (2), 119-130 (2013).
- [30] Mustafa Z., Shahkoohi R. J., Parvaneh V., Kadelburg Z. and Jaradat M. M. M., Ordered S_p.metric spaces and some fixed point theorems for contractive mappings with application to periodic boundary value problems, *Fixed Point Theory and Applications* 2019, 20 pages (2019).
- [31] Nabil Mlaiki, Extended S_b metric spaces, J. Math. Anal. 9(1), 124135 (2018).
- [32] Y. Rohen, T.Dosenovic and S.Radenovic, A note on the paper, A fixed point theorem in S_b-metric spaces, *Filomat.* 31(11), 3335-3346 (2017).
- [33] G. S. Saluja, Fixed point theorems on cone S-metric spaces using implicit relation, *CUBO*, A Mathematical Journal Vol.22, N.02, 273-289 (2020).
- [34] K. Anthony Singh, M.R. Singh, Some coupled fixed point theorems in cone S_b-metric spaces, *J. Math. Comput. Sci.* 10, No. 4, 891-905 (2020).
- [35] K. Anthony Singh, M. R. Singh, M. Bina Devi, Th. Chhatrajit Singh. Cone Ab-metric space and some coupled fixed point theorems, *Journal of Mathematics and Computer Science*, 24, 246-255(2022).
- [36] K. Anthony Singh and M. R. Singh, Some fixed point theorems of cone S_b-metric space, J. Indian Acad. Math. 40(2), 255-272 (2018).
- [37] N. Souayah and N. Mlaiki, A fixed point theorem in S_b-metric spaces, J. Math. Computer Sci. 16, 131-139 (2016).

© The Author(s) 2022. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).