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Abstract  Modelling of plant growth is vital for hypotheses testing and carrying out virtual plant growth and 
development experiments, which may otherwise take a long time under field conditions. Modelling of plant growth 
has been aggravated by new phenotyping platforms that generate high dimensional data non-destructively over the 
entire growth time of a plant using a set of camera system. Such platforms generate high-throughput phenomic data, 
which is complex and constitute many features collected at multiple growth points for the same plant. However, the 
classical models are limited in that they can only model a single feature at a time. The objective of this study was to 
apply dynamic plant growth models that could be used to dissect complex relationships between plant growth and 
development using several modelling strategies. These included sigmoid, light GBM and XGBoost models. The 
image derived phenomic data was obtained from the Leibniz Institute of Plant Genetics and Crop Plant Research 
Gatersleben, Germany. The models were fitted using R statistical software and compared based on RMSE,  
R-squared, AIC and BIC performance metrics. The results showed that the XGBoost (RMSE = 2.1641) and  
Light GBM (RMSE = 2.7776) performed better than the Gompertz (RMSE = 3.8378) and the logistic function 
(RMSE = 3.8378) models in modelling maize plant growth. The XGBoost model (RMSE = 2.1641) showed better 
performance than Light GBM model (RMSE = 2.7776) in modelling maize plant growth. The Gompertz model 
using plant volume had AIC and BIC values for 139738.3 and 139763.4, respectively. The Gompertz model for 
plant side area had AIC and BIC values for 98436.15 and 98461.31, respectively. The logistic function model for 
plant volume had AIC and BIC values for 139749.2 and 139774.4, respectively. The logistic function model for 
plant side area had AIC and BIC values for 98415.95 and 98441.11, respectively. The Gompertz model and logistic 
function models showed almost the same performance in modelling maize plant growth. The non-parametric models, 
the XGBoost and light GBM, were found to perform better than the classical models (Gompertz and logistic 
functions) in modelling maize plant growth. Therefore, the study recommends the use of XGBoost as a generic 
model to fit high dimensional and complex phenotypic data in modelling plant growth and prediction of plant 
biomass yield at different growth points. 
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1. Introduction 

Modelling plant growth enables scientists and 
researchers to test theories and do virtual trials concerning 
plant growth and development that could have otherwise 
taken long time under field conditions [1]. The statistical 
models allow for interpretation of complex regulatory 
processes contributing to plant growth and development.  
 

Such models are informative instrument that are helpful in 
research [2]. In addition, growth models help investigators 
to systematically analyse systems perturbations, develop 
hypotheses to guide the design of new experimental tests, 
and ultimately assess the suitability of specific novel traits. 

Modelling of plant growth has become a key research 
area especially in the field of agriculture, environmental 
science and forestry [3]. This has been facilitated by the 
sharing of resources and experiences between the 
mathematicians, biologists and computer scientists. This  
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modelling of plant growth through integration of 
knowledge from various disciplines is necessary for 
advanced research in plant development and growth as 
well as in simulation studies [3]. Modelling of plant 
growth such as maize can be important in improving 
production and yield. This is because modelling can help 
to understand the dynamics of plant growth and 
development, and yield responses under different growth 
conditions [4]. 

The use of plant growth models to assess genotypes 
performance across diverse target environments, can help 
understand suitability of trait variation, and possibly 
accelerate plant breeding programs. However, the models 
to support these tasks are still under development and 
testing. Moreover, currently the phenotyping methods 
have changed, including use large-scale imaging 
phenotyping, which derive large, high dimensional and 
complex data set on all aspect of plant growth and 
development [5,6,7,8]. Such large and high dimensional 
data may not be appropriately fitted by existing models [9]. 
Therefore, the existing model may require an enabling 
data inference technology in addition to algorithm 
development with the aim of analytically solving complex 
and high dimensional data sets [10,11]. Phenotyping has 
advanced with the application of high throughput 
phenotyping such as use of automated imaging techniques 
[8]. This has led to derivation of large quantities of high 
dimensional data or phenotypic features that could not 
have been achieved using manual phenotyping in a single 
run [7]. This called for parallel development of statistical 
models that can appropriately handle such high 
dimensional data. Information on such models is limited. 
Though existing models such as the sigmoid models have 
been found to predict plant growth with high degree of 
precision, information on their performance using high 
dimensional data was still limited.  

Models exist that have been used in modelling plant 
growth and development. However, such models have 
been used to fit low dimensional data derived using 
manual measurement [3,12]. The manually collected is 
limited to few features and the same plant cannot be 
measured in subsequent growth stages since the plant is 
destroyed during the data collection. Hence, such models 
may be inefficient in fitting the high dimensional data that 
is derived using high-throughput techniques and at 
different growth stages for the same plant. Some of the 
existing models for plant growth include the sigmoid 
models, simple linear regression models, multiple linear 
regression models and non-linear models such as the 
quadratic and the cubic models. 

Sigmoid models are better suited to individual plant 
growth and development [5]. These models include the 
exponential and monomolecular models [13]. These 
models have been found useful in interpreting individual 
growth patterns [3]. Linear models have also been 
developed by expressing the dry weight of the shoot as a 
function of plant area and plant age [14]. Using the same 
variables, quadratic and cubic models were also with the 
linear regression model showing better performance as 
compared to the fitted non-linear models [14]. Moreover, 
simple linear regression and multiple linear regression  
 

models had been used to model growth and good 
performance has been exhibited [5,15]. 

Despite good performance of the existing growth 
models, it is worth noting that the models can only 
accommodate a few number of features. Therefore, the is 
need to test the performance of these models in case of 
data with high dimensionality derived using automated 
phenotyping platforms, such as image derived data. The 
data from automated phenotyping platforms are quite 
noisy [16]. Moreover, this high dimensional data has 
many features, which can perhaps aid in coming up with a 
more actuality plant growth curve and thus improved 
prediction. Fitting such data set using the existing classical 
models, may lead to over fitted models thus affecting their 
prediction accuracy. Therefore, alongside the already 
existing models, there is also need to test how  
non-parametric models such as the XGBoost and light 
GBM would fit the high dimensional data. Since these 
non-parametric models had not been used in modelling 
plant growth [17], there is need to compare their 
prediction accuracies with the already existing plant 
growth models. 

A study by [18] showed that non-parametric machine 
learning models handle more data than the other statistical 
models. This is an important strength that is really useful 
in handling large dimensional high-throughput data.  
Some of the most effective predictive models, such as 
XGBoost and Light GBM continue to be accurate with 
thousands or millions of additional data features 
[18,19,20]. Additionally, the non-parametric models have 
the mechanisms to sort out the variables that contain 
information relevant to the outcome and those variables 
that would just add noise to the predictions [21]. 
Generally, the conventional models that have been so far 
been applied for growth modeling don’t have such inbuilt 
mechanisms. In extreme situations where the predictor 
variables are more than the observations, these models 
results to total failure [22]. In addition, for the existing 
growth models, the data must meet some underlying 
assumptions failure to which the prediction accuracy will 
be low [22]. 

The existing models needed to be tested alongside 
newly promising models such as extreme gradient 
boosting and light gradient boosting. The modelling of 
plant growth was a regression problem and thus the 
existing models were compared based on akaike 
information criterion (AIC), Bayesian information 
criterion (BIC), root mean squared error (RMSE), mean 
absolute error (MAE) and r-squared [23]. Smaller values 
of AIC, BIC, RMSE and MAE shows that a model is a 
better fit. Larger values of r-squared is an indication that a 
model is a better fit [23]. For instance, [24] compared the 
performance of non-linear mathematical models in 
describing growth. The criterions used were; the 
coefficient of determination, Akaike information criterion, 
root mean squared error and Bayesian information 
criterion. The models fitted were; Richards, Gompertz and 
logistic model for different animals [24]. The results 
showed that the Richards models provided a better fit to 
the experimental data. It was also noted that the different 
models showed better performance for some animals. In a  
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study that fitted growth models, the models were 
compared using the Akaike information criterion and the  
Bayesian information criterion [25]. The models fitted 
were; log logistic, weibull, exponential, logistic and 
Gompertz models. The best models were the logistic and 
the log logistic. 

2. Methodology 

The data was obtained from Leibniz Institute of Plant 
Genetic and Plant Crop Research (IPK-Gaterleben), 

Gatersleben, Germany. All the analysis was carried out 
using the R statistical software. The features that used in 
model fitting were as described in [26]. The features were 
selected using feature importance statistical technique 
based on their predictability of the manually collected 
plant biomass (Table 1). 

The selected features (Table 1) were used to fit the 
logistic curve, the Gompertz model, XGBoost and Light 
GBM models. A comparison was then made using RMSE, 
R-squared, AIC and BIC on how the non-parametric 
models and sigmoid models performed in modelling plant 
growth and biomass prediction. 

Table 1. Features used in fitting the statistical models  

Feature Importance 
0.05 Importance Importance 

0.95 
Permutation 

error 
volume.vis.area090t.norm.mm3 1.17192 1.21573 1.24578 4.13907 

side.fluo.hull.area.norm 1.17158 1.18725 1.20006 4.04211 

volume.vis.iap.norm.px3 1.11972 1.13237 1.14195 3.85524 

side.fluo.border.length.norm 1.09477 1.11532 1.12343 3.79719 

volume.fluo.prism.norm 1.57436 1.64844 1.67001 2.61137 

volume.fluo.area090t.norm.mm3 1.26338 1.27438 1.28480 2.01880 

top.leaf.length.sum.norm skeleton 1.16299 1.26243 1.27748 1.99988 

volume.vis.prism.norm.mm3 1.21275 1.24389 1.29065 1.97051 

top.fluo.area.norm.mm2 1.14904 1.16480 1.19361 1.84521 

side.fluo.area.norm.mm2 1.10517 1.13703 1.14180 1.80123 

side.vis.border.length.norm 1.10900 1.13590 1.14617 1.79944 

top.fluo.hull.circumcircle.d.norm 1.09831 1.10230 1.10351 1.74621 

top.vis.area.norm.mm2 1.06629 1.09965 1.10257 1.74201 

top.vis.hull.pc2.norm 1.07377 1.08966 1.09113 1.72618 

side.fluo.hull.area.norm 1.07207 1.08681 1.09896 1.72166 

side.vis.area.norm.max.mm2 1.06926 1.07750 1.09406 1.70692 

top.vis.hull.area.norm 1.04968 1.05987 1.06964 1.67898 

side.height.norm mm 1.04635 1.05916 1.07647 1.67787 

volume.fluo.lt.norm.mm3 1.05004 1.05562 1.06205 1.67225 

top.vis.border.length.norm 1.04194 1.05015 1.07109 1.66358 

volume.vis.lt.norm.mm3 1.04218 1.04425 1.05265 1.65425 

side.vis.hull.pc2.norm 1.01240 1.02102 1.02611 1.61744 

volume.vis.iap.norm.px3 1.01007 1.01954 1.03539 1.61510 

side.leaf.length.sum.norm skeleton 1.01537 1.01930 1.02386 1.61473 

side.leaf.width.average.norm skeleton 1.01123 1.01843 1.02451 1.61334 

side.fluo.area.norm.max.mm2 1.01180 1.01613 1.01844 1.60970 

side.vis.area.norm.mm2 1.01049 1.01308 1.01946 1.60487 

top.leaf.width.average.norm skeleton 1.01138 1.01185 1.01577 1.60292 

side.height.norm.mm 1.00126 1.01110 1.01368 1.60173 

volume.fluo.iap.norm.px3 1.00090 1.00833 1.01119 1.59735 

volume.vis.iap_max.norm.px3 1.00179 1.00470 1.00675 1.59159 

volume.vis.area090t.norm.mm2 0.99618 1.00390 1.01745 1.59032 

top.vis.hull.pc1.norm 0.99807 1.00355 1.00825 1.58977 

side.fluo.border.length.norm 1.00159 1.00322 1.00416 1.58925 

side.fluo.hull.pc2.norm 1.00095 1.00131 1.00232 1.58623 

Importance=score value of the feature in predictability of the manually collected biomass, Importance 0.05 & Importance 0.95=lower and upper limits 
of the confidence interval for the feature importance scores 
Source: [26]. 
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2.1. Logistic Growth Curve 
Logistic growth curve is an S-shaped (sigmoidal) curve 

that can be used to model functions that increase gradually 
at first, more rapidly in the middle growth period, and 
slowly at the end, levelling off at a maximum value after 
some period of time [27]. Two models of the logistic 
growth curve were fitted in this study. The first logistic 
curve model had the equation; 
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where 𝑦𝑦1  = volume, 𝑎𝑎1 = the asymptote (the maximum 
volume that could be attained), 𝑏𝑏1 = the displacement on 
the x-axis, 𝑐𝑐1 = the growth parameter (described how 
quickly the variable 𝑦𝑦1 approached the asymptote). 

The second logistic curve model had the equation; 
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where 𝑦𝑦2  = side area, 𝑎𝑎2 = the asymptote (the  
maximum side area that could be attained), 𝑏𝑏2 =  the 
displacement on the x-axis, 𝑐𝑐2 = the growth parameter 
(described how quickly the variable 𝑦𝑦2  approached the 
asymptote). 

2.2. Gompertz Growth Model 
Gompertz model is a sigmoid model that is frequently 

used with growth data and other data. Two Gompertz 
models were fitted in this study. The first Gompertz model 
had the equation; 

 111 1
c xb ey a e

−−=  

where 𝑦𝑦1= variable volume, 𝑥𝑥 =time, 𝑎𝑎1 = the asymptote 
or the carrying capacity obtained by doing the limit of the 
function when volume tends to infinity (the highest 
volume that could be attained), 𝑏𝑏1= the displacement on 
the x-axis, 𝑐𝑐1= the growth rate. 

The second Gompertz model had the equation; 
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where 𝑦𝑦2= side area, 𝑥𝑥 =time, 𝑎𝑎2 = the asymptote or the 
carrying capacity obtained by doing the limit of the 
function when side area tends to infinity (the highest side 
area that could be attained), 𝑏𝑏2= the displacement on the 
𝑥𝑥-axis, 𝑐𝑐2= the growth rate.  

2.3. Extreme Gradient Boosting Model 
Extreme Gradient Boosting (XGBoost) is a tree-based 

algorithm, which sits under the supervised branch of 
Machine Learning. In its development, new training data 
sets were formed by random sampling with replacement 
from the original dataset, during which some observations 
were repeated in each new training data set. The 
observations were weighted and therefore some of them 
were selected in the new datasets more often. The  
 

XGBoost models fitted for this regression problem had the 
following general form.  

 ( )+i iy f x=   

where 𝑦𝑦𝑖𝑖 =  variable being predicted at a specific time 
point (plant biomass), 𝑥𝑥𝑖𝑖 =  phentotypic features at the 
specific time point such as; side area, side length, leaf 
length, top area, side border length, top hull area, side 
height, volume, side leaf length, side leaf width and top 
leaf width (Table 1). 

The training data was divided into subsets and the final 
prediction was a weighted sum of all the decision tree 
functions. In fitting the XGBoost models, samples were 
selected sequentially. For instance, the first sample was 
selected and a decision tree was fitted. The model then 
picked the examples that were hard to learn and using 
them and a few others selected at random from the 
training data set, a second model was fitted. Prediction 
was then made using the first and the second models. The 
model was then evaluated and hard examples were picked 
together with other randomly selected examples from 
training set and another model was fitted. The process of 
boosting algorithms continued up to a number 𝑛𝑛. In other 
words, the first model is fitted using the original training 
set. For example, a simple regression model; 

 ( ) ,y f x ε= +  

if the error was too large, the solution could have been to 
add more features, use another algorithm, tune the 
algorithm or look for more training set. However, if the 
error was not white noise and it had a relationship with the 
output, the second model was fitted as ( ) 1.f x ε= +  The 
process continued 𝑛𝑛 −times and the final model was; 

 ( ) 1n n nf x ε −= +  

The final step involved adding these models together 
with some weighing criteria where the weights = α′𝑠𝑠 
which yielded the final function that was used for 
prediction. 

2.4. Light GBM Model 
In Light GBM, the base learners were generated 

sequentially in such a way that the present base learner 
was always more effective than the previous one. This 
kind of boosting tried to optimize the loss function of the 
previous learners by a new adaptive model that added 
weak learners in order to reduce the loss function. The 
Light GBM models fitted for this regression problem had 
the following general form.  

 i iy xβ= +  

where 𝑦𝑦𝑖𝑖 =  variable being predicted at a specific time 
point (plant biomass), 𝑥𝑥𝑖𝑖 =  phentotypic features at the 
specific time point such as; side area, side length, leaf 
length, top area, side border length, top hull area, side 
height, volume, side leaf length, side leaf width and top 
leaf width (Table 1). The fitting process of the Light GBM 
model was similar to the one outlined in section 2.3. 
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2.5 Models Validation and Comparison 
The models were validated by using the cross validation 

statistical methods. In cross-validation, models are 
evaluated by training several models on subsets of the 
available input data and evaluating them on the 
complementary subset of the data. In this study 10-fold 
cross-validation method was used. In the 10-fold  
cross-validation, the input data was split into 10 subsets of 
data. The models were trained on all but one (10 - 1) of 
the subsets, and then evaluated on the subset that was not 
used for training. This process was repeated 10 times, with 
a different subset reserved for evaluation (and excluded 
from training) each time. The models were also compared 
statistically using the Akaike Information Criterion (AIC), 
Bayesian Information Criterion (BIC), the root mean 
squared error (RMSE) and the mean absolute error (MAE). 
The values of the RMSE, 𝑅𝑅2 and MAE showed how the 
models performed in prediction of the manually collected 
biomass. The AIC determined the relative information 
value of the model using the maximum likelihood 
estimate and the number of parameters (independent 
variables) in the model. The formula for AIC is given by; 

 2 2AIC K lnL= −  
where 𝐾𝐾  is the number of features used and L  is  
the log-likelihood estimate (the likelihood that the model 
could have produced the observed 𝑦𝑦-values. The smaller 
the AIC value meant that the better the model fit. 

The BIC is a method for scoring and selecting a model. 
The BIC statistic was calculated as; 

 ( )2 lnBIC LL N k= − × + ×  

LL is the log-likelihood of the model, N is the number of 
examples in the training dataset, and k is the number of 
parameters in the model. Based on BIC, more complex 
models had larger score and in turn, were less likely to be 
selected. 

Root Mean Square Error (RMSE) was the standard 
deviation of the residuals. Residuals were a measure of 
how far from the regression line data points are. The 
RMSE was calculated as; 

 ( )2
1

1 ˆ
n

j j
j

RMSE y y
n =

= −∑  

A low RMSE value indicated that the simulated and 
observed data were close to each other showing a better 

accuracy. Thus lower the RMSE meant that the better the 
model performance. 

Mean Absolute Error (MAE) measured the average 
magnitude of the errors in a set of predictions, without 
considering their direction. The MAE values were 
computed as; 

 
1
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n

j j
i

MAE y y
n =
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A good MAE was relative to a specific dataset. It was a 
good idea to first establish a baseline MAE for a dataset 
using a naive predictive model. A model that achieved a 
MAE better than the MAE for the naive model had a 
better accuracy. 

3. Results and Discussion 

3.1. Preliminary Analysis 
The preliminary analysis involved fitting a linear model 

between manually measured plant biomass (dry weight) 
and some selected phenotypic features such as volume, 
side height and side area. This was to establish if there 
was any relationship between the manually collected 
biomass and the plant phenotypic features from the image 
derived data. From the fitted model, the selected image 
features were significant predictors of plant biomass  
[(p < 0.05) Table 2]. The fitted models showed different 
strengths in predicting the plant biomass (Table 2). The 
model that was fitted using plant volume and side area 
showed the best results in terms of adjusted R-squared 
(Table 2). This showed that the manually collected plant 
biomass was correlated with the image derived phenotypic 
features. Additionally, there was also linear relationship 
between plant biomass and image derived phenotypic 
features such as plant volume. This suggested that plant 
biomass could be predicted using the features from the 
high throughput image derived data. The findings of this 
current study are in agreement with that of [28] who 
applied a logistic model for prediction of maize yield 
under water and nitrogen management and the results 
showed that the model predicted the maize yield during 
the growing season with an acceptable accuracy. The 
findings of this current study are also in agreement with 
those of [29] who showed that the logistic model is good 
at estimating the above-ground biomass from the plant 
height. 

Table 2. Linear Models fitted using the plant volume, side area and side height image derived phenotypic features 

Feature Model estimate std.error p - value Multiple R-squared Adjusted R-squared 

Volume Intercept 5.003e+00 4.430e-01 <2e-16 0.8127 0.8119 

 volume.fluo.prism.norm 2.264e-07 6.915e-09 <2e-16   

Side area Intercept -2.654e+00 8.276e-01 0.00152 0.7382 0.7171 

 side.vis.area.norm 4.710e-05 1.785e-06 < 2e-16   

Side height Intercept -0.0806252 1.1228351 0.943 0.5419 0.5400 

 side.height.norm 0.0146723 0.0008584 <2e-16   
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Figure 1. Diagrammatic representation of the linear relationship between manually measured plant dry weight biomass and image derived plant volume 
phenotypic feature 

3.2. Fitted Extreme Gradient Boosting 
Models 

The extreme gradient boosting models were fitted using 
image derived plant phenotypic features extracted from feature 
importance (Table 1) at various days after sowing (DAS). 
The values of the RMSE, 𝑅𝑅2 and MAE showed how the 
models performed in prediction of plant biomass from 
image derived phenotypic features (Table 3). On the basis 
of the RMSE, the best model was the model that attained 
the least value of the RMSE [(2.1641) Table 3]. The model 
was with the least value of RMSE (model at 36 DAS) also had 
the highest value of 𝑅𝑅2 (0.8292) (Table 3). The 𝑅𝑅2 value 
(0.8292) of the model showed that 82.92% of the variation 
in plant biomass was accounted for by the used selected 

image derived phenotypic features. On the basis of the 
mean absolute error (MAE) metric, the model that had the 
best performance was the model outputted the least value 
of the MAE (Table 3). These findings are consistent with 
those of [23], who evaluated the fitted XGBoost model 
using R-squared, RMSE, and MAE performance metrics. 
In their analysis, the fitted XGBoost model delivered the 
best results [23]. Using the R-squared, RMSE, and MAE 
performance criteria, it was also discovered that the 
XGBoost model outperformed Artificial Neural Networks and 
Support Vector Regression [30]. [31] compared performance 
linear model, random forest, support vector regression, 
XGBoost, LASSO regression, and ensemble technique 
using R-squared, RMSE, and MAE performance measures, 
with the XGBoost model yielding the best results. 

Table 3. Gradient Boosting Models for plant phenotypic Features derived using Feature Importance 

day RMSE Rsquared MAE RMSESD RsquaredSD MAESD 

11 4.6884 0.1460 3.6923 0.3791 0.0608 0.3203 

13 4.6813 0.1457 3.6577 0.3153 0.0573 0.2686 

15 4.2397 0.2945 3.2349 0.2378 0.0559 0.2150 

18 4.2117 0.3072 3.3200 0.2814 0.0661 0.2349 

20 4.1556 0.3207 3.3552 0.1841 0.0594 0.1529 

22 3.0956 0.6249 2.4436 0.3017 0.0873 0.1802 

24 2.8594 0.6773 2.2935 0.1550 0.0511 0.1292 

26 2.7723 0.6952 2.2064 0.1982 0.0679 0.1609 

28 2.5828 0.7375 2.0788 0.1691 0.0455 0.1526 

30 2.4349 0.7634 1.9143 0.1965 0.0486 0.1596 

32 2.2838 0.7918 1.7914 0.1721 0.0380 0.1471 

34 2.4331 0.7674 1.9183 0.1973 0.0355 0.1855 

36 2.1641 0.8292 1.7254 0.1345 0.0348 0.1298 

38 2.1679 0.8104 1.7356 0.1459 0.0331 0.1267 

40 2.2867 0.7907 1.7615 0.1075 0.0401 0.0740 

42 2.3691 0.7747 1.8284 0.1817 0.0571 0.1455 

RMSE-Root Mean Square Error, RMSESD- Standard Deviation of RMSE, MAE- Mean Absolute Error, MAESD- Standard Deviation of MAE. 
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3.3. Fitted Light Gradient Boosting Models 
The light gradient boosting models were fitted using the 

image derived plant phenotypic features extracted from 
feature importance (Table 1). From the results the best 
model on the basis of the RMSE was the model that attained 
the least value of the RMSE [(2.767341) Table 4]. The 
values of the RMSE showed how the models performed in 
prediction of plant biomass from image derived phenotypic 
features. On the basis of the MAE metric, the model that 
had the best performance was the model that outputted the 
least value of the MAE [(MAE=2.012106) Table 4]. This 
findings are similar to those of [32] Kopitar et al. (2020) 
who showed that Light GBM outperformed random forest 
and generalized linear models when their performance 
was evaluated using RMSE and MAE performance 
metrics. In a similar study, RMSE and MAE performance 
criteria showed that the light GBM outperformed the 
adaBoost model for regression [33]. A study by [34] 
showed that the light GBM outperformed neural networks 
and decision trees when the performance was evaluated 
using RMSE and MAE performance criteria. 

Table 4. Light Gradient Boosting Model for plant phenotypic 
features selected using Feature Importance 

RMSE MAE day 
5.005373 3.869566 11 
4.918358 3.815482 13 
4.406645 3.393446 15 
4.612141 3.558899 18 
4.415014 3.452459 20 
3.685053 2.824935 22 
3.482178 2.646189 24 
3.302421 2.503556 26 
3.724924 2.806156 28 
2.767341 2.012106 30 
2.898839 2.116751 32 
2.777760 2.034543 34 
3.122751 2.287803 36 
3.696688 2.752755 38 
3.589284 2.617610 40 
3.138000 2.280933 42 

RMSE-Root Mean Square Error, MAE- Mean Absolute Error. 

3.4. Fitted Gompertz Models 
The gompertz models were fitted using the image 

derived plant volume and side area phenotypic features. 
These are the features that attained the best feature 
importance score (Table 1). The Gompertz model fitted 
using the plant volume phenotypic feature had parameters 
estimates of 3.520762e+08 (8.305924e+07), 1.055582e+02 
(2.897641e+01) and 3.348069e-01 [(3.620450e-02) (Table 5). 
The values in parenthesis represents the standard errors of 
the estimates. These parameters were significant at 5% 
level of significance (Table 5). In the model output, the 
parameters were represented by symbols Asym, b2 and b3. 
The symbol Asym represented the asymptote or the 
carrying capacity obtained by doing the limit of the 
function when volume tends to infinity. This simply 
showed the highest plant volume that could be attained. 
The symbol b2 represented the displacement on the x-axis. 
The symbol b3 was the growth rate. The log likelihood, 
the AIC, BIC and the deviance statistic values for this 
model are: -69865.1, 139738.3, 139763.4 and 3.97917e+17, 
respectively (Table 6). The results showed that the  
log-likelihood value for the model can range from 
negative infinity to positive infinity [35]. The log-
likelihood, AIC and BIC values for a given model are 
mostly meaningless, but they are useful for comparing two 
or more models [35]. 

The Gompertz model fitted using image derived plant 
side area phenotypic feature had parameters estimates of 
7.882705e+06 (2.460224e+06), 2.747763e+0 (2.719820e+00) 
and 5.416621e-01 (3.035230e-02) and its parameters were 
significant at 5% level of significance (Table 7). The 
values in parenthesis represents the standard errors of the 
estimates. The estimates represented the maximum 
volume that could be attained using the model, the 
displacement on the x-axis and the growth rate 
respectively. The log likelihood, the AIC and BIC values 
for this model are: -49214.0, 98436.15, 98461.31 and 
1.251596e+13, respectively (Table 8). The log likelihood, 
the AIC and BIC values were used for models comparison. 
These values were very useful in comparing the different 
models. The Gompertz growth curves showed that growth 
is slowest at the start and end of a given time period 
(Figure 2 & Figure 3).  

Table 5. Fitted Gompertz Model using volume plant phenotypic feature 

term estimate std.error statistic p.value 

Asym 3.520762e+08 8.305924e+07 4.238857 0.000023 

b2 1.055582e+02 2.897641e+01 3.642900 0.000273 

b3 3.348069e-01 3.620450e-02 9.247659 0.000000 

Table 6. Perfomance metric for the Gompertz model using volume plant phenotypic feature 

sigma logLik AIC BIC deviance df.residual nobs 

9997702 -69865.1 139738.3 139763.4 3.97917e+17 3981 3984 

Table 7. Fitted Gompertz Model using the Feature using side area plant phenotypic feature 

term estimate std.error statistic p.value 

Asym 7.882705e+06 2.460224e+06 3.20406 0.0013657 

b2 2.747763e+01 2.719820e+00 10.10274 0.0000000 

b3 5.416621e-01 3.035230e-02 17.84582 0.0000000 
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Table 8. Performance Metrics for the Gompertz model using side area plant phenotypic feature 

sigma finTol logLik AIC BIC deviance df.residual Nobs 

56070.71 3e-07 -49214.0 98436.15 98461.31 1.251596e+13 3981 3984 

 
Figure 2. Gompertz growth curve generated using image derived plant volume phenotypic feature 

 
Figure 3. Gompertz growth curve generated using image derived plant side area phenotypic feature 

The results showed that plant biomass accumulation in 
maize followed a sigmoidal growth. The increase is from a 
fixed point origin (germination point). As the plant 
develop and produces additional leaves and thus enabling 
the growth of either more or larger leaves, this creates an 
acceleration portion of the growth curve. Later in the plant 
development stage as the plant switch to the reproductive 
phase, the accumulation of additional plant biomass slows 
down which ultimately give an S-shaped curve. The 
dataset for this study did not extend into reproductive 
phase and thus captured only the first phase of the 
sigmoidal biomass accumulation plants pattern, hence 
producing J-shaped curves. This study findings is in 
agreement with that of [36] who investigated a simple 

mathematical model that described the growth of the area 
and the number of total and viable cells in yeast colonies. 
The study showed that with low inocula, viable cells 
showed an initial short exponential phase when the 
colonies were not visible. This phase was shortened with 
higher inocula. In visible or mature colonies, cell growth 
displayed Gompertz-type kinetics. It was concluded that 
the cells growth in colonies was similar to liquid cultures 
only during the first hours, the rest of the time they grow, 
with near-zero specific growth rates, at least for 3 weeks 
[36]. [37] studied maize dry matter production and 
macronutrient extraction model as a new approach for 
fertilizer rate estimation. The study showed that dry matter 
accumulation followed a sigmoidal model and the 
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macronutrient content a power model. Biomass 
accumulation and partitioning in maize has also been 
found to follow a sigmoidal curve with an exponential 
phase followed by a linear ending with the senescence 
phase [38]. 

[39] did comparison of nonlinear models to describe the 
feather growth and development curve in yellow-feathered 
chickens. The study showed that the inflection point for 
the whole-body feather mass occurred, which was 
interpreted as the age of maximum feather mass gain as 
indicated by the change in the increase in feather mass 
from fast to slow [38]. The findings of this current study 

are in agreement with that of [40] who applied Gompertz 
model to describe the growth of corn. The study showed a 
slow growth rate at the initial stage, followed by a rapid 
growth stage to a critical point then the rate of growth 
began to decline reaching to a stability phase. The findings 
of this current study are also in agreement with those of 
[41] who applied Gompertz curve to the growth of 
tobacco leaves and stem. The study showed that the 
growth of tobacco leaves and stem was slowest at the start 
and end of a given time period. 

3.5. Fitted Logistic Curve Models 

Table 9. Fitted logistic growth curve using volume plant phenotypic feature 

term estimate std.error statistic p.value 

Asym 7.049763e+07 1.642039e+06 42.93298 0 

xmid 3.281341e+01 3.418623e-01 95.98429 0 

scal 5.805428e+00 1.632803e-01 35.55499 0 

Table 10. Perfomance metrics for the logistic growth curve using volume plant phenotypic feature 

sigma finTol logLik AIC BIC deviance df.residual nobs 

10011471 4e-07 -69870.61 139749.2 139774.4 3.990138e+17 3981 3984 

Table 11. Fitted logistic growth curve using side area plant phenotypic feature 

term estimate std.error statistic p.value 

Asym 585775.55336 9784.1058903 59.87012 0 

xmid 31.61234 0.2885569 109.55324 0 

scal 7.01180 0.1357929 51.63598 0 

Table 12. Performance metrics for the logistic growth curve fitted using side area plant phenotypic feature 

sigma finTol logLik AIC BIC deviance df.residual nobs 

55928.75 1e-07 -49203.98 98415.95 98441.11 1.245267e+13 3981 3984 

 
Figure 4. Logistic growth curve fitted using image derived plant volume phenotypic feature 
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Figure 5. Logistic growth curve fitted using image derived plant side area phenotypic feature 

The logistic growth models were fitted using the image 
derived plant volume and side area phenotypic features. 
These are the features that attained the best feature 
importance scores. The model fitted using image derived 
plant volume phenotypic feature had parameters estimates of 
7.049763e+07 (1.642039e+06), 3.281341e+01 (3.418623e-01) 
and 5.805428e+00 (1.632803e-01) and its parameters 
were significant at 5% level of significance (Table 9). The 
values in parenthesis represents the standard errors of the 
estimates. The estimates represented the maximum 
volume that could be attained using the model, the 
displacement on the x-axis and the growth rate 
respectively. The log likelihood, the AIC and BIC values 
for this model are: -69870.61, 139749.2, 139774.4 and 
3.990138e+17, respectively (Table 10). The log likelihood, 
the AIC and BIC values for the logistic curve model fitted 
using image derived plant volume phenotypic feature were 
used for models comparison. The model fitted using 
image derived plant side area phenotypic feature had 
parameters 585775.55336 (9784.1058903), 31.61234 
(0.2885569) and 7.01180 (0.1357929) and its parameters 
were significant at 5% level of significance (Table 11). 
The values in parenthesis represents the standard errors of 
the estimates. The estimates represented the maximum 
plant volume that could be attained using the model, the 
displacement on the x-axis and the growth rate 
respectively. The log likelihood, the AIC, BIC and the 
deviance statistic values for this model are: -49203.98, 
98415.95, 98441.11 and 1.245267e+13, respectively 
(Table 12). The log likelihood, the AIC and BIC values 
for the logistic curve model fitted using image derived 
plant side area were used for models comparison The 
logistic growth curves for models fitted using volume and 
side area showed that growth is slowest at the start and 
end of a given time period (Figure 4 & Figure 5). 

The findings demonstrated that maize plant biomass 

accumulation follows a sigmoidal growth pattern. These 
findings are in agreement with those of [42] who using 
logistic regression model showed that the plant growth is 
slowest at the start and end of a given time period. A  
study by [43] that investigated patterns of dry biomass 
accumulation and nutrient uptake by okra (Abelmoschus 
esculentus L.) under different rates of nitrogen application 
found out that growth followed a sigmoid curve which 
was accurately described a logistic equation. 

3.6. Comparison of the Statistical Power of 
the Models for Plant Growth 

The comparison of the statistical power of the models 
that were used for plant growth, involved comparison of 
the prediction power of the classical models against the 
machine leaning models. Further, the two machine 
learning models were also compared to find out, which 
had a better prediction power. The comparison metrics 
that were used in this case were the root mean squared 
error, R-squared, mean absolute error, Akaike information 
criterion and Bayesian information criterion. Root mean 
squared error estimated the accuracy of the forecasting 
models predicted values versus the actual or observed 
values while training the regression models. It was used to 
measure the error in the predicted values since the target 
or response variable was a continuous number. This 
criterion was essential in shortlisting the best performing 
model among different forecasting models that were 
trained on one particular dataset. The comparison was 
simply done by comparing the RMSE values across all 
models and select the one with the lowest value on RMSE 
(Table 13). The results in Table 13 showed that the 
extreme gradient boosting model performed better that the 
light gradient boosting (smaller values of RMSE and 
MAE in XGBoost than in Light GBM).  
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Table 13. Comparison of Statistical Power for Machine Learning 
Models for modelling plant growth 

 XGBOOST LIGHT GBM 

day RMSE MAE RMSE MAE 

11 4.6884 3.6923 5.005373 3.869566 

13 4.6813 3.6577 4.918358 3.815482 

15 4.2397 3.2349 4.406645 3.393446 

18 4.2117 3.3200 4.612141 3.558899 

20 4.1556 3.3552 4.415014 3.452459 

22 3.0956 2.4436 3.685053 2.824935 

24 2.8594 2.2935 3.482178 2.646189 

26 2.7723 2.2064 3.302421 2.503556 

28 2.5828 2.0788 3.724924 2.806156 

30 2.4349 1.9143 2.767341 2.012106 

32 2.2838 1.7914 2.898839 2.116751 

34 2.4331 1.9183 2.777760 2.034543 

36 2.1641 1.7254 3.122751 2.287803 

38 2.1679 1.7356 3.696688 2.752755 

40 2.2867 1.7615 3.589284 2.617610 

42 2.3691 1.8284 3.138000 2.280933 

 
On comparison of the Gompertz growth model and the 

logistic curve model, the two models showed almost the 
same values of Akaike information criterion and Bayesian 
information criterion (Table 14). However, these models 
have a limitation in that they can model only a single 
phenotypic feature at a time with their independent 
variable always being time (DAS). A study by [44] that 
was in line with this study found out that the Gompertz 
model is the simplest model in the estimation process, 
while the logistic model is more difficult in the computing 
process. The Gompertz and logistic models used in the 
study by [44] had high degree of accuracy with the value 
of the coefficient of determination of more than 90%. 
Other Similar findings showed that Akaike's information 
criteria (AIC) and Bayesian information criterion (BIC) 
have been used in comparing several growth models [45]. 
The findings of this current study are in line with those of 
[45] who showed that Gompertz model and the logistic 
function yielded a better fit since their values of AIC and 
BIC were low and that there was no an autocorrelation 
between the residual values. [40] also showed that a 
simple sigmoid model is preferred as it is easier to 
interpret the parameters biologically. The logistic model 
fitted better in describing the plant height growth 
compared to Gompertz model, as it yielded coefficient of 
determination more than 99% [40]. Based on the model, 
the absolute growth rate tended to be bell-shaped and 
right-skewed for logistic and Gompertz, respectively [40]. 

Statistically it was not possible to directly compare the 
machine learning models and the classical growth models 
[46]. This is due to the fact that, the growth models can 
only accommodate one feature at a time with the 
independent variable always being time intervals [46]. 
However, in this study, it was shown that having a model 
that fits just one feature is inadequate to predict plant 
growth because some information is left out. All the 
features that had been extracted at feature selection stage 
could all not be accommodated in the Gompertz or the 

logistic function model. To show that there was loss of 
information which in turn led to a reduced statistical 
power, an XGBoost model with all the best selected 31 
image derived phenotypic features was compared with the 
XGBoost model that had the only one feature that had 
used in the developing the sigmoid models (Table 15). 
The model with one feature showed poorer performance in 
terms of RMSE, MAE and R-squared as compared to the 
model with the 31 features. This is a clear indication that 
that the XGBoost and Light GBM models are better for 
modelling plant growth as compared to the mostly used 
sigmoid models. In agreement with this findings is a  
study by [47] who compared a Gompertz model against a 
machine learning model with the latter attaining superior 
results. [48] also showed that the machine learning models 
such as neural networks and XGBoost produced better 
performance in terms of prediction accuracy when 
compared with the sigmoid models such as the logistic 
model and the Gompertz model. 

Table 14. Models Comparison for the Gompertz and Logistic Curve 
Models 

 Gompertz Models Logistic Curves 

 Model 1 Model 2 Model 1 Model 2 

sigma 9997702 56070.71 10011471 55928.75 

isConv TRUE TRUE TRUE TRUE 

finTol 2E-07 3E-07 4.00E-07 1.00E-07 

logLik -69865.1 -49214.1 -69870.6 -49204 

AIC 139738.3 98436.15 139749.2 98415.95 

BIC 139763.4 98461.31 139774.4 98441.11 

deviance 3.98E+17 1.25E+13 3.99E+17 1.25E+13 

df.residual 3981 3981 3981 3981 

nobs 3984 3984 3984 3984 

Table 15. Models Comparison for XGBoost with 31 features and 
XGBoost with 1 feature 

 
On comparison of the machine learning models, the 

extreme gradient boosting model showed better 
performance than the light gradient boosting model  
(Table 13). These results agree with research findings that 
have shown that Light GBM is faster and more accurate 
than Cat Boost and XG Boost using variant number of 
features and records [49]. [50] also found out that 
LightGBM can significantly outperforms XGBoost and 
Semi Global Matching with Neural networks in terms of 
computational speed and memory consumption. In a study 
comparing Gradient Boosting Decision Tree Algorithms 
for prediction Performance, LightGBM algorithm had the 
best performance of the three with a balanced combination 
of accuracy, speed, reliability, and ease of use, followed 
by XGBoost with the histogram method, and CatBoost 
came last with slow and inconsistent performance [51]. 

Parameter Model with 31 Features Model with 1 Feature 

RMSE 2.1641 3.8378 
Rsquared 0.8292 0.7644 
MAE 1.7254 2.019 
RMSESD 0.1345 0.2659 
RsquaredSD 0.0348 0.0434 
MAESD 0.1298 0.1576 
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Another study that concurs with this study found out that 
non-parametric models offer more accurate predictions 
since they offer a better fit to data than parametric ones 
[52]. Further, non-parametric algorithms provide a good 
fit for data since they can fit many forms of a function 
[52]. 

4. Conclusion 

In conclusion, thise study found out that the machine 
learning models performed better that the conventional 
sigmoid models in explaining plant growth. The extreme 
gradient boosting model and the light gradient boosting 
models had the advantage of modelling several phenotypic 
features at ones as opposed to the classical models that 
could model only one phenotypic feature at a go. Further, 
the results also showed that extreme gradient boosting 
model showed better performance when modelling plant 
growth as compared to the light gradient boosting model. 
The developed models could also be used to predict plant 
biomass at different developmental stages. 
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