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1. Introduction 
During the last century, splines theory has received 

considerable attention. Lacunary interpolation was 
initiated in 1957 [1]. Several researchers have studied the 
use of splines to solve such interpolation problems 
[2,3,4,5]. All of these methods are global and require the 
solution of a large system of equations. The most 
appropriate method solving lacunary interpolation 
problems using piecewise polynomials with certain 
continuity properties. 

Spline functions are a good tool for the numerical 
approximation of functions on the one hand and they also 
suggest new, challenging and rewarding problems on the 
other. Piecewise linear functions, as well as step functions, 
have been an important theoretical and practical tools for 
approximation of such functions. Lacunary interpolation 
by spline appears whenever observation gives scattered or 
irregular information about a function and it's derivatives. 
Also, the data in the problem of lacunary interpolation are 
values of the functions and of it's derivatives but without 
hermite condition in which consecutive derivatives are 
used at each nodes. 

2. Construction 
Let S(x) ε S(5)

n,6 denote the class of sixtic splines S(x) 
on [0,1] such that 
•  S(x) ε C5 [0, 1] 
•  S(x) is a polynomial of degree six on each 

subinterval 

 1, ,0 1v v v n
n n

+  ≤ ≤ −  
 (1) 

It can be verified that if P(x) is a sixtic on [0, 1] then: 

 
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

0 1

2 3 4
4

5 6

1 2

1 2 1

2 1

P x p C x p C x

p C x p C x p C x

p C x p C x

= +

′ ′′ ′′′+ + +

′′′+ +

 

Where: 

 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

6 5 4
0

6 5 4
1

6 5 4
2

6 5 4 2
3

6 5 4 3
4

6 5 4
5

6 5 4
6

1 4 5 6 4
4
1 4 5 6
4
1 4 5 2
4
1 4 5 4 2
8

1 12 40 65 40 6
240
1 11 40 35

240
1 7 20 15 2

480

A x x x x x

A x x x x x

A x x x x x

A x x x x x x

A x x x x x x

A x x x x x

A x x x x x

= − + − +

= − + − +

= − + −

= − + − + −

= − + − + −

= − + − +

= − + −

 (2) 

For later references we have: 
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Further, a sixtic P(x) on [1, 2] can be written as: 
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(3) 

It is easy to verify that a sixtic Q(x) on [0, 1] can be 
expressed in the following form: 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

0 1
4

2 3 4
5 5

5 6

0 1

1 0 1

0 1

Q x q B x q B x

q B x q B x q B x

q B x q B x

= +

′ ′′+ + +

+ +

 (4) 
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for later references we have 
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Also a sixtic Q(x) on [1, 2] can be written as: 
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Where: 
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3. The Approximation of the Spline 
Functions 

Descriptions of the method: Let (Sn, C5) be the class of 
spline functions with respect to the set of knots xi. The 
spline functions will denoted by Si(x), where i = 0, 1,..., n. 
We shall prove the following: 

Theorem 1 (Existence and Uniqueness) 
For every odd integer n and for every set of 5n+9/2 real 

numbers 
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Let fεC5[0,1] and n an odd integer. then the unique 
sixtic spline Sn(x) satisfying conditions of Theorem 3.1, 
with fv = f(v/n), v = 0,1,…,n; 
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we have: 
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Proof of Theorem 1 
For a given S(x) ε S(5)

n,6 set h = n-1, Mv = S(5) (vh+), v = 
0,1,…..,n-1, Nv = S(5) (vh-), v = 0,1,….,n. Since, S(5) is 
linear in each internal (vh, (v+1)h), it is completely 

determined by the (2n) constants { } { }1
0 1

n n
v vv vM and N−

= = . 
Also, if S(x) satisfies the requirements of Theorem 1 that 
for 2vh ≤ x ≤ (2v+1)h, v = 0,1,…, n-1/2 , it must have the 
following form: 
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and for (2v+1)h ≤ x ≤ (2v+2)h , v=0,1,…., n-3/2, S(x) has 
the form: 
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We shall show that it is possible to determine the (2n) 

parameters { } { }1
0 1

n n
v vv vM and N−

= = , such that the function 
S(x) given by Eq. 9 and 10 will also satisfy (5) in 
Theorem 1 and S' (x), S"(x) and S(4) will be continuous on 
[0,1]. S(x) is continuous because of the interpolating 
condition Eq. 8 in Theorem 1, S'(x) and S(4)(x) are 
continuous on [0,1] except at the points (2vh) and (2v+1)h, 
respectively, v = 0, 1,… , n-1/2. 

From Eq. 10 we see that Eq. 8 in Theorem 1 is 
equivalent to: 
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Simple calculations show that S"((2v+2)h-) = 
S"((2v+2)h+) and S(5)((2v+2)h+) are equivalent to: 
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Thus, the theorem will be established if we show that 
the system of linear Eq. 12-16 has a unique solution. This 
end will be achieved by showing that the homogeneous 
system corresponding to Eq. 12-16 has only zero solution. 

The following is the homogeneous system of equations 
for v= 0,1,…, n-3/2: 
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Form Eq. 19 and 20 we have for v = 0, 1,…, n-3/2: 
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Putting the values and Mn-1 = -13/7 Nn from Eq. 19 in 20 
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Also, from Eq. 14 and 20 we have: 
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and M0 = -N1 from Eq. 21. 
Using Eq. 19 we obtain 17Mn-3+5Nn-2 and using Eq. 21 

with 25 and 24 we have Mn-3 = Nn-2 = Mn-2 = Nn-1 = 0. 
Also obtain the system: 
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By the same manner we get M0 = M1 = … = Mn-1 = 0 
and N1=N2= N3 = … = Nn = 0,  to solution of the 
homogeneous system for n = 4p and n = 4p+2. 
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