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1. Introduction 

Banach [1] laid the foundation for the study of metric 
fixed point theory which instilled the interest of many 
mathematicians to develop results which had applications 
in mathematics as well as other branches of science. The 
contraction condition of the mapping in the Banach fixed 
point theorem was modified and some interesting results 
were exhibited by Kannan [2], Chatterjea [3], Ciric [4], 
Edelstein [5] to name a few. New results were  
obtained by studying fixed point theorems for different 
types of mappings such as multi-valued mappings [6],  
α-ψ - contractive mappings [7], (α,β)-(ψ,φ)-contractive 
mappings [8] in metric spaces. In the recent works of  
[9-15] new ideas were explored for these mappings in the 
setting of different metric spaces such as b-metric space, 
rectangular b-metric space , S-metric space. 

Graph theoretical approach in Fixed point theory was 
initiated by the work of Espinola and Kirk [16] in the year 
2006. Jachymski [17] took the lead by defining the graph 
associated with the metric space and subsequently proving 
results pertaining to the fixed point theorems on the metric 
space endowed with graph. He coined the term Banach G-
contraction meaning Banach contraction on a metric space 
endowed with graph. His work invoked the interest of 
many to study fixed point theorems on various metric 
spaces endowed with graph. This led to a series of papers 
[18-27] in which different contraction principles has been 
proved in this background. 

The concept of graphical metric space was introduced 
by Shukla, Radenovic and Vetro in their work [28] in the 
year 2017. In this paper, a new metric was defined for the 
metric space using graphs. The concept of convergence of 
a sequence and Cauchy sequence was studied in the 

context of graphical metric space and this was further 
extended to rectangular b-metric space in the year 2019 
[29]. 

In the work done previously by many authors in the study 
of fixed point theorems on metric spaces endowed with 
graph, the graph was defined by taking the vertex set as 
the set X and the edge set contained the diagonal of the 
Cartesian product X x X, i.e. the graph was assumed to 
have loops at each and every vertex. In the present paper, 
the graph associated with the metric space contains edges 
joining a point with its image. Hence if the graph has a 
loop at a particular vertex, then that vertex is the fixed point 
of the mapping under consideration. To prove the various 
contraction principles, a sub-graph of the above graph is 
defined using the iterated function. The graph defined above 
is a weighted graph where the weights are the distance 
between the points. A sequence named as w-sequence is 
defined corresponding to the sequence of the edges of the 
sub-graph. The contraction principles by Banach [1], 
Kannan [2], Chatterjea [3] and Ciric [4] are proved using 
this approach on metric spaces endowed with graph. 

2. Preliminaries 
Let (X,d) be a metric space. In the following three 

sections the basic concepts related to sequences, definition 
of Graph and sub-graph, results connected with fixed 
points are exhibited. 

2.1. Sequences 

Definition 2.1.1. A sequence { } 1n nx ∞
=  in the metric space 

(X,d) is said to be convergent if for a given ϵ>0 there 
exists 1N I∈  such that ( ) 1., ,nd x x n N<∈ ≥  
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Definition 2.1.2. A sequence {𝑥𝑥𝑛𝑛 }𝑛𝑛=1
∞  in the metric space 

(X,d) is said to be Cauchy if for every ϵ>0 there exists 
𝑁𝑁2 ∈ 𝐼𝐼 such that 𝑑𝑑(𝑥𝑥𝑛𝑛 , 𝑥𝑥𝑚𝑚 ) <∈,𝑛𝑛,𝑚𝑚 ≥ 𝑁𝑁2. 
Definition 2.2.3. A sequence {𝑥𝑥𝑛𝑛 }𝑛𝑛=1

∞  in the metric space 
(X,d) is said to be monotone if either 𝑥𝑥𝑛𝑛 < 𝑥𝑥𝑛𝑛+1,𝑛𝑛 ∈ 𝐼𝐼 
(non-decreasing) or 𝑥𝑥𝑛𝑛 > 𝑥𝑥𝑛𝑛+1,𝑛𝑛 ∈ 𝐼𝐼 (non-increasing). 
Theorem 2.1.1 (Monotone Convergence theorem). If a 
sequence is monotone and is bounded then it converges. 

2.2. Graphs 
Definition 2.2.1 [30]. A graph G is an ordered pair (V, E) 
where V is the set of points called as vertices and E is the 
set of lines called as edges. 
Definition 2.2.2 [30]. A Graph 𝐺𝐺𝑜𝑜 = (𝑉𝑉𝑜𝑜 ,𝐸𝐸𝑜𝑜) is called a 
sub-graph of 𝐺𝐺 = (𝑉𝑉,𝐸𝐸) if 𝑉𝑉𝑜𝑜 ⊂ 𝑉𝑉 and 𝐸𝐸𝑜𝑜 ⊂ 𝐸𝐸. 
Definition 2.2.3. [30]. A weighted graph is a simple graph 
that has a number, termed as weight, associated with each 
of its edges. Hence a weighted graph consists of a vertex 
set, edge set together with the weights for each of its edges. 
Definition 2.2.4 [30]. An edge of a graph G is called a 
loop if its initial vertex and terminal vertex are the same. 

2.3. Fixed Point Theorems 
Definition 2.3.1 [1]. A mapping T: X→X is said to be a 
contraction if there exists a real number α such that 0≤α<1 
and d(Tx,Ty)≤αd(x,y). 
Defintion 2.3.2 [2]. Let (X,d) be a metric space. A 
mapping T: X→X is called a Kannan mapping if there 

exists 10,
2

α  
 

  such that: 

 ( ) ( ) ( ), , , .d Tx Ty d x Tx d y Tyα +  ≤  

Definition 2.3.3 [3]. Let (X,d) be a metric space. A 
mapping T:X→X is called a Chatterjea mapping if there 

exists 10,
2

α  
 

  such that: 

 ( ) ( ) ( ), , , .d Tx Ty d x Ty d y Txα +  ≤  

Definition 2.3.4 [4]. Let (X,d) be a metric space. A 
mapping T:X→X is said to be a λ-generalized contraction 
if and only if for every x, y ε X there exist non-negative 
numbers q(x,y), r(x,y), s(x,y) and t(x,y) such that 

 ( ) ( ) ( ) ( ){ },sup , , , 2 , 1x y X q x y r x y s x y t x y λ∈ + + + = <  

and  

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

, , , , ,

, , , , ,

d Tx Ty q x y d x y r x y d x Tx

s x y d y Ty t x y d x Ty d y Tx

≤ +

+ + +  
 

holds for every x,y ε X. 
Definition 2.3.5 [4]. Let (X,d) be a metric space. A 
mapping T:X→X is said to be T-orbitally complete if 
every Cauchy sequence {𝑇𝑇𝑛𝑛𝑖𝑖𝑥𝑥: 𝑖𝑖 ∈ 𝑁𝑁}, 𝑥𝑥 ∈ 𝑋𝑋  has a limit 
point in X.  
Definition 2.3.6 [4]. Let (X,d) be a metric space. A 
mapping T:X→X is said to be T-orbitally continuous if 
for u∈ 𝑋𝑋  such that 𝑢𝑢 = lim𝑖𝑖→∞ 𝑇𝑇𝑛𝑛𝑖𝑖𝑥𝑥 for some x∈ 𝑋𝑋, we 
have 𝑇𝑇𝑢𝑢 = lim𝑖𝑖→∞ 𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖𝑥𝑥. 

Theorem 2.3.1 [4]. Let T be a λ-generalized contraction 
of T-orbitally complete metric space X into itself. Then 

i) There is in X a unique fixed point u under T, 
ii) 𝑇𝑇𝑛𝑛𝑥𝑥 → 𝑢𝑢 for every x ε X and 

iii) ( )( , ) , .
1

n
nd T x u d x Txλ

λ
≤

−
 

3. Main Result 

Let (X,d) be a metric space. Let T: X→X. We now 
define the graph associated with the metric space as below: 
Definition 3.1. Let (X,d) be a metric space. Let T: X→X. 
Define a weighted graph G associated with X as below: 
Let G=(V,E) where V=X and E={(x,Tx)/x ε X}. The 
weights of the edges are the distance between the 
endpoints of the edges. Now (X,d) becomes a metric space 
endowed with the graph G. 
Definition 3.2. The sub-graph 𝐺𝐺𝑜𝑜  of G is defined as below: 
Let 𝑦𝑦𝑜𝑜  be any arbitrary point of X. Let 𝐺𝐺𝑜𝑜 = (𝑉𝑉𝑜𝑜 ,𝐸𝐸𝑜𝑜) 
where 𝑉𝑉𝑜𝑜 = {𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } and let 

 ( ) ( ){ }2, , , ,o o o o oE y Ty Ty T y= …  

Then 𝑉𝑉𝑜𝑜 ⊂ 𝑉𝑉 𝑎𝑎𝑛𝑛𝑑𝑑 𝐸𝐸𝑜𝑜 ⊂ 𝐸𝐸. Hence 𝐺𝐺𝑜𝑜  is a sub-graph of G. 
Definition 3.3. Let (X,d) be a metric space endowed with 
the graph G. Let 𝐺𝐺𝑜𝑜  be the sub-graph of G defined as in 
Definition 3.2. Let 𝑤𝑤𝑛𝑛 = 𝑑𝑑(𝑇𝑇𝑛𝑛−1𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑛𝑛𝑦𝑦𝑜𝑜) . Then the 
sequence {𝑤𝑤𝑛𝑛 }𝑛𝑛=1

∞  is called the w-sequence of real 
numbers associated with the graph 𝐺𝐺𝑜𝑜 . 
Example 3.1 Let X={0,1,2,3}. The metric on X is defined 
as d(x,y)=|x-y|, x, y ε X. Let T: X→X be defined as below: 

 { }0, 0,1,2
1, 3

x
Tx

x
 ∈= 

=
 

Following is the the graph associated with X defined  
as in Definition 3.1. G=(V,E) where V={0,1,2,3}, 
E={(0,0),(1,0),(2,0),(3,1)}. 

 
Figure 3.1. The Graph G associated with X 

The sub-graph 𝐺𝐺𝑜𝑜  corresponding to every element of X 
and the w-sequence in each case are illustrated below: 
Case (i):  𝒚𝒚𝒐𝒐 = 𝟎𝟎 
Let 

( ),o o oG V E=  
where 𝑉𝑉𝑜𝑜 = {0,𝑇𝑇0,𝑇𝑇20,…}={0}, 𝐸𝐸𝑜𝑜 = {(0,0)}. 

 
Figure 3.2. Graph 𝐺𝐺𝑜𝑜  corresponding to the point 𝑦𝑦𝑜𝑜 = 0 
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The w-sequence in this case is as follows: 

 
( ) ( ) ( ){ }
{ }

2 2 3, , , , , , ..

0,0,0, . .

o o o o o od y Ty d Ty T y d T y T y …

= …
 

Case(ii): 𝒚𝒚𝒐𝒐 = 𝟏𝟏 
Let 

 ( )oG ,o oV E=  

where 𝑉𝑉𝑜𝑜 = {1,𝑇𝑇1,𝑇𝑇21,…}={1,0}, 𝐸𝐸𝑜𝑜 = {(0,0), (0,1)}. 

 
Figure 3.3. Graph 𝐺𝐺𝑜𝑜  corresponding to the point 𝑦𝑦𝑜𝑜 = 1 

The w-sequence in this case is given by 

 
( ) ( ) ( ){ }
{ }

2 2 3, , , , , , ..

1,0,0, .

o o o o o od y Ty d Ty T y d T y T y …

= ……
 

Case (iii):𝒚𝒚𝒐𝒐 = 𝟐𝟐 
Let  

 ( ),o o oG V E=  

where 𝑉𝑉𝑜𝑜 = {2,𝑇𝑇2,𝑇𝑇22,…}={2,0}, 𝐸𝐸𝑜𝑜 = {(0,0), (0,2)}. 

 
Figure 3.4. Graph 𝐺𝐺𝑜𝑜  corresponding to the point 𝑦𝑦𝑜𝑜 = 2 

The w-sequence in this case is given below: 

 
( ) ( ) ( ){ }
{ }

2 2 3, , , , , , ..

 2,0,0, .

o o o o o od y Ty d Ty T y d T y T y …

= …
 

Case (iii):𝒚𝒚𝒐𝒐 = 𝟑𝟑 
Let 

 ( ),o o oG V E=  

where 𝑉𝑉𝑜𝑜 = {3,𝑇𝑇3,𝑇𝑇23 ,…}={3,1,0}={0,1,3}, 𝐸𝐸𝑜𝑜 =
{(0,0), (0,1), (1,3)}. 

 
Figure 3.5. Graph 𝐺𝐺𝑜𝑜  corresponding to the point 𝑦𝑦𝑜𝑜 = 3 

The w-sequence in this case is given as below:  

 
( ) ( ) ( ){ }
{ }

2 2 3, , , , , , ..

2,1,0,0, , . .

o o o o o od y Ty d Ty T y d T y T y …

= …
 

The following two lemmas are useful in proving the 
fixed point theorems on the metric space (X,d) endowed 
with the graph G. 
Lemma 3.1. Let (X,d) be a metric space and let T:X→X. 
Let G be graph associated with X. Let 𝑦𝑦𝑜𝑜  be any arbitrary 
point of X. Let 𝐺𝐺𝑜𝑜  be the sub-graph of G defined as in 
Definition 3.2. Then the sequence {𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } is 
Cauchy if and only if the w-sequence associated with the 
graph 𝐺𝐺𝑜𝑜  is non-increasing. 
Proof. Suppose the w-sequence associated with the graph 
𝐺𝐺𝑜𝑜  is non-increasing. Then 

 1 2 3 1n nw w w w w +> > >……> > >…… 

i.e the w-sequence, being the sequence of the length  
of the edges between the terms of the sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . }  is a sequence of non-negative real 
numbers bounded below by zero. Hence by Theorem 2.1.1, 
the w-sequence is convergent. This implies the terms  
of the sequence {𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … .. } are closer as n 
approaches infinity. i.e. the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } is Cauchy. 
Lemma 3.2. Let (X,d) be a metric space. Let T: X→X. 
Let G be the graph associated with X. The point 𝑦𝑦∗ of X is 
a fixed point of T if and only if the graph G has a loop at 
𝑦𝑦∗. 
Proof. Let 𝑦𝑦∗  be the fixed point of T. Then T𝑦𝑦∗=𝑦𝑦∗. 
According to the Definition 3.1 of G, (T 𝑦𝑦∗,𝑦𝑦∗ )εG. 
i.e.( 𝑦𝑦∗,𝑦𝑦∗ )εG.⇒ G has a loop at 𝑦𝑦∗. 

We now proceed to prove the Fixed point theorems by 
Banach, Kannan, Chatterjea and λ-generalized contraction 
by Ciric on a metric space (X,d) endowed with Graph G. 
Theorem 3.1. Let (X,d) be a complete metric space and 
let T: X→X be a contraction on X. Let G be the graph 
associated with X. Then T has a unique fixed point 
𝑦𝑦∗ ∈ 𝑋𝑋. 
Proof. Let 𝑦𝑦𝑜𝑜  be any arbitrary point of X. The graph G 
and its sub-graph 𝐺𝐺𝑜𝑜  are defined as in Definition 3.1 and 
Definition 3.2. Consider the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . }  in X. According to Lemma 3.1, to 
prove that this sequence is Cauchy, it is enough to prove 
that the w-sequence associated with the graph 𝐺𝐺𝑜𝑜  is non-
increasing. 

Since T is a contraction on X we have, 

 
( )

( )
1

1

1

,

, .

n n
n o o

n n
o o n

w d T y T y

d T y T y wα α

+
+

−

=

≤ =
 

i.e. 𝑤𝑤𝑛𝑛+1 < 𝑤𝑤𝑛𝑛  since 0 ≤ 𝛼𝛼 < 1,𝑛𝑛 ∈ 𝐼𝐼. 
Hence the w-sequence associated with 𝐺𝐺𝑜𝑜  is  

non-increasing. This implies, from Lemma 3.1, the 
iterated sequence {𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } is Cauchy. But X is 
complete. Hence this sequence converges to say, 𝑦𝑦∗ in X. 
The mapping T being a contraction is continuous. Hence 
the sequence {𝑇𝑇𝑇𝑇𝑛𝑛−1𝑦𝑦𝑜𝑜}𝑛𝑛=1

∞  converges to 𝑇𝑇𝑦𝑦∗ . But the 
sequence {𝑇𝑇𝑇𝑇𝑛𝑛𝑦𝑦𝑜𝑜}𝑛𝑛=1

∞  is a subsequence of the sequence 
{𝑇𝑇𝑛𝑛−1𝑦𝑦𝑜𝑜}𝑛𝑛=1

∞ . Hence the subsequence must have the same 
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limit as the parent sequence. But the limit of a sequence is 
unique. Hence we must have 𝑇𝑇𝑦𝑦∗ = 𝑦𝑦∗.  This implies 
(𝑦𝑦∗,𝑦𝑦∗) ∈ 𝐺𝐺. i.e. G has a loop at 𝑦𝑦∗. Hence by Lemma 3.2, 
𝑦𝑦∗ is a fixed point of T. 

To prove uniqueness, let if possible, 𝑧𝑧∗  be any other 
fixed point of T. Then 𝑇𝑇𝑧𝑧∗ = 𝑧𝑧∗. 

Since T is a contraction on X, we have, 

 ( ) ( )* * * *, , , 0 1d Ty Tz d y zα α≤ ≤ <  

 ( ) ( )* * * *, ,d y z d y z<  

which is a contradiction. Hence the fixed point of T is 
unique. 
Theorem 3.2. Let (X,d) be a complete metric space. Let T: 
X→X and let G be the graph associated with X. If T 
satisfies  

 ( ) ( ) ( )( ), , ,d Tx Ty d x Tx d y Tyα≤ +  (1) 

for all x, y ε X, where 10,[ ),
2

α ∈  then T has a unique 

fixed point. 
Proof. Let 𝑦𝑦𝑜𝑜  be any arbitrary point of X. The graph G 
and its sub-graph 𝐺𝐺𝑜𝑜  are defined as in Definition 3.1 and 
Definition 3.2. Consider the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . }  in X. According to Lemma 3.1, to 
prove that this sequence is Cauchy, it is enough to prove 
that the w-sequence associated with the graph 𝐺𝐺𝑜𝑜  is non-
increasing. 

From (1) we have, 

 
( )

( ) ( )

1
1

1 1

,

, ,

n n
n o o

n n n n
o o o o

w d T y T y

d T y T y d T y T yα

+
+

− +

=

 ≤ +  

 

 [ ]1 1n n nw w wα+ +≤ +  

 1
10 .

1 2n n nw w w since α+
∝

≤ < ≤ <
− ∝

 

Hence the w-sequence associated with 𝐺𝐺𝑜𝑜  is  
non-increasing. From Lemma 3.1, the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } is a Cauchy sequence in X. But X is 
complete. Therefore this sequence converges in X. Let 
𝑦𝑦∗ = lim𝑛𝑛→∞ 𝑇𝑇𝑛𝑛𝑦𝑦𝑜𝑜 . 

Consider  

 

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

* * * *

* 1 * *

* * * 1

, , ,

, , ,

1 , , , .

n n
o o

n n n
o o o

n n n
o o o

d y Ty d y T y d T y Ty

d y T y d T y T y d y Ty

d y Ty d y T y d T y T y

α

α α

−

−

≤ +

 ≤ + +  

− ≤ +

 

Allow n→∞ on both sides. Then we have, 

 ( ) ( ) ( ) ( )* * * * * *1 , , , .d y Ty d y y d y yα α− ≤ +  

Hence 𝑑𝑑(𝑦𝑦∗,𝑇𝑇𝑦𝑦∗) = 0. 

 * *.Ty y⇒ =  

i.e. 𝑦𝑦∗is a fixed point of T. 

To prove uniqueness, let if possible, 𝑧𝑧∗  be any other 
fixed point of T. Then 𝑇𝑇𝑧𝑧∗ = 𝑧𝑧∗. 

From (1) we have, 

 ( ) ( ) ( )* * * * * *, [ , ,d Ty Tz d y Ty d z Tzα≤ +  

where 10 .
2

α≤ <  

 ( ) ( ) ( )* * * * * *, , , .d y z d y y d z zα  ≤ +  
 

This implies 𝑑𝑑(𝑦𝑦∗, 𝑧𝑧∗) = 0. 𝑖𝑖. 𝑒𝑒 𝑦𝑦∗ = 𝑧𝑧∗.  
Hence the fixed point of T is unique. 
Theorem 3.3. Let (X,d) be a complete metric space. Let T: 
X→X and let G be the graph associated with X. If T 
satisfies  

 ( ) ( ) ( )( ), , ,d Tx Ty d x Ty d y Txα≤ + (2) 

for all x, y ε X , where 10,[ ),
2

α ∈  then T has a unique 

fixed point. 
Proof. Let 𝑦𝑦𝑜𝑜  be any arbitrary point of X. The graph G 
and its sub-graph 𝐺𝐺𝑜𝑜  are defined as in Definition 3.1 and 
Definition 3.2. Consider the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . }  in X. According to Lemma 3.1, to 
prove that this sequence is Cauchy, it is enough to prove 
that the w-sequence associated with the graph 𝐺𝐺𝑜𝑜  is non-
increasing. 

From (2) we have, 
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Hence the w-sequence associated with 𝐺𝐺𝑜𝑜  is non-
increasing. From Lemma 3.1 the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } is a Cauchy sequence in X. But X is 
complete. Therefore this sequence converges in X. Let 
𝑦𝑦∗ = lim𝑛𝑛→∞ 𝑇𝑇𝑛𝑛𝑦𝑦𝑜𝑜 . 

Consider 
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Allow n→∞ on both sides. Then we have, 

 ( ) ( ) ( ) ( )* * * * * * * *, , [ , , ]d y Ty d y y d y Ty d y yα≤ + +  

 ( ) ( )* *1 , 0d y Tyα− ≤  

Hence 𝑑𝑑(𝑦𝑦∗,𝑇𝑇𝑦𝑦∗) = 0. 

 * *.Ty y⇒ =  

i.e. 𝑦𝑦∗ is a fixed point of T. 
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To prove uniqueness, let if possible, 𝑧𝑧∗  be any other 
fixed point of T. Then 𝑇𝑇𝑧𝑧∗ = 𝑧𝑧∗. 

From (2) we have, 

 ( ) ( ) ( )* * * * * *, , ,d Ty Tz d y Tz d z Tyα  ≤ +  
 

where 10 .
2

α≤ <  

 ( ) ( ) ( )* * * * * *, , ,d y z d y z d z yα  ≤ +  
 

 ( ) ( )* * * *, 2 ,d y z d y zα≤  

⇒ 1 .
2

α ≥  This is a contradiction. 

Hence 𝑦𝑦∗ = 𝑧𝑧∗. i.e the fixed point of T is unique. 
Following theorem is the fixed point theorem for  

λ-generalized contraction in a metric space endowed with 
a graph G. 
Theorem 3.4. Let T be a λ-generalized contraction of T-
orbitally complete metric space (X,d) into itself. Let G be 
the graph associated with X. Then 

i) There is a unique fixed point 𝑦𝑦∗ in X, 
ii) lim𝑛𝑛→∞ 𝑇𝑇𝑛𝑛𝑥𝑥 = 𝑦𝑦∗  for every x ∈ X and 
iii) 𝑑𝑑(𝑇𝑇𝑛𝑛𝑥𝑥,𝑦𝑦∗) ≤ 𝜆𝜆𝑛𝑛

1−𝜆𝜆
𝑑𝑑(𝑥𝑥,𝑇𝑇𝑥𝑥). 

Proof. Let 𝑦𝑦𝑜𝑜  be any arbitrary point in X. Consider  
the iterated sequence {𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . }  in X.  
Define 𝑥𝑥𝑛𝑛 = 𝑇𝑇𝑛𝑛𝑦𝑦𝑜𝑜  ,𝑛𝑛 = 0,1,2,3, … . ..  Hence we have 
𝑥𝑥𝑛𝑛+1 = 𝑇𝑇𝑥𝑥𝑛𝑛 ,𝑛𝑛 = 0,1,2,3 …. .The graph G and its  
sub-graph 𝐺𝐺𝑜𝑜  are defined as in Definition 3.1 and 
Definition 3.2. According to Lemma 3.1, to prove that  
the iterated sequence is Cauchy, it is enough to prove  
that the w-sequence associated with the graph 𝐺𝐺𝑜𝑜  is  
non-increasing.  

Since T is a λ-generalized contraction we have, 
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From Definition 2.3.4, we have, 
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Using this in (3) we have, 

 ( ) ( )1 1, ,n n n nd x x d x x+ −< (A) 

From Definition 3.3,  

 ( ) ( )1
1, , .n n

n o o n nw d T y T y d x x−
−= =  

Using this in (A) we have, 

 1 , .n nw w n I+ < ∈  

Hence the w-sequence is non-increasing and this implies 
the iterated sequence {𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } is Cauchy in X. 
But X is complete. Therefore the iterated sequence 
{𝑦𝑦𝑜𝑜 ,𝑇𝑇𝑦𝑦𝑜𝑜 ,𝑇𝑇2𝑦𝑦𝑜𝑜 , … . . } converges to say, 𝑦𝑦∗ in X. 
i.e. 

 *lim n
n

x y
→∞

=  (4) 

This proves the condition (ii) of the theorem. 
Now to prove that 𝑦𝑦∗ is the fixed point of T. 
Since T is a λ-generalized contraction we have, 
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From Definition 2.3.4 we have, 

 ( ) ( ) ( ) ( ){ },sup , , , 2 , 1x y X q x y r x y s x y t x y λ∈ + + + = <  

This implies each of the non-negative numbers 
q(x,y),r(x,y),s(x,y),t(x,y) must be less than λ. 

Hence we have, 
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Using (4) we have, 𝑑𝑑(𝑇𝑇𝑦𝑦∗,𝑦𝑦∗) = 0  ⇒ 𝑇𝑇𝑦𝑦∗ =
𝑦𝑦∗. 𝑖𝑖. 𝑒𝑒. (𝑦𝑦∗,𝑇𝑇𝑦𝑦∗) ∈ 𝐺𝐺 . Hence G has a loop at 𝑦𝑦∗. 

Therefore 𝑦𝑦∗ is the fixed point of T and condition (i) of 
the theorem is proved. 

To prove uniqueness, let if possible, 𝑧𝑧∗  be any other 
fixed point of T. Then 𝑇𝑇𝑧𝑧∗ = 𝑧𝑧∗. 

Since T is a λ-generalized contraction we have, 
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Since 𝑇𝑇𝑦𝑦∗ = 𝑦𝑦∗ 𝑎𝑎𝑛𝑛𝑑𝑑 𝑇𝑇𝑧𝑧∗ = 𝑧𝑧∗ we have, 

 * * * *( , ) .0d y z y z= ⇒ =  

Hence the fixed point of T is unique and the condition 
(i) of the theorem is proved. 

We now proceed to prove the condition (iii) of the 
theorem. 

From Definition 2.3.4 we have, 

 
( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( )
,sup , , , 2 ,

, , , 2 , ,
x y X q x y r x y s x y t x y

q x y r x y s x y t x y

λ

λ
∈ + + + =

⇒ + + + ≤
 

Since λ<1 we have, 
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Using this in (3) we have, 
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Repeating this argument we have, 
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Hence for some positive integer p, we have, 
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Allow n+p→∞ then we have, 
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Hence the condition (iii) of the theorem is also proved. 

4. Conclusion 

In this paper, the graph associated with the metric space 
is defined using a new approach and a sequence 
corresponding to the weights of the edges of the graph, 
namely w-sequence is defined. Using this sequence,  
the sequence of iterated functions is proved to be  
Cauchy. This methodology is followed for proving  
the contraction principles by Banach, Kannan, Chatterjea 
and λ-generalized contraction by Ciric. This approach  
can be used in proving the other contraction principles 
also. 
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