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1. Introduction and Preliminaries 

In 2007, Huang and Zhang [1] introduced the idea of 
cone metric space, which is a generalization of metric 
space by replacing the real numbers by ordering Banach 
space. Consequently, several originators consider the 
development of cone metric space for mappings that 
satisfying different contractive conditions [2-14]. 

The concept of S – metric space was initiated by  
Sedghi et. al. [15] in 2012, which is distinct from other 
spaces and established some fixed point results in  
S - metric space. Many authors enlarged the idea of  
S - metric space and obtained some fixed point theorems 
in various contractive conditions [16-22].  

A notion of Sb-metric space was initiated by Souayah 
and Mlaiki [23] in 2016. Dhamodharan and krishnakumar 
[24] expanded the idea of S - metric space to cone  
S-metric space in 2017 and established various fixed point 
results. Several authors developed the idea of cone  
S-metric space in fixed point theory. [1,23-33]. 

The concept of cone Sb-metric space was initiated by 
Singh and Singh [34] in 2018 and obtained some fixed 
point results. Nabil Mlaiki [31] introduced the concept of 
extended Sb-metric space and proved some fixed point 
theorems for mappings satisfying the different contractive 
conditions [34,35,36,37]. 

In this paper, we introduce the notion of extended  
cone Sb-metric space which is a generalization of cone  
Sb - metric space and prove some fixed point theorems in 
extended cone Sb - metric space. 
Definition 1.1. [15] Let Ҳ be a nonempty set and a 
function Γ: Ҳ3 → [0, ∞) satisfies the following conditions. 

1. Γ (v1, v2, v3) ≥ 0. 
2. Γ (v1, v2, v3) = 0 if and only if v1= v =v3, 

3. Γ(v1,v2,v3) ≤ Γ (v1,v1,t)+Γ (v2,v2,t)+Γ (v3,v3,t) for all  
v1,v2,v3,t ∈ Ҳ. 
Then Γ is called S- metric on Ҳ and the pair (Ҳ, Γ) is 

called an S-metric space. 
Example 1.1. [15] Let Ҳ be a non-empty set and the 
metric ժ on Ҳ.  Then 

  
is an S-metric on Ҳ. 
Definition 1.2. [23] Let Ҳ be a nonempty set and let  
b≥1 be real number. Define a function Γb : Ҳ 3 → [0,∞) is 
called an Sb-metric if it is satisfies the following 
conditions. 

1. 𝜞𝜞𝒃𝒃 (v1, v2, v3) = 0 iff v1=v2= v3, 
2. 𝜞𝜞𝒃𝒃 (v1,v1,v2) = Γb(v2, v2, v1) for all v1, v2 ∈ Ҳ. 
3. 𝛤𝛤𝑏𝑏(𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3) ≤ 𝑏𝑏 (𝛤𝛤𝑏𝑏(𝑣𝑣1, 𝑣𝑣1, 𝑡𝑡) + 𝛤𝛤𝑏𝑏(𝑣𝑣2, 𝑣𝑣2, 𝑡𝑡)  +

𝛤𝛤𝑏𝑏(𝑣𝑣3, 𝑣𝑣3, 𝑡𝑡)) 
Then the pair (Ҳ, Γb) is called Sb-metric space. 

Definition 1.3. [31] Let Ҳ be a nonempty set and  
ζ: Ҳ3 → [1,∞). A function Γζ : Ҳ3 → [0,∞) satisfies the 
following conditions. 

(i) Γζ(v1,v2,v3) = 0 if and only if v1=v2=v3, 
(ii) Γζ(v1,v2,v3) ≤ ζ(v1,v2,v3)(Γζ(v1,v1,t) + Γζ(v2,v2,t) + 

Γζ(v3,v3,t)) 
Then the pair (Ҳ, Γζ) is called extended Sb– metric  

space. 
Definition 1.4. [1] Let E be the real Banach space and M 
be a subset of E is called a cone if it is satisfies the 
following conditions.  

1. M is closed and non-empty M ≠ 0, 
2. pv1 + qv2 ∈ M for all v1, v2 ∈ M and non-negative real 

numbers p, q. 
3. M ∩ (−M) = 0. 
For a given cone M ⊂ E, define a partial ordering  

≤ on E with respect to M by v1 ≤ v2 if and only if  

 



 American Journal of Applied Mathematics and Statistics 77 

v2 - v1 ∈ M, while v1 ≤ v2 will stand for v2 - v1 ∈ int M 
(interior of M).  

The cone M is called normal if there is a constant K > 0 
such that for all v1, v2 ∈ E, 0 ≤ v1 ≤ v2 implies ||v1||≤ K ||v2||. 

Then K is called the normal constant of M. 
The cone M is called regular if every increasing 

sequence which is bounded from above is convergent.    
Example 1.2. [1] Let  E be the real vector space and K > 1 
then,  

 1 1
1: , ; 1 ,1 }{
K

E pv q p q R v  = + ∈ ∈ −  
 

with supermom norm and the  cone M = {pv1 + q ∈ E:  
p ≥ 0, q ≥ 0 } in E. The cone M is regular and normal. 
Definition 1.5. [1] Let Ҳ be a non-empty set and Γ: Ҳ x Ҳ 
→ E satisfies the following conditions.  

1. 0 ≤ Γ (v1, v2) for all v1, v2 ∈ Ҳ and Γ (v1, v2) = 0 if and 
only if v1=v2.  

2. Γ (v1, v2) = Γ (v2, v1) for all v1, v2 ∈ Ҳ. 
3. Γ(v1, v2) ≤ Γ (v1, v3) + Γ (v3, v2) 

for all v1, v2, v3 ∈ Ҳ. Then Γ is called a cone metric on Ҳ 
and (Ҳ, Γ) is called a cone metric space.  
Definition 1.6. [24] Let M be a cone in E (real Banach 
space) with int M ≠ 0 and ≤ is a partial ordering with 
respect to M. Let Ҳ be a non-empty set and define a 
function Γ: Ҳ 3 → E, if Γ satisfies all the conditions,  

1.  Γ(v1, v2, v3) ≥ 0 
2.  Γ(v1, v2, v3) = 0 if and only if v1=v2= v3 
3.  Γ(v1,v2,v3)≤Γ(v1,v1,t)+Γ(v2,v2,t)+Γ(v3,v3,t) for all 

v1,v2,v3,t ∈ Ҳ. 
Then Γ is called a cone S-metric on Ҳ and (Ҳ, Γ) is 

called a cone S-metric space. 
Example 1.3. [24] Let E=R2, M = {(v1, v2) ∈ R2: v1 ≥ 0,  
v2 ≥ 0}⊂ R2, Ҳ=R and ժ: Ҳ x Ҳ x Ҳ → E be the metric on 
Ҳ then Γ: Ҳ3 → E defined by  

  

is a cone S-metric on Ҳ where α > 0 is a constant.  
Definition 1.7. [34] Let Ҳ be a nonempty set and M be a 
cone in E(real Banach space) and define Γb : Ҳ3 →E is 
satisfies the following conditions 

1. Γb(v1,v2,v3)≥ 0. 
2. Γb(v1,v2,v3)= 0 if and only if v1=v2= v3. 
3. Γb(v1, v2,v3)≤r[Γb(v1,v1,t)+Γb(v2,v2,t)+Γb(v3,v3,t)] 

for all v1, v2, v3, t ∈ Ҳ, where r ≥1 is a constant then Γb is 
called a cone Sb- metric on Ҳ and (Ҳ, Γb) is called an cone 
Sb-metric space. 

2. Main Result 

In this section, we introduce an extended cone  
Sb- metric space and prove some fixed point results in 
extended cone Sb-metric space. 
Definition 2.1. Let Ҳ be a non-empty set and ζ : Ҳ3 → 
[1,∞) be a function. If Γζ : Ҳ3 → E (Real Banach Space) 
satisfies the following conditions. 

1. Γζ (v1,v2,v3)≥ 0. 
2. Γζ(v1,v2,v3)= 0 if and only if v1=v2 =v3. 

3. 𝛤𝛤𝜁𝜁 (𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3) ≤ ζ(𝑣𝑣1, 𝑣𝑣2, 𝑣𝑣3) �𝛤𝛤𝜁𝜁 (𝑣𝑣1, 𝑣𝑣1, 𝑡𝑡) +
𝛤𝛤𝜁𝜁 (𝑣𝑣2, 𝑣𝑣2, 𝑡𝑡) + 𝛤𝛤𝜁𝜁(𝑣𝑣3, 𝑣𝑣3, 𝑡𝑡)� 
for all v1,v2,v3,t ∈ Ҳ. 

Then (Ҳ, Γζ) is called an extended cone Sb- metric 
space. 
Remark 2.1. If ζ(v1,v2,v3) = 1, then the extended cone Sb- 
metric space  reduces to a cone S- metric space.  
Remark 2.2.  If ζ(v1,v2,v3) = b ≥ 1 then the extended cone 
Sb-metric space is said to be cone Sb -metric space. 
Lemma 2.1. Let (Ҳ, Γζ) be an extended cone Sb-metric 
space. Then we have Γζ(v1, v1, v2) = Γζ (v2, v2 ,v1). 
Definition 2.2. Let (Ҳ, Γζ) be an extended cone Sb- metric 
space and M be a normal cone. 

1)  A sequence {vn}∈ Ҳ  converges to w if and only if 
w ∈ Ҳ such that Γζ ( vn, vn, w) → 0 as n →∞. we can 
write this limn→∞ 𝑣𝑣𝑛𝑛 = w. 

2)  A sequence {vn} is said to be Cauchy sequence if 
and only if Γζ (vn,vn,vm) → 0 as n, m →∞.  

3)  If every Cauchy sequence {vn} converges to w ∈ Ҳ, 
then (Ҳ, Γ) is said to be a complete extended cone 
Sb- metric space. 

Example 2.1. Let E = R2 and M be a cone in E. Let Ҳ = 
[0,∞) define a function Γζ : Ҳ3 →E such that 

 
1 2 3

2 2
1 3 2 3 1 3 2 3

( )

{[| |] [| |]

, ,

, ,}

v v v

v v v v v v v v

ζ

α

Γ

= − + − − + −
 

where α > 0 is a constant and a function ζ : Ҳ 3 → [1,∞) by 
ζ(v1,v2,v3) = max{v1,v2}+ v3 + 1 then (Ҳ, Γζ) is a complete 
extended cone Sb - metric space 
Theorem 2.1. Let (Ҳ, Γζ) be a complete extended cone  
Sb- metric space and T be a self-mapping on Ҳ satisfying 
the following condition 

 

( )
( ) ( )
( ) ( )

1 2 3

1 1 2 3 2 1 1 1

3 2 2 2 4 3 3 3
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ζ

ζ ζ

ζ ζ

Γ

 Γ + Γ ≤  
+ Γ + Γ  

 (1) 

for all v1, v2, v3 ∈ Ҳ where 0 ≤ c1 + c2 + c3 + c4 < 1 and 

limn→∞ ζ(Tn x, Tnx, Tm x) < 1
2b

 for 0 ≤ b < 1
2

, then T 

has a unique fixed point. 
Proof. Let v0 ∈ Ҳ, define a sequence {vn} by Tn𝑣𝑣0 = 𝑣𝑣𝑛𝑛  
from (1)  
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≤ + Γ ( ) ( )3 4 1 1c c , ,n n nv v vζ + ++ + Γ

 

( )( ) ( )1 1 3 4 1 2 1, , 1 ,( ),n n n n n nv v v c c c c v v vζ ζ+ + −Γ − − ≤ + Γ  

 ( ) 1 2
1 1 1

3 4
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 +

Γ ≤ Γ − − 
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 ( )1 1 1, , , ,( )n n n n n nv v v b v v vζ ζ+ + −≤Γ Γ  

where ( )
( )

1 2

3 4
b ,

1
c c

c c
+

=
− −

 0 ≤ b < 1/2 continue this process 

to obtain 

 ( ), 1, 1 0, 1, 1 ( )n
n n nv v v b v v vζ ζ+ +Γ ≤ Γ  

for all m, n ∈ N and n < m. Hence by triangle inequality  
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by the hypothesis of the theorem 

 ( )
n
lim ζ( , , ) 2b 1n n mv v v

∞→
<  

by Ratio test series 

 ( )
n

n

n 1 i 1
2b ζ( , , )i i mv v v

∞

= =
∑ ∏  

converges. 
Let A = ∑ (2b)n∞

n=1 ∏ ζn
i=1 (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖  , 𝑣𝑣𝑚𝑚 )  and  

An =∑ (2b)jn
j=1 ∏ ζj

i=1 (𝑣𝑣𝑖𝑖 , 𝑣𝑣𝑖𝑖  , 𝑣𝑣𝑚𝑚 ), for m > n, we have  

 [ ], , 0, 0, 1 1( ) ( ) n n m mv v v v v v A Aζ ζ −Γ ≤ Γ −  

Taking limit as n, m → ∞, the sequence {vn} is a 
Cauchy sequence. Since Ҳ is complete. {vn} converges to 
υ ∈ Ҳ. 

By (1) and the triangle inequality, 
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Taking limit as n → ∞, 

  , ,( 0)Tζ υ υ υΓ =  

that implies Tυ = υ. Hence υ is a fixed point of T. To 
prove that uniqueness, assume that there exists  υ ≠ w ∈ Ҳ 
such that T υ = υ and T w = w. 

Thus, 
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which is a contradiction. Therefore, T has a unique fixed 
point. 

If c1 = c and  c2 = c3 = c4 = 0 in Theorem 2.1, then the 
following corollary is obtained. 
Corollary 2.1. Let (Ҳ, Γζ) be a complete extended cone 
Sb- metric space and T be a self-mapping on Ҳ satisfying 
the following condition 

 ( ) ( )1 2 3 1 2 3, , , ,Tv Tv Tv c v v vζ ζΓ ≤ Γ  (2) 

For all v1, v2, v3 ∈ Ҳ where 0 ≤ c < 1/ 2 and 
limn→∞ ζ(Tn x, Tnx, Tm x)  < 1 /2c, then T has a unique 
fixed point. 

If c1 = 0 and c2 = c3 = c4 = c in the Theorem 2.1, then 
the following corollary is obtained. 
Corollary 2.2. Let (Ҳ, Γζ) be a complete extended cone 
Sb-metric space and T: Ҳ→Ҳ satisfy the following 
conditions  

( )1 2 3

1 1 1 2 2 2 3 3 3( ( ) ( ) ( ))

, ,

, , , , ,

Tv Tv Tv

c v Tv Tv v Tv Tv v Tv Tv
ζ

ζ ζ ζ

Γ

≤ Γ + Γ + Γ
 

for all v1, v2, v3 ∈ Ҳ where 0 ≤ c < 1/ 2 
and  limn→∞ ζ(Tn x, Tn x, Tm x)   < 1 /2c, then T has a 
unique fixed point. 
Example 2.2. Let E = R2 and M be a cone in E. Let Ҳ =  
[0, ∞) define a function Γζ : Ҳ3 → E such that 

 
( )

( ){ }
1 2 3

2 2
1 3 2 3 1 3 2 3

, ,

,  

Tv Tv Tv

v v v v v v v v

ζ

α

Γ

= − + − − + −
 

where α > 0, is a constant and a function ζ: Ҳ3→ [1,∞) 
defined by 

 ( ) { }1 2 3 1 2 3, , , 1v v v max v v vζ = + +  

Then (Ҳ, Γζ) is a complete extended cone Sb-metric 
space. Consider the mapping T:  Ҳ → Ҳ defined by 

 1
1T

2
vv =  

Then 
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( )

1 2 3

2
3 31 2

2
3 31 2

1 2 3

T ,T ,T
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2 2 2 2

α
2 2 2 2

1 , ,
4
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ζ
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   − + −   =  
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where c ∈ [0, 1
2
), thus T satisfies all the conditions of 

Corollary 2.1 and hence T has a unique fixed point. 
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3. Conclusion 

Fixed point theory plays an essential role in all 
branches of Mathematics. In this paper, we introduced an 
extended cone Sb-metric space and proved some fixed 
results in various contractive conditions. Our results 
extends several results in existing literature. 
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