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Abstract  Interstitial cystitis (IC) is a chronic inflammatory condition that results in recurring discomfort or pain in 
the bladder and the surrounding pelvic region. In interstitial cystitis data base (ICDB) cohort study, the main target is 
to determine the influence of covariates, such as the demographic clinical characteristics of patients, on the 
longitudinal outcomes including the pain score (p), urinary urgency (u) and urinary frequency (f) which are three 
main indices reflecting IC symptoms. The ICDB data are mixed (discrete and continuous) longitudinal data. In 
longitudinal studies the continuous response may be non-normal, heavy tailed for example. The analysis of mixed 
longitudinal data is challenging due to several inherent features: (1) more than one outcome are followed for each 
subject over a period of time. (2) The longitudinal outcomes are subject to missingness that may be missing not at 
random (MNAR). This article proposes the analysis of mixed discrete and heavy tailed longitudinal outcomes 
subject to MNAR missingness using two different alternative algorithms. The continuous outcome is assumed to 
follow non-normal heavy tailed distribution. The proposed methodology is an extension of [1] and [2]. The proposed 
techniques are applied to Interstitial Cystitis data. Also, three simulation studies are conducted to validate the 
proposed techniques. 

Keywords: stochastic expectation maximization, parametric fractional imputation, interstitial cystitis, longitudinal 
data, maximum likelihood, missing data 

Cite This Article: Abdallah S. A. Yaseen, “Analysis of Mixed Discrete and Heavy Tailed Longitudinal Data 
with Non-random Missingness Using Stochastic Variants of the EM Algorithm.” American Journal of Applied 
Mathematics and Statistics, vol. 10, no. 1 (2022): 28-38. doi: 10.12691/ajams-10-1-5. 

1. Introduction 

Longitudinal data are comprised of repeated 
observations of one or more outcomes and a set of 
covariates for many subjects. A special type of 
longitudinal data is the bivariate or multivariate 
longitudinal data where more than one outcome is 
followed and jointly studied. Multivariate longitudinal 
data are useful to investigate the joint evolution of these 
responses over time. The scale (discrete/continuous) of 
multiple longitudinal outcomes is crucial in multivariate 
longitudinal analysis. Several approaches are used to 
analyze mixed discrete and continuous longitudinal data. 
A general approach for jointly modeling mixed discrete 
and continuous outcomes is to use the location model 
presented by [3]. The base of the location model is to 
factorize the joint distribution of both outcomes and fit a 
univariate model to each component of the factorization.  

The longitudinal nature renders the data arising from 
such studies more susceptible to incompleteness. The 
problem of missingness has been tackled using many 
approaches, two of them are discussed in depth in this 

paper: the stochastic EM (SEM) algorithm and the 
parametric fractional imputation (PFI) algorithm. The 
stochastic EM (SEM) algorithm is proposed in [4] and 
developed in [5,6] and [7]. The parametric fractional 
imputation (PFI) algorithm is introduced in [8,9,10] and 
[11] in the context of cross-sectional studies, and in [12] 
and [13], [2] for longitudinal data.  

Fewer techniques have been available when the 
continuous outcome violates normality assumption. In 
many instances, the assumption of normality is not 
realistic because of the presence of atypical observations. 
This problem is more severe if data have missing values 
[6]. Shen etal. [14] noted that the impact of the 
distributional form on results would be crucial in the case 
of incomplete data. Therefore, fitting different 
distributions to the outcomes, in the case of missing data, 
is advantageous. It allows us to study the properties of the 
proposed techniques when the distribution of the data is 
misspecified. This enables us to conduct a sensitivity 
analysis of the results to the distributional assumptions of 
the responses.  

A common alternative to the normal distribution is the 
heavy tailed distributions.  Multivariate heavy tailed 
distributions are proposed and adapted to replace the 
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traditional multivariate normal distribution [15-23]. A 
particular heavy tailed distribution is the t distribution that 
can be expressed as an infinite mixture of normal 
distributions [24,25]. This idea is first presented in [26] 
and advocated in longitudinal context by many studies 
such as [27] and [28]. This distinguished expression  
is merited of using standard techniques adapted for  
normal cases. Kenward [29] studies the sensitivity of the 
selection model under both normality and t distributional 
assumptions. Gad and Ahmed [6] investigate the effect of 
the distributional assumptions of the parameters estimates, 
obtained by the SEM algorithm, in the existence of 
intermittent missingness assuming both normal and heavy 
tailed t distribution. 

The purpose of this paper is twofold. The first is to 
extend the joint analysis of mixed discrete and continuous 
longitudinal data subject to nonignorable missingness 
assuming non-Gaussian distributions for the continuous 
outcome; in particular under heavy tailed distributions. To 
the best of our knowledge, the SEM algorithm and the PFI 
algorithm have not been applied in the context of mixed 
discrete and continuous longitudinal outcomes except  
in [1] and [2] where the normality assumption for the 
continuous response is imposed. The second is to explore 
the effect of the distributional assumptions on the SEM 
and PFI parameters estimates. Therefore, the change of 
distributional assumption is adopted as a sensitivity tool.  

The rest of the paper is organized as follows. Notations 
and model assumptions are presented in Section 2. The 
model and proposed methods are highlighted in Section 3. 
Section 4 is devoted to the application of the SEM 
algorithm and the PFI algorithm assuming heavy tailed 
distribution for the continuous outcome. Three simulation 
studies are presented in Section 5. Application of the 
proposed techniques on the Interstitial Cystitis Database is 
discussed in Section 6. Finally, in Section 7, the article 
ends with few conclusion comments. The Appendix 
contains some auxiliary tables. 

2. Notations and Assumptions 

In this article, the same notations of is adopted. The 
sequences of the continuous and discrete response 
variables are denoted as  𝑦𝑦𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑖𝑖𝑖𝑖 , whilst the sequence 
𝑧𝑧𝑖𝑖𝑖𝑖  is the 𝑝𝑝 -vector of fully observed covariate for the 
𝑖𝑖𝑡𝑡ℎ  measurement from the 𝑖𝑖𝑡𝑡ℎ  subject at time points 
𝑡𝑡 = (𝑡𝑡1, … , 𝑡𝑡𝑛𝑛) , for 𝑖𝑖 = 1, . . ,𝑚𝑚 . In vector form,  
these variables can be expressed as 𝑌𝑌𝑖𝑖 = �𝑦𝑦𝑖𝑖1, . .𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖� , 
𝑋𝑋𝑖𝑖 = �𝑥𝑥𝑖𝑖1, . . 𝑥𝑥𝑖𝑖𝑛𝑛𝑖𝑖�  and 𝑍𝑍𝑖𝑖 = �𝑧𝑧𝑖𝑖1, . . 𝑧𝑧𝑖𝑖𝑛𝑛𝑖𝑖 �  respectively. The 
number of time points 𝑛𝑛𝑖𝑖  may be common (𝑛𝑛 ) for all 
individuals. 

A sequence of discrete variable 𝑥𝑥𝑖𝑖𝑖𝑖∗  is assumed to be a 
realization of independent sample Poisson distribution 
with parameter 𝜆𝜆𝑖𝑖𝑖𝑖 ,  𝑖𝑖 = 1, . . ,𝑛𝑛 . Let 𝑥𝑥𝑖𝑖0∗  be a Poisson 
random variable with parameter 𝜆𝜆𝑖𝑖0  that controls the 
correlation structure of the discrete responses. It is 
postulated that 𝑥𝑥𝑖𝑖𝑖𝑖  is a linear combination of the 
independent Poisson random variables, that is 

 * *
0ij ij ix x ax= +  (1) 

where 𝑎𝑎  is a tuning integer parameter that controls the 
over-dispersion of the data. It can be seen, from Eq. (1), 
that Ε�𝑥𝑥𝑖𝑖𝑖𝑖 � = 𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑎𝑎𝜆𝜆𝑖𝑖0 , V�𝑥𝑥𝑖𝑖𝑖𝑖 � = 𝜆𝜆𝑖𝑖𝑖𝑖 + 𝑎𝑎2𝜆𝜆𝑖𝑖0  and 
Cov�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖 � = 𝑎𝑎2𝜆𝜆𝑖𝑖0  for 𝑖𝑖 ≠ 𝑖𝑖 , which means the larger 
values of 𝑎𝑎,  the greater the variance of 𝑥𝑥𝑖𝑖𝑖𝑖 .  Note that 
Cov�𝑥𝑥𝑖𝑖𝑖𝑖 , 𝑥𝑥𝑖𝑖𝑖𝑖� is always assumed to be positive. 

Using log-linear model, the possible relationship 
between E(X) and E(Y/X) and the matrix of covariates Z 
can be modelled as 

 ( )( ) 1log ijE x z β=  

While the general linear model is adopted for linking the 
conditional expectation E(y/x) to the matrix Z. 

The conditional distribution of the 𝑌𝑌𝑖𝑖  given 𝑋𝑋𝑖𝑖  is 
presumed to depend on conditional mean 𝜇𝜇𝑖𝑖  and 
conditional covariance matrix Σ𝑖𝑖 . The conditional mean 𝜇𝜇𝑖𝑖  
is presumed to take the form 
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To model the covariance between mixed discrete and 
continuous longitudinal outcomes, It is assumed that 
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where 𝑎𝑎𝑥𝑥 , 𝑎𝑎𝑦𝑦  are constants, 𝑏𝑏𝑥𝑥 , 𝑏𝑏𝑦𝑦  are linear effects of 
𝑥𝑥𝑖𝑖𝑖𝑖 −1 on 𝑥𝑥𝑖𝑖𝑖𝑖  and 𝑦𝑦𝑖𝑖𝑖𝑖  respectively, 𝜖𝜖𝑥𝑥 , 𝜖𝜖𝑦𝑦  are random errors 
and 𝛾𝛾1, 𝛾𝛾2 are the parameters that control the effect of 𝑏𝑏𝑥𝑥  
on 𝑏𝑏𝑦𝑦 . 

From Eq. (3) the covariance between any two 
measurements of the discrete and continuous responses, 
for the same individual, at any time point 0 < 𝑖𝑖, 𝑖𝑖 ≤ 𝑛𝑛 
can be formulated as: 

 ( ) ( ) ( )1 2cov , cov , V .ij ik ij ik iky x x x xγ γ= +  (4) 

Using the log-linear model the relationship between 𝑋𝑋𝑖𝑖  
and the covariate 𝑍𝑍𝑖𝑖  is modeled whilst the general linear 
model is employed to model the relationship between the 
response 𝑌𝑌𝑖𝑖  and the covariate 𝑍𝑍𝑖𝑖 , i.e. 

 ( ) ( )0 1 2log , log , E( ) ,i ij ij ij ijz y zλ ω λ β β= = =  (5) 

where 𝜔𝜔 and 𝛽𝛽1  are the mean parameters for the discrete 
response and 𝛽𝛽2  is its counterpart for the continuous 
response. Let Λ and 𝜃𝜃 denote the vectors of parameters for 
𝑋𝑋𝑖𝑖  and 𝑌𝑌𝑖𝑖  respectively. 

Substituting Eq. (5) in Eq. (1) gives 

 ( ) ( ) ( )0 1E exp exp .ij ij i ijx a z aλ λ β ω= + = +  

substituting Eq. (4), Eq. (5) in Eq. (2), it can be shown that 
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Yang and Kang [1] shows that from Eq.(6) the 
conditional expectation E(𝑦𝑦𝑖𝑖𝑖𝑖 |𝑋𝑋𝑖𝑖) equals 

 ( )2 1 0 2E( | ) ,ij i ij ij i ij i ijy X z x a Sβ γ λ λ γ ς α= + − − + =  

where 𝑆𝑆𝑖𝑖 = 1
𝑛𝑛
∑ (𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑎𝑎𝑛𝑛
𝑖𝑖=1 𝜆𝜆𝑖𝑖0 − 𝜆𝜆𝑖𝑖𝑖𝑖 ) , 𝜍𝜍𝑖𝑖𝑖𝑖 = �𝑧𝑧𝑖𝑖𝑖𝑖 , �𝑥𝑥𝑖𝑖𝑖𝑖 −

𝑎𝑎𝜆𝜆𝑖𝑖0−𝜆𝜆𝑖𝑖𝑖𝑖,𝑆𝑆𝑖𝑖, and 𝛼𝛼=𝛽𝛽2, 𝛾𝛾1, 𝛾𝛾2. 
Assuming missingness, 𝑋𝑋,𝑌𝑌 can be classified into two 

sub-matrices {𝑋𝑋𝑜𝑜 ,𝑋𝑋𝑚𝑚 } and {𝑌𝑌𝑜𝑜 ,𝑌𝑌𝑚𝑚 } where 𝑋𝑋𝑜𝑜 ,𝑌𝑌𝑜𝑜  represent 
the observed part, while  𝑌𝑌𝑚𝑚  and 𝑋𝑋𝑚𝑚  denote the missing 
observations. let 𝑢𝑢𝑖𝑖𝑖𝑖  and 𝑟𝑟𝑖𝑖𝑖𝑖  be two binary variables, 
combined into 𝑛𝑛𝑖𝑖  vectors 𝑅𝑅𝑖𝑖  and 𝑈𝑈𝑖𝑖 , representing the 
missingness process in 𝑋𝑋,𝑌𝑌 and parameterized by 𝜄𝜄 and 𝜙𝜙 
respectively. 𝑟𝑟𝑖𝑖𝑖𝑖  takes value 1 if 𝑦𝑦𝑖𝑖𝑖𝑖  is observed and 0 
otherwise. 𝑢𝑢𝑖𝑖𝑖𝑖  is defined similarly for the discrete variable 
𝑋𝑋 . Both 𝑟𝑟𝑖𝑖𝑖𝑖   and 𝑢𝑢𝑖𝑖𝑖𝑖  are assumed to follow Bernoulli 
distribution with a probability 𝜋𝜋(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝜙𝜙) and 𝜋𝜋(𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖 , 𝜄𝜄) 
respectively.   

3. Models and Optimization Methods  

Based on the selection model of Diggle and Kenward 
[30], the joint density function of the outcomes 𝑋𝑋𝑖𝑖 ,𝑌𝑌𝑖𝑖  and 
response indicators 𝑅𝑅𝑖𝑖 ,𝑈𝑈𝑖𝑖  can be factorized as  

 ( ) ( ) ( ), , , | , | , | , ,i i i i i i i i i i i if X Y R U Z f X Y Z P R U X Y= (7) 

where 
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and 𝑠𝑠𝑖𝑖  is the integer part of ( )1 min .j ijx
a
 
  

 

The probability of missingness for each missingness 
process can be modeled using logistic models depending 
on the measurements at the time of missingness 𝑑𝑑𝑖𝑖 ; 𝑥𝑥𝑑𝑑𝑖𝑖 , 
𝑦𝑦𝑑𝑑𝑖𝑖  and a set of unknown parameters 𝜙𝜙, 𝜄𝜄, and the logistic 
models can be schematized as   

 
( ){ }
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= + +

= + +
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The probabilities of missingness depends on the 
observations at the time of missingness, such a type of 
missingness is termed as missing not at random [31]. 

The observed joint distribution function 𝑓𝑓(𝑋𝑋𝑜𝑜 ,𝑌𝑌𝑜𝑜 ,𝑅𝑅,𝑈𝑈) 
can be obtained as 
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( )
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f X Y R U

f X X Y Y R U dY dX= ∫∫
 

The observed data log-likelihood function is 
proportional to 𝑓𝑓(𝑋𝑋𝑜𝑜 ,𝑌𝑌𝑜𝑜 ,𝑅𝑅,𝑈𝑈), i.e.  

 ( ) ( )Θ, | , , , , , , ,o o o ol X Y R U f X Y R Uτ ∝  

where Θ is the whole set of parameters pertaining to 𝑋𝑋 and 
𝑌𝑌  and 𝜏𝜏 = [𝜙𝜙, 𝜄𝜄] . Calculating the Integrations over the 
missing part is commonly not possible thereby we exploit 
the ECM algorithm of [32]. The stochastic variants of the 
ECM algorithm can be used to obviate the integrations 
entailed in the E-step of the ECM algorithm. However, the 
key assumptions of this estimation process are 

1.  The correct specification of the missingness 
processes. 

2.  The correct specification of the responses 
distributions. 

Since both outcomes are not fully observed, the correct 
distributions of the different outcomes are not known. 
Many studies criticize the selection model with its 
sensitivity on the distributional assumptions and 
recommend studying the impact of changing the responses’ 
distributions on the gained results. See [33,34] and the 
discussion of [30]. Therefore, it is tempted to incorporate 
a sensitivity analysis when treating the missingness 
problem. This can be accomplished by fitting different 
distributions to the responses and investigating the effect 
of distribution misspecification on the gained parameters. 

4. Inference for Non-Normal Models 

Yaseen and Gad [2] introduced the SEM algorithm and 
the PFI algorithm to analyze mixed discrete and 
continuous (normally distributed) longitudinal data subject 
to non-random missingness. We extend both algorithms to 
the heavy tailed distribution family for the continuous 
response keeping the Poisson assumption for the discrete 
outcome. 

A family of heavy tailed distribution can be expressed 
as infinite mixtures of normal distributions as  

 ( ) ( )| , ( | , ) ,i i i i i i i if Y X q f Y X q h q dq= ∫  (9) 

where 𝑓𝑓(𝑌𝑌𝑖𝑖 |𝑋𝑋𝑖𝑖 , 𝑞𝑞𝑖𝑖) is normal distribution with mean 𝜇𝜇𝑖𝑖  and 

covariance matrix 
Σi

iq
 and ℎ(𝑞𝑞𝑖𝑖) is a known distribution 

[28]. If ℎ(𝑞𝑞𝑖𝑖)  has gamma distribution with parameters 

, ,
2 2
ν ν 
 
 

 𝑓𝑓(𝑌𝑌𝑖𝑖 |𝑋𝑋𝑖𝑖) follows multivariate t distribution with 

mean parameter 𝜇𝜇𝑖𝑖 , scale matrix Σ𝑖𝑖  and degree of freedom 
𝜈𝜈, i.e. 
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1/2

/22
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where 𝑑𝑑𝑖𝑖2 = (𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑖𝑖)′Σ𝑖𝑖−1(𝑌𝑌𝑖𝑖 − 𝜇𝜇𝑖𝑖). 
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Adopting ℎ(𝑞𝑞𝑖𝑖)  as a mixing distribution as in (9),  
the complete data for the 𝑖𝑖𝑡𝑡ℎ  subject are 
[ 𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑋𝑋𝑖𝑖 ,𝑚𝑚 , 𝑞𝑞𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑜𝑜 ,𝑌𝑌𝑖𝑖 ,𝑚𝑚 ,𝑅𝑅𝑖𝑖 ,𝑈𝑈𝑖𝑖 ] whilst [𝑋𝑋𝑖𝑖 ,𝑚𝑚 , 𝑞𝑞𝑖𝑖 , 𝑌𝑌𝑖𝑖 ,𝑚𝑚 ] 
represent the missing data. The complete density function 
can be written as 
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and the complete log-likelihood function can be then 
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( ) ( ) ( ) ( )1 2 3 4

Θ, , | , , , ,

Λ| | , , | | , .

l X Y q R U

l X l X Y q l q l R U

υ τ

θ υ τ= + + +
 (10) 

Maximizing 𝑙𝑙(Θ, 𝜐𝜐, 𝜏𝜏|𝑋𝑋,𝑌𝑌, 𝑞𝑞,𝑅𝑅,𝑈𝑈) can be performed by 
separately maximizing 𝑙𝑙1(Λ|𝑋𝑋), 𝑙𝑙2(𝜃𝜃|𝑌𝑌,𝑋𝑋) and 𝑙𝑙4(𝜏𝜏|𝑅𝑅,𝑈𝑈)  
 
if 𝜐𝜐 is known as 𝑙𝑙3(𝜐𝜐|𝑞𝑞) has no information about Θ and 𝜏𝜏. 
Otherwise the four components of the right hand side of 
(10) are required to be maximized. The MLE estimates 
can be obtained using the ECM algorithm by maximizing 
the expectation of the complete log-likelihood function 
given the observed data and current estimates: 
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and our primary interest is to get the MLE’s of Λ , 𝜃𝜃, 𝜈𝜈 
and 𝜏𝜏.  

The SEM algorithm and the PFI algorithm can be 
adapted to get the parameters estimates by approximating 
the E-step of the ECM algorithm as follows. 
 
The SEM Algorithm 

The SEM algorithm approximates the E-step by 
iterating the S-step and M-step specified as follows 
 
The S-Step 

The S-step involves simulating the missing data 
𝑋𝑋𝑖𝑖 ,𝑚𝑚 , 𝑞𝑞𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑚𝑚  for the 𝑖𝑖𝑡𝑡ℎ  subject from their conditional 
distribution given the observed data and current estimates; 
𝑓𝑓�𝑋𝑋𝑖𝑖 ,𝑚𝑚 , 𝑞𝑞𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑚𝑚 |𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑌𝑌𝑖𝑖 ,𝑜𝑜 ,𝑅𝑅𝑖𝑖 ,𝑈𝑈𝑖𝑖�. A proper factorization is 
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taking into account the independency between 𝑋𝑋𝑖𝑖 ,𝑚𝑚  and 
𝑌𝑌𝑖𝑖 ,𝑜𝑜 , 𝑞𝑞𝑖𝑖 ,𝑅𝑅𝑖𝑖  and also between 𝑞𝑞𝑖𝑖  and 𝑅𝑅𝑖𝑖 ,𝑈𝑈𝑖𝑖 . 

Since we need to simulate from three conditional 
distributions, the S-step is classified into three sub-steps, 
whence sequential sampling technique is conducted.  

S1-step 
In the first sub step, the missing discrete vector for the 

𝑖𝑖𝑡𝑡ℎ  subject 𝑋𝑋𝑖𝑖 ,𝑚𝑚  is imputed at the (𝑡𝑡 + 1)𝑡𝑡ℎ  iteration from 
𝑓𝑓�𝑋𝑋𝑖𝑖 ,𝑚𝑚�𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑈𝑈𝑖𝑖 ;Λ𝑡𝑡�. Details of the simulation procedures 

can be found in [2]. Let the simulated vector at the 
(𝑡𝑡 + 1)𝑡𝑡ℎ  iteration be denoted as 𝑋𝑋�𝑖𝑖 ,𝑚𝑚 ,𝑡𝑡+1.   

S2-step 
The second step entails simulating 𝑞𝑞𝑖𝑖  from 

ℎ(𝑞𝑞𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑋𝑋�𝑖𝑖 ,𝑚𝑚 ,𝑡𝑡+1,𝑌𝑌𝑖𝑖𝑜𝑜 ; 𝜐𝜐𝑡𝑡) . Markov Chain Monte Carlo 
techniques are adopted if direct simulation is not 
applicable. If ℎ(𝑞𝑞𝑖𝑖)  has gamma distribution with 
parameters ( 𝜈𝜈

2
, 𝜈𝜈

2
),  then it is easy to prove that the 

conditional distribution ℎ(𝑞𝑞𝑖𝑖|𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑋𝑋�𝑖𝑖 ,𝑚𝑚 ,𝑡𝑡+1,𝑌𝑌𝑖𝑖𝑜𝑜 ; 𝜐𝜐𝑡𝑡)  follows 

also gamma distribution with parameters (𝜈𝜈+𝑛𝑛𝑖𝑖
2

, 𝜈𝜈+𝑑𝑑𝑖𝑖
2

2
) [25]. 

The simulated value for the 𝑖𝑖𝑡𝑡ℎ  subject is termed as 𝑞𝑞�𝑖𝑖 ,𝑡𝑡+1. 
S3-step 
In the last sub-step, 𝑌𝑌𝑖𝑖 ,𝑚𝑚  is simulated from the density 

𝑓𝑓�𝑌𝑌𝑖𝑖 ,𝑚𝑚�𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑋𝑋�𝑖𝑖 ,𝑚𝑚 ,𝑡𝑡+1,𝑌𝑌𝑖𝑖 ,𝑜𝑜 ,𝑞𝑞�𝑖𝑖 ,𝑡𝑡+1,𝑅𝑅𝑖𝑖 ;𝜃𝜃𝑡𝑡�  depending on the 
previous simulated values as presented in [2]. The 
simulated vector is denoted as 𝑌𝑌�𝑖𝑖 ,𝑚𝑚 ,𝑡𝑡+1.         

The simulated data in addition to the observed data 
constitute a Pseudo complete data and the Q-function can 
be then approximated at the (𝑡𝑡 + 1)𝑡𝑡ℎ  iteration as  
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The M-step 
After performing the S-step, the Q-function 

𝑄𝑄(𝛩𝛩, 𝜈𝜈, 𝜏𝜏|𝛩𝛩𝑡𝑡 , 𝜈𝜈𝑡𝑡 , 𝜏𝜏𝑡𝑡)  is maximized using conditional 
maximization procedures as follows. 

1.  In the first sub-step parameters pertaining to the 
discrete response are being updated using the 
generalized linear model as presented in [2]. 

2.  In the second sub-step parameters of the continuous 
response, 𝛽𝛽2, 𝛾𝛾1, 𝛾𝛾2 , and the covariance parameters 
are updated conditionally on the current estimates 
of the parameters pertaining to discrete response. If 
the conditional distribution 𝑓𝑓(𝑌𝑌𝑖𝑖|𝑋𝑋𝑖𝑖)  follows 
multivariate 𝑡𝑡  distribution and the continuous 
response is modelled using the general linear model 
as in (5), then the errors 𝜖𝜖𝑖𝑖  of model (5) follows 
multivariate normal distribution, i.e. 

 Σ
| ~ 0, .i

i i
i

X MVN
q

 
 
 

  

According to [25] and [6], if we transform 𝑌𝑌𝑖𝑖 , 𝑍𝑍𝑖𝑖  
and 𝜖𝜖𝑖𝑖  as 

 * * *, , ,i i i i i i i i iY q Y Z q Z q= = =   

then the conditional distribution 𝑓𝑓(𝑌𝑌𝑖𝑖∗|𝑋𝑋𝑖𝑖)  follows 
the traditional multivariate normal distribution with 
conditional mean 𝜇𝜇𝑖𝑖  and conditional covariance Σ𝑖𝑖 , 
whence the Jennrich-Scluchter algorithm [35] can 
be used to maximize 𝜃𝜃  allowing for different 
covariance structures pertaining to continuous 
variable.  

3.  In the last sub-step, the vector of parameters τ are 
updated. Since both indicator variables are binary, 
the iterative reweighted least square method (IRLS) 
can be employed to find the MLE’s. 
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The PFI Algorithm 
The PFI algorithm is executed in the following steps: 
1.  For each missingness vector; 𝑋𝑋𝑖𝑖 ,𝑚𝑚 , 𝑞𝑞𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑚𝑚 ,  

𝐾𝐾  imputed vectors are simulated from the 
conditional distribution of the missing data  
given the observed data and current estimates 
𝑓𝑓�𝑋𝑋𝑖𝑖 ,𝑚𝑚 , 𝑞𝑞𝑖𝑖 ,𝑌𝑌𝑖𝑖 ,𝑚𝑚 |𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑌𝑌𝑖𝑖 ,𝑜𝑜 ,𝑅𝑅𝑖𝑖 ,𝑈𝑈𝑖𝑖�. There is no need to 
change the imputed values except only in two cases. 
The first case occurs in the first part of the PFI 
algorithm which corresponds to the burn-in period 
of the SEM algorithm. The other case is explained 
in the third step. 

2.  Using the 𝑖𝑖𝑡𝑡ℎ  imputed vectors, 𝑋𝑋�𝑖𝑖 ,𝑚𝑚1 ,..., 𝑋𝑋�𝑖𝑖 ,𝑚𝑚𝐾𝐾 ,𝑌𝑌�𝑖𝑖 ,𝑚𝑚1 , ..., 
𝑌𝑌�𝑖𝑖 ,𝑚𝑚𝐾𝐾 , 𝑞𝑞�𝑖𝑖1, … , 𝑞𝑞�𝑖𝑖𝐾𝐾   for the vectors of missingness for 
the 𝑖𝑖𝑡𝑡ℎ  individual, the 𝑖𝑖𝑡𝑡ℎ  replicated data are 
�𝑋𝑋�𝑖𝑖𝑖𝑖 ,𝑌𝑌�𝑖𝑖𝑖𝑖 , 𝑞𝑞�𝑖𝑖𝑖𝑖� = [�𝑋𝑋𝑖𝑖 ,𝑜𝑜 ,𝑋𝑋�𝑖𝑖 ,𝑚𝑚𝑖𝑖 �, �𝑌𝑌𝑖𝑖 ,𝑜𝑜 ,𝑌𝑌�𝑖𝑖 ,𝑚𝑚𝑖𝑖 �, 𝑞𝑞�𝑖𝑖𝐾𝐾] . Given 
the 𝑖𝑖𝑡𝑡ℎ  replicated data �𝑋𝑋�𝑖𝑖𝑖𝑖 ,𝑌𝑌�𝑖𝑖𝑖𝑖 , 𝑞𝑞�𝑖𝑖𝐾𝐾� and the current 
estimates 𝛩𝛩𝑡𝑡 , 𝜈𝜈𝑡𝑡 , 𝜏𝜏𝑡𝑡 , a fractional weight 𝑊𝑊𝑖𝑖 ,𝑡𝑡+1

𝑖𝑖  is 
calculated at the (𝑡𝑡 + 1)𝑡𝑡ℎ  iteration for each  
replicated data �𝑋𝑋�𝑖𝑖𝑖𝑖 ,𝑌𝑌�𝑖𝑖𝑖𝑖 , 𝑞𝑞�𝑖𝑖𝐾𝐾� as     

 
( )
( ), 1

0 0

, , , , ; , ,
,

, , , , ; , ,

k k K
i i i i i t t tk

i t k k K
i i i i i t

f X Y R U q
W

f X Y R U q

ν τ

ν τ
+

Θ
=

Θ

 



 



 

where 𝛩𝛩0, 𝜈𝜈0 and 𝜏𝜏0 are the initial estimates. 
3.  The missing vectors for the 𝑖𝑖𝑡𝑡ℎ  subject are  

re-simulated if any of the fractional weights 
𝑊𝑊𝑖𝑖

𝑖𝑖  exceeds the fraction 𝐾𝐾|𝑐𝑐 , where c is a fixed 
constant. This step is essential to avoid 
unreasonable values in the simulation step and to 
prevent outliers to dominate the estimation process. 

4.  The following step is to incorporate the fractional 
weights in the approximation of the E-step using the 
weighted mean of the complete density functions 
calculated based on all the 𝐾𝐾𝑡𝑡ℎ  replicated data as 
follows 
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and then 

 ( ) ( ) ( ) ( )1 2 3ˆ ˆ ˆ ˆ, , | , | | , .i i i i i i i i iQ Q Y X Q q Q R Uν τ ν τΘ = Θ + +  

5.  The algorithm alternates between the previous steps 
till convergence. The convergence is achieved when 
the difference between two successive estimates is 
less than 𝜀𝜀; a pre-specified stopping criterion.  

5. Simulation Studies 

Three simulation studies have been performed. The first 
simulation study aims to validate the SEM algorithm and 
the PFI methods under heavy tailed assumption. The second 
simulation study investigates the effect of misspecification 
of normal assumption for the continuous outcome on the 
SEM and PFI estimates. The distribution of the continuous 
outcome is treated as a heavy tailed variable despite it was 
originally generated from normal process. The last simulation 
study reverses the order of misspecification and measures 
the effect of misspecification of the heavy tailed assumption 
by analyzing the continuous outcome generated from 
multivariate 𝑡𝑡-distribution as multivariate normal variate. 

5.1. The First Simulation Study 
In this part, the behavior of the SEM algorithm and the 

PFI algorithm is studied assuming multivariate Poisson 
distribution for the discrete outcome and multivariate t 
distribution for the continuous one. Samples of 500 
subjects are generated and constructed as bivariate mixed 
discrete and continuous outcomes. Five covariates have 
been used. The covariate matrix 𝑍𝑍 with five independent 
variables are generated from the normal distribution with a 
mean of 3 and a variance of 0.25. A description of the 
study parameters is given in Table 1. The parameters are 
fixed at 𝛽𝛽1 = [−.5, 1, .5], 𝜔𝜔 = 2, 𝑎𝑎 = 1, 𝛽𝛽2 = [5, 10, 15], 
𝛾𝛾1 = [.5] , 𝛾𝛾2 = [1] ,𝑚𝑚 = [200], 𝑛𝑛 = [5] . The degree of 
freedom 𝜈𝜈 is set to 5 and is assumed either to be known or 
estimated from the data. The autoregressive covariance 
structure is adopted for the continuous longitudinal 
outcome with 𝜌𝜌 = 0.7  and 𝜎𝜎 = 6.0 . A unified logistic 
model is used to generate the missingness in both 
outcomes with parameters 𝜙𝜙 = [−17, 0.11, 0.13]  as in  
Eq. (8). The burn-in period for the SEM algorithm is 
chosen with length 250 to all parameters. For the PFI 
algorithm, the number of replicates 𝐾𝐾 is set to five. We 
choose  c = 2𝐾𝐾  . The first stage length is 10 iterations. 
Table 2 and Table 3 present the study results. 

Table 1. Parameter description 

Parameter description 
𝜔𝜔 Parameter of the Poisson variable 𝑿𝑿𝒊𝒊𝒊𝒊 used to create the correlation of the discrete values 
𝛽𝛽1 The mean parameters of the discrete outcome 
𝛾𝛾1 

The two parameters used to specify the covariance between the discrete and continuous outcomes 
𝛾𝛾2 
𝛽𝛽2 The mean parameters of the continuous outcome 
𝜎𝜎 

The covariance parameters of the continuous outcome 
𝜌𝜌 
𝜙𝜙 The missingness parameters 
𝜈𝜈 The degree of freedom 
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Table 2. Parameter estimates, relative bias and mean square error of the SEM and PFI estimates, degree of freedom 𝝂𝝂 is unknown 

Parameter True Value SEM Estimates PFI Estimates 
  Estimate Relative Bias MSE Estimate Relative Bias MSE 
𝜔𝜔 2 1.890 -0.055 0.012 1.993 -0.003 0.011 

 
𝛽𝛽1 

-0.5 -0.476 -0.048 0.002 -0.499 -0.002 0.002 
1 0.984 -0.016 0.001 0.998 -0.002 0.001 

0.5 0.501 0.002 0.001 0.500 0.000 0.001 
𝛾𝛾1 0.5 0.516 0.032 0.003 0.516 0.032 0.003 
𝛾𝛾2 1 0.85 -0.150 0.013 0.864 -0.136 0.012 

 
𝛽𝛽2 

5 5.009 0.002 0.714 5.233 0.047 0.638 
10 9.891 -0.011 0.691 9.836 -0.016 0.618 
15 14.989 -0.001 0.648 14.799 -0.013 0.586 

𝜎𝜎 6 6.360 0.060 0.435 6.337 0.056 0.736 
𝜌𝜌 0.7 0.652 -0.069 0.006 0.656 -0.063 0.007 

 
𝜙𝜙 

-17 -16.543 -0.027 5.982 -17.046 0.003 7.783 
0.11 0.118 0.073 0.0004 0.116 0.055 0.014 
0.13 0.122 -0.062 0.001 0.129 -0.008 0.001 

𝜈𝜈 5 4.789 -0.042 2.5 4.662 -0.068 4.78 

Table 3. Parameter estimates, relative bias and mean square error of the SEM and PFI estimates, degree of freedom 𝝂𝝂 is known 

Parameter True Value SEM Estimates PFI Estimates 
  Estimate Relative Bias MSE Estimate Relative Bias MSE 
𝜔𝜔 2 1.894 -0.053 0.010 1.986 -0.007 0.011 

 
𝛽𝛽1 

-0.5 -0.469 -0.062 0.002 -0.500 0.000 0.002 
1 0.982 -0.018 0.001 0.994 -0.006 0.001 

0.5 0.495 -0.010 0.001 0.498 -0.004 0.001 
𝛾𝛾1 0.5 0.503 0.006 0.002 0.520 0.040 0.002 
𝛾𝛾2 1 0.828 -0.172 0.011 0.856 -0.144 0.01 

 
𝛽𝛽2 

5 5.276 0.055 0.461 5.164 0.033 0.553 
10 9.717 -0.028 0.492 9.682 -0.032 0.565 
15 14.826 -0.012 0.453 14.742 -0.017 0.565 

𝜎𝜎 6 5.778 -0.037 0.285 5.713 -0.048 0.873 
𝜌𝜌 0.7 0.630 -0.100 0.005 0.627 -0.104 0.005 

 
𝜙𝜙 

-17 -14.332 -0.157 4.947 -17.239 0.014 8.897 
0.11 0.121 0.100 0.0005 0.123 0.118 0.001 
0.13 0.100 -0.231 0.0005 0.116 -0.108 0.001 

 
The results highlight that the behavior of the SEM 

algorithm and the PFI algorithm under heavy tailed 
assumptions is reasonable. All the parameters have low 
relative bias (less than 0.20). The performance of the SEM 
algorithm and the PFI algorithm is alike except for that the 
relative bias for most of the mean parameters using the 
PFI algorithm is relatively lower than its counterpart for the 
SEM algorithm. However, the MSE for the variance parameter 
𝛔𝛔 under the SEM algorithm is lower than the MSE under 
the PFI algorithm. Overall, the performance of both algorithms 
is similar whether the degree of freedom is known or not. 

5.2. The Second Simulation Study 
The aim of this part is to study the sensitivity of the 

SEM and PFI estimates against misspecification of the 
distributional assumption. We simulate the continuous 
outcome assuming multivariate normal distribution but 
then we treat it as it follows multivariate 𝑡𝑡 distribution and 
apply the SEM algorithm and the PFI algorithm in the 
settings of heavy tailed case. The degree of freedom is 
assumed to be fixed at values 5 and 15. The results are 
presented in Table 4 and Table 5. 

We compare the results of the above tables with the 
results of the similar simulation study conducted in [2], 
Table A-1 in the Appendix, where the distribution of the 
continuous outcome is well specified, i.e. the continuous 
outcome is generated and analyzed assuming the correct 
distribution which is multivariate normal. The comparison 
presents that the MSE for all estimates grows in size or 
keeps at its value. This note is clearer in the estimates of 
the parameters pertaining to continuous outcome using the 
PFI algorithm. For the relative bias, we can classify the 
parameters to three different groups. The first group 
includes the parameters estimates that almost have no 
change in their values. This group includes most of the 
parameters estimates which are [ 𝜔𝜔, 𝛽𝛽1, 𝛾𝛾1, 𝛾𝛾2,𝛽𝛽2,𝜎𝜎,𝜌𝜌,𝜙𝜙1] 
for the SEM and PFI algorithm. The second group 
contains 𝜙𝜙2 that relatively grows in size for both the SEM 
algorithm and the PFI algorithm. The last group entails 
only 𝜙𝜙0 that has smaller value for the both algorithms. In 
general, the absolute change in the relative bias is small 
for the SEM algorithm and the PFI algorithm. There is no 
much change comparing the results at different values for 
the degree of freedom. 
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Table 4. Parameter estimates, relative bias and mean square error of the SEM and PFI estimates, degree of freedom 𝝂𝝂 is fixed at 5, true 
distribution is multivariate normal distribution 

Parameter True Value SEM Estimates PFI Estimates 
  Estimate Relative Bias MSE Estimate Relative Bias MSE 
𝜔𝜔 2 1.883 -0.059 0.012 1.928 -0.036 0.013 

 
𝛽𝛽1 

-0.5 -0.473 -0.055 0.002 -0.485 -0.030 0.002 
1 0.983 -0.017 0.001 0.990 -0.010 0.001 

0.5 0.501 0.001 0.001 0.503 0.006 0.001 
𝛾𝛾1 0.5 0.523 0.045 0.003 0.510 0.020 0.003 
𝛾𝛾2 1 0.835 -0.165 0.013 0.857 -0.143 0.014 

 
𝛽𝛽2 

5 4.938 -0.012 0.677 4.905 -0.019 0.521 
10 10.011 0.001 0.651 9.956 -0.004 0.684 
15 14.974 -0.002 0.610 14.968 -0.002 0.662 

𝜎𝜎 6 6.109 0.018 0.091 5.606 -0.066 0.052 
𝜌𝜌 0.7 0.665 -0.051 0.007 0.695 -0.007 0.006 

 
𝜙𝜙 

-17 -19.591 0.152 9.991 -19.114 0.124 12.936 
0.11 0.111 0.006 0.001 0.118 0.073 0.001 
0.13 0.156 0.204 0.001 0.149 0.146 0.001 

Table 5. Parameter estimates, relative bias and mean square error of the SEM and PFI estimates, degree of freedom  𝝂𝝂 is fixed at 15, true 
distribution is multivariate normal distribution 

Parameter True Value SEM Estimates PFI Estimates 
  Estimate Relative Bias MSE Estimate Relative Bias MSE 
𝜔𝜔 2 1.903 -0.049 0.011 1.936 -0.032 0.013 

 
𝛽𝛽1 

-0.5 -0.477 -0.046 0.002 -0.486 -0.028 0.002 
1 0.988 -0.012 0.001 0.996 -0.004 0.001 

0.5 0.498 -0.004 0.001 0.496 -0.008 0.001 
𝛾𝛾1 0.5 0.522 0.045 0.003 0.525 0.050 0.003 
𝛾𝛾2 1 0.842 -0.158 0.011 0.838 -0.162 0.011 

 
𝛽𝛽2 

5 4.941 -0.012 0.646 4.992 -0.002 0.613 
10 9.993 -0.001 0.652 10.028 0.003 0.585 
15 14.991 -0.001 0.578 14.869 -0.009 0.545 

𝜎𝜎 6 6.141 0.024 0.057 5.974 -0.004 0.044 
𝜌𝜌 0.7 0.659 -0.059 0.005 0.670 -0.043 0.005 

 
𝜙𝜙 

-17 -19.124 0.125 9.112 -19.199 0.129 11.072 
0.11 0.109 -0.009 0.001 0.115 0.045 0.001 
0.13 0.152 0.171 0.001 0.151 0.162 0.001 

 
5.3. The Third Simulation Study 

We reverse the order of distribution misspecification. 
Data are generated assuming multivariate Poisson 
distribution for the discrete outcome and multivariate t 

distribution using the same settings of the above 
simulation study with degree of freedom equal to 5. The 
SEM algorithm and the PFI algorithm are applied treating 
the continuous outcome as normal distributed variable. 
The results are presented in Table 6. 

Table 6. Parameter estimates, relative bias and mean square error of the SEM and PFI estimates, true distribution is multivariate t distribution 

Parameter True Value SEM Estimates PFI Estimates 
  Estimate Relative Bias MSE Estimate Relative Bias MSE 
𝜔𝜔 2 1.88 -0.06 0.0126 1.99 -0.005 0.0094 

 
𝛽𝛽1 

-0.5 -0.47 -0.06 0.0017 -0.50 0 0.0017 
1 0.98 -0.02 0.0012 1.00 0 0.0012 

0.5 0.50 0.00 0.0010 0.50 0 0.0008 
𝛾𝛾1 0.5 0.49 -0.02 0.0031 0.51 0.02 0.0033 
𝛾𝛾2 1 0.82 -0.18 0.0157 0.71 -0.29 0.0143 

 
𝛽𝛽2 

5 5.40 0.08 0.6590 5.27 0.05 0.7905 
10 9.58 -0.04 0.6736 9.65 -0.04 0.7844 
15 14.75 -0.02 0.6612 14.81 -0.01 0.7463 

𝜎𝜎 6 7.16 0.19 1.0577 7.22 0.20 0.8196 
𝜌𝜌 0.7 0.64 -0.09 0.0112 0.65 -0.07 0.0118 

 
𝜙𝜙 

-17 -14.01 -0.18 3.3668 -15.17 -0.11 4.4822 
0.11 0.12 0.09 0.0005 0.13 0.18 0.0007 
0.13 0.10 -0.23 0.0003 0.10 -0.23 0.0004 
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Results from this study and results from Table 2 are 
brought together and contrasted. Some notes can be 
concluded. The relative bias for the parameters under 
misspecification of multivariate t distribution hardly 
differs from its counterpart under well-specification of 
multivariate t distribution. The exception for that is the 
variance parameter 𝜎𝜎  where its absolute relative bias 
jumps form .03, .04 to .19, .20 for the SEM and PFI 
algorithms respectively. For the MSE values, the estimates 
under misspecification of the multivariate t distribution 
are higher or the same as the MSE values compared to 
well-specification case. 

The main conclusion of the sensitivity simulation 
studies is that misspecification of the distribution of the 
continuous outcome does not affect the relative bias of the 
estimates- except for the variance parameter. However, 
the MSE grows in size which leads into a loss of 
significance for truly significant variables. 

6. Application (Interstitial Cystitis 
Database) 

The proposed methods are applied under the assumption 
of heavy tailed distribution to the Interstitial Cystitis Data 
Base (ICDB) and the results are compared with the similar 
results calculated under normality assumptions presented 
in [2] which is presented in Table A-2 in the Appendix. 
The ICDB data have been used by [1]. The ICDB 
characteristics are discussed in details in [36]. The ICDB 
data include 637 patient at its baseline. Patients are 
followed for symptoms of pain, urgency and urinary 
frequency, from January 1993 to November 1997. Yang 
and Kang [1] study the joint effect of a group of covariates 
on the urgency and urinary frequency treating them as 
continuous and discrete variables respectively. Each of 
these variables are measured by asking the patients to rate 
them in the last week on an ordinal scale ranging from 0; 
for the lowest severity, to 9 which is the maximum 
severity. In addition, the patients are required to rate the 
same variables in three consecutive days. The averages of 
the study variables over the three days are also recorded. 
The main problem of the data is the high rate of 
missingness. About 20% of the sample only remained in 
the study after the 36𝑡𝑡ℎ  month. Therefore, [1] consider 
only the data gathered in the first 36 months.  

In this article we use the same settings of [2] but 
assuming multivariate heavy tailed distribution for the 
continuous outcome. Patients with completely missing 
data or data with outliers in any of the outcomes are 
omitted from the analysis leading to a reduced sample of 
538 patients with maximum observed time points equals 
44. A brief description of the covariates is given in  
Table A-3 in the Appendix. 

The analysis starts with similar settings for the first 
simulation study. The number of replicates for the PFI is 
set to 3. The standard errors of the estimates are obtained 
using the Jackknife replication method and the p-values 
are produced based on the Z-table. The same burn-in 
period as in the simulation studies are used for the SEM 
algorithm. The results are presented in Table 7. 

For the SEM algorithm, a comparison of the results 
under normal assumption and heavy tailed assumption 
shows no difference in terms of the relative bias. For the 
significance levels, only Shx_2 decreases in its 
significance from being significant at levels .01 to being 
significant at level 0.1. Other variables attain its 
significance at approximately the same levels. For the PFI 
estimates, the same relative biases are found between the 
results under different distributional assumptions. 
However, many variables lose their significance under 
heavy tailed assumption compared to normal estimates. 
This includes income, Shx_2, UROD_7, sev_2, in 𝛽𝛽1 and 
sex, age in 𝛽𝛽2. The general conclusion from both results is 
that assuming heavy tailed distribution instead of normal 
distribution leads to an increase in the standard errors 
thereby many variables lose their significance. However, 
the SEM algorithm is more robust than the PFI algorithm 
since the change in the significance levels is limited which 
is a merit over the PFI algorithm. These conclusions 
coincide with the results of the simulation studies where 
the change in the distributional assumption affects only 
the MSE not the relative bias. Other interesting note is the 
type of missingness the data suffer from. Under multivariate 
normal assumption, the missingess is considered MNAR 
according to both SEM and PFI algorithm. In contrast, the 
nonignorable missingess parameters are insignificant 
under multivariate t distribution which is also a common 
result between our study and [6]. 

Table 7. parameter estimates of the ICDB data and its significance 

Parameter Variable PFI SEM 

𝜔𝜔  1.35 1.26*** 

𝐵𝐵1 

sex 0.33*** 0.32*** 

income 0.17 0.20*** 

Shx_2 0.09 0.11* 

UROD_7 -0.0008 -0.0008** 

UROD_9 -0.0002 -0.0001 

age 0.01* 0.01*** 

sev_2 0.75 0.74*** 

sev_3 1.04* 1.00*** 

𝛾𝛾1 0.15 0.15 

𝛾𝛾2 -0.003 -0.004 

𝐵𝐵2 

sex 0.84 0.79*** 

income -0.21 -0.23 

shx_2 -0.02 -0.03 

UROD_7 -0.0013 -0.001 

UROD_9 0.0004 0.0002 

age 0.01 0.01*** 

sev_2 2.11*** 2.19*** 

sev_3 3.26*** 3.37*** 

𝜙𝜙0 -2.54 -2.14** 

𝜙𝜙1 0.03 0.01 

𝜙𝜙2 0.08 0.07 

𝜎𝜎 1.70 1.65 

𝜌𝜌 .39 0.40 

*** significant at 0.01 significance level, ** significant at 0.05 
significance level, *significant at 0.10 significance level. 
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7. Concluding Remarks 

In this article, the SEM algorithm and the PFI algorithm 
are extended to heavy tailed case for the continuous 
outcome. The proposed methods are advantageous in the 
sense of low relative bias and MSE. The Jennrich-
Schluchter algorithm incorporated in the estimation of the 
covariance parameters permits more flexibility in the 
specification of the covariance matrix related to the 
continuous outcome. The sensitivity analysis shows that 
misspecification of the outcome’s distribution does not 
affect the values of the estimates. Parameters estimates are 
still unbiased but their standard errors are increased. This 
may affect the significance of the variables especially with 
the PFI algorithm. Yet there are more possible extensions 
need further investigation. The sensitivity analysis should 
be investigated against the distributional assumptions for 
the discrete outcome as well. This is applicable for instance 
by adopting multivariate negative binominal distribution 
instead of the multivariate Poisson distribution for the 
discrete outcome. Validating different mechanisms and 
forms for the assumed missingness mechanism is also 
advisable. Another important further point is to represent 
the covariance of the discrete outcome using a matrix of 
parameters instead of one as discussed by [37] and [38]. 

Important Note 

The ICDB data reported here were supplied by the 
NIDDK Central Repositories. This manuscript does not 
necessarily reflect the opinions or views of the NIDDK 
Central Repositories, or the NIDDK. 
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Appendex 
Table A-1. Parameter estimates, relative bias and mean square error of the SEM and PFI estimates, Yaseen and Gad (2019) results 

Parameter True Value SEM Estimates PFI Estimates 

  Estimate Relative Bias MSE Estimate Relative Bias MSE 

𝜔𝜔 2 1.86 0.07 0.011 1.97 0.01 0.012 

 
𝛽𝛽1 

-0.5 -0.47 -0.06 0.002 -0.49 -0.01 0.002 

1 0.98 0.02 0.001 1.00 0.00 0.001 
0.5 0.51 0.02 0.001 0.50 0.01 0.001 

𝛾𝛾1 0.5 0.5 0.00 0.002 0.49 0.01 0.002 

𝛾𝛾2 1 0.82 0.18 0.010 0.84 0.16 0.010 

 
𝛽𝛽2 

5 5.17 0.03 0.603 5.37 0.07 0.539 
10 9.71 0.03 0.359 9.66 0.03 0.454 
15 14.94 0.00 0.561 14.71 0.02 0.480 

𝜎𝜎 6 5.82 0.03 0.022 5.81 0.03 0.042 

𝜌𝜌 0.7 0.63 0.10 0.005 0.62 0.12 0.005 

 
𝜙𝜙 

-17 -15.02 -0.12 2.984 -14.53 -0.15 3.773 
0.11 0.12 0.09 0.001 0.12 0.06 0.001 
0.13 0.11 0.15 0.0003 0.10 0.21 0.0004 

Table A-2. Parameter estimates of the ICDB data and its significance under normality assumption, Yaseen and Gad (2019) results 

Parameter Variable PFI (compound symmetric) PFI (autoregressive) SEM (compound symmetric) SEM (autoregressive) 

𝜔𝜔 1.34*** 1.34*** 1.26*** 1.26*** 

𝐵𝐵1 
 

sex 0.30*** 0.35*** 0.32*** 0.32*** 

income 0.20** 0.18** 0.20*** 0.20*** 
Shx_2 0.12** 0.10** 0.10*** 0.10*** 

UROD_7 -0.001** -0.001** -0.001** -0.001** 

UROD_9 -0.0002 -0.0002 -0.0001 -0.0001 
age 0.01*** 0.01*** 0.01*** 0.01*** 

sev_2 0.73*** 0.69*** 0.73*** 0.73*** 
sev_3 1.00*** 0.97*** 0.99*** 1.00*** 

𝛾𝛾1 0.18 0.16 0.16 0.18 

𝛾𝛾2 -0.05 -0.04 -0.04 -0.05 

𝐵𝐵2 
 

sex 0.78*** 0.79*** 0.79*** 0.80*** 

income -0.08 -0.07 -0.07 -0.08 
shx_2 0.11 0.06 0.03 0.04 

UROD_7 -0.001 -0.001 -0.001 -0.001 
UROD_9 0.0004 0.0003 0.0001 0.0003 

age 0.01*** 0.01*** 0.01* 0.01* 

sev_2 2.11*** 2.09*** 2.16*** 2.17*** 
sev_3 3.21*** 3.14*** 3.20*** 3.26*** 

𝜎𝜎 1.55 1.81 1.80 1.53 

𝜌𝜌 .50 1.78 0.49 1.78 

𝜙𝜙0 -2.65*** -2.52*** -2.16*** -2.25*** 

𝜙𝜙1 0.04* 0.04* 0.01 0.004 

𝜙𝜙2 0.10* 0.05* 0.07*** 0.10*** 

*** significant at 0.01 significance level, ** significant at 0.05 significance level, *significant at 0.10 significance level. 
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Table A-3. The definition of the covariates used in ICDB data 

variable definition type 
Sex Sex: male/ female binary 

income Annual household income continuous 
shx_2 Previous interstitial cystitis Binary diagnosis by physician: yes/no binary 

UROD_7 Volume at first sensation continuous 
UROD_9 Volume at maximal capacity continuous 
age Patient age continuous 

Severity Severity of symptoms with three levels: sev_1, sev_2, sev_3 Categorical: three levels 
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