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Abstract  Modern engineering problems are often composed by objectives that must be taken into account 
simultaneously for better design performance. Normally, these objectives are conflicting, i.e., an improvement in one 
of them does not lead, necessarily, to better results for the other ones. To overcome this difficulty, many methods to 
solve multi-objective optimization problems (MOP) have been proposed. The MOP solution, unlike the single 
objective problems, is given by a set of non-dominated solutions that form the Pareto Curve, also known as Pareto 
Optimal. Among the MOP algorithms, we can cite the Firefly Algorithm (FA). FA is a bio-inspired method that 
mimics the patterns of short and rhythmic flashes emitted by fireflies in order to attract other individuals to their 
vicinities. For illustration purposes, in the present contribution the FA, associated with the Pareto dominance 
criterion and the anti-stagnation operator, is applied to (bio)chemical engineering system design. The first one is 
related to the alkylation process optimization; the second deals with the optimization of batch stirred tank reactor. 
The sensitivity analysis of some relevant parameters of the algorithm is performed and compared with the Non-
dominated Sorting Genetic Algorithm (NSGA II). The results indicate that the proposed approach characterizes an 
interesting alternative for multi-objective optimization design. 
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1. Introduction 
Real-world design problems involve the simultaneous 

optimization of two or more often conflicting objectives, 
called Multi-objective Optimization Problems (MOP). 
The solution of such problems is different from the single-
objective optimization. The main difference is that MOP 
normally has not only one but a set of solutions, which 
must be equally satisfactory [1]. 

Traditionally, the treatment of such problems is done by 
transforming the original MOP into a scalar single-
objective problem [2]. These techniques follow the 
preference-based approach in which a relative preference 
vector is used to rank multiple objectives. Classical 
searching and optimization methods use a point-to-point 
approach in which the solution is successively modified so 
that the outcome of these classical optimization methods is 
a single optimized solution. To overcome this 
disadvantage, meta-heuristic algorithms can find multiple 
optimal solutions in one single simulation run due to their 
population-based search approach. Thus, these approaches 
are ideally suited for multi-objective optimization 
problems [3,4]. 

In this context, nature-inspired meta-heuristic 
algorithms together with up to date digital computation are 

becoming very powerful to solve modern global 
optimization problems in various áreas of Engineering and 
sciences. However, it is important to observe that, when 
these algorithms loses diversity, a sub-optimal solution, 
characterized by premature convergence, is found instead 
[2,5]. 

Among various nature-inspired meta-heuristic 
algorithms to obtain MOP solutions, we can cite the 
Firefly Algorithm (FA), which is a bio-inspired method 
that mimics the patterns of short and rhythmic flashes 
emitted by fireflies in order to attract other individuals to 
its vicinities [6]. Thus, in the present contribution, the FA 
associated with the Pareto dominance criterion, and 
crowding distance operator are applied to chemical 
engineering system design. 

This work is presented as follows. Sections 2 and 3 
show the basic concepts of MOP and FA. In Section 4 and 
Section 5 the proposed methodology is introduced and 
two (bio)chemical engineering case studies are presented. 
Finally, the conclusions are outlined in Section 6. 

2. Multi-Objective Optimization 
When dealing with MOP, the notion of optimality 

needs to be extended. The most commonly used idea for 
optimality found in the current literature is the one that 
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was originally proposed by Edgeworth [7], and later 
generalized by Pareto [8]. This notion is known as 
Edgeworth-Pareto optimality, or simply Pareto optimality, 
and refers to finding good tradeoffs among all the 
objectives. This definition leads to finding a set of 
solutions that is called the Pareto optimal set, whose 
corresponding elements are called non-dominated or non-
inferior. The concept of optimality in the context of single 
objective problems is not directly applicable to MOPs. For 
this reason a classification of the solutions is introduced in 
terms of Pareto optimality, according to the following 
definitions [2]: 

Definition 1 - The MOP is defined as: 

 1 2min ( ) { ( ), ( ),..., ( ),}Mf x f x f x f x=  (1) 

subject to 

 { }1( ) ( ) 0,..., ( ) 0 , 1,..,jH x H x H x j J= = = =  (2) 

 { }1( ) ( ) 0,..., ( ) 0 , 1,..,jG x G x G x k K= ≤ ≤ =  (3) 

where x is the vector of design (or decision) variables 
and f is the vector of objective functions. The constraints 
H and G determine the feasible region. 

Definition 2 - Pareto Dominance: For any two decision 
vectors v1 and v2, v1 is said to dominate v2 if v1 is not 
worse than v2 in all objectives and v1 is strictly better than 
v2 in at least one of the objectives. 

Definition 3 - Pareto Optimality: When the set Γ is the 
entire search space, or Γ = Λ, the resulting non-dominated 
set Γ’ is called the Pareto-optimal set. Like global and 
local optimal solutions in the case of single-objective 
optimization, there could be global and local Pareto-
optimal sets in multi-objective optimization. 

Definition 4 - Non-dominated Set: Among a set of 
solutions Γ, the non-dominated set of solutions Γ’ contains 
the solutions that are not dominated by any member of the 
set Γ. 

3. Firefly Algorithm 
Nature-inspired metaheuristic algorithms are becoming 

powerful in solving modern global optimization problems, 
especially in the case of complex nonlinear optimization 
problems. The search strategies in these multi-agent 
algorithms are controlled randomization, efficient local 
search and selection of the best solutions. However, the 
randomization typically uses uniform distribution or 
Gaussian distribution [9]. 

The FA is based on the characteristic of the 
bioluminescence of fireflies, insects notorious for their 
light emission. According to Yang [6], biology does not 
have a complete knowledge to determine all the utilities 
that firefly luminescence can bring to, but at least three 
functions have been identified: (i) as a communication 
tool and appeal to potential partners in reproduction, (ii) as 
a bait to lure potential prey for the firefly, (iii) as a 
warning mechanism for potential predators reminding 
them that fireflies have a bitter taste. 

The bioluminescent signals are known to serve as 
elements of courtship rituals - in most cases, the females 
are attracted by the light emitted by the males, methods of 

prey attraction, social orientation or as a warning signal to 
predators, as previously mentioned [10]. 

Some of the flashing characteristics of fireflies were 
idealized so as to develop firefly-inspired algorithms. For 
simplicity, the following three idealized rules are used [9]:  

all fireflies are unisex, so that one firefly will be 
attracted to other fireflies regardless of their sex; 

attractiveness is proportional to their brightness, thus 
for any two flashing fireflies, the less brighter will move 
towards the brighter one. The attractiveness is 
proportional to the brightness and they both decrease as 
their distance increases. If there is no brighter than a 
particular firefly, it will move randomly; 

the brightness of a firefly is affected or determined by 
the landscape of the objective function. For a 
maximization problem, the brightness can simply be 
proportional to the value of the objective function. 

According to Yang [6], in the firefly algorithm, there 
are two important issues: the variation of light intensity 
and formulation of the attractiveness. For simplicity, it is 
always assumed that the attractiveness of a firefly is 
determined by its brightness which in turn is associated 
with the encoded objective function. 

This swarm intelligence optimization technique is based 
on social behavior of fireflies. Consequently each brighter 
firefly attracts its partners (regardless of their sex), which 
makes the search space being explored more efficiently. 
The algorithm makes use of a synergic local search. Each 
member of the swarm explores the problem space by 
taking into account results obtained by others, still 
applying its own randomized moves as well. The 
influence of other solutions is controlled by the value of 
the attractiveness [10]. 

According to Lukasik and Zak [10], the FA is presented 
as follows. Consider a continuous constrained 
optimization problem where the task is to minimize the 
cost function f(x), i.e., find x*. Assume that there exists a 
swarm of m agents (fireflies) solving above mentioned 
problem iteratively and xi represents a solution for a firefly 
i in algorithm’s iteration k, whereas f(xi) denotes its cost. 
Initially, all fireflies are dislocated in S (randomly or 
employing some deterministic strategy). Each firefly has 
its distinctive attractiveness β which implies how strong it 
attracts other members of the swarm. As the firefly 
attractiveness one should select any monotonically 
decreasing function of the distance rj=d(xi,xj) to the chosen 
firefly j, i.e., the exponential function: 

 0
rje γβ β −

=  (4) 

where β0 and γ are predetermined algorithm  parameters: 
maximum attractiveness value and absorption coefficient, 
respectively. Furthermore, every member of the swarm is 
characterized by its light intensity Ii which can be directly 
expressed as an inverse of a cost function f(xi).To 
effectively explore the considered search space S, it is 
assumed that each firefly i is changing its position 
iteratively by taking into account one factor: attractiveness 
of other swarm members with higher light intensity, i.e., 
Ij >Ii, j=1,..,N and j≠i. It should be noted as well that if no 
brighter firefly can be found only such randomized step is 
used. 

Thus, moving at a given time step t of a firefly i toward 
a better firefly j is defined as: 
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 ( )1 1 1 1
2

t t t t
i i j ix x x x randβ α− − −  = + − + − 

 
 (5) 

where the second term on the right side of the equation 
inserts the factor of attractiveness, β, while the third term, 
governed by the parameter α, is responsible for the 
insertion of certain randomness in the path followed by 
the firefly, and rand is a random number between 0 and 1 
[11]. 

In the literature, few works using the FA can be found: 
continuous constrained optimization task [10] multimodal 
optimization [12], solution of singular optimal control 
problems [13] and load dispatch problem [14]. 

4. Multi-Objective Optimization Firefly 
Algorithm 

Due to success obtained by the FA in different science 
and engineering applications, their extension to the multi-
objective context is desirable. In the present work, the 
Multi-objective Optimization Firefly Algorithm (MOFA) 
is proposed. This approach is based on the classical FA 
associated with Fast Non-Dominated Sorting technique, 
according to the following architecture: 

● An initial population of size N is randomly generated; 
● All dominated solutions are removed from the 

population through the operator Fast Non-Dominated 
Sorting. In this way, the population is sorted into non-
dominated fronts μj (sets of vectors that are non-
dominated with respect to each other) [2,15]; 

● Following, FA is applied to generate the new 
population of fireflies (potential candidates to solve the 
MOP); 

● If the number of individuals of the population is 
larger than a number defined by the user, it is truncated 
according to the criterion named the Crowding Distance 
[2]; 

● It is important to emphasize that in any evolutionary 
approach there is the possibility of the population to 
stagnate at a point that does not correspond to the global 
optimum. To increase the chance of the MOFA to avoid 
this situation, an anti-stagnation operator was coupled to 
the original algorithm. 

The steps presented are repeated until a given stopping 
criterion is reached. The operators used in the MOFA are 
described below. 

4.1. Fast Non-Dominated Sorting 
In order to sort a population of size N according to the 

level of non-domination, each solution is compared with 
every other solution in the population to find if it is 
dominated. This requires MN (order) comparisons for each 
solution, where M is the number of objectives. When this 
process is continued to find the members of the first non-
dominated class for all population members, the total 
complexity is (MN2) (order). At this point, all individuals 
in the first non-dominated front are found. To find the 
individuals belonging to the next front, the solutions of the 
first front are temporarily discounted and the above 
procedure is repeated. In the worst case, the finding task 
of the second front also requires (MN2) (order) 

computations. The procedure is repeated to find the 
subsequent fronts [15]. 

4.2. Crowding Distance Operator 
This operator describes the density of solutions 

surrounding a vector. To compute the Crowding Distance 
for a set of population members the vectors are sorted 
according to their objective function values. To the 
vectors with the smallest or largest values, an infinite 
Crowding Distance (or an arbitrarily large number for 
practical purposes) is assigned. For all other vectors, the 
Crowding Distance (distxi) is calculated according to 
[2,15]: 

 , 1 , 1

1 ,max ,min

M j i j i
xi

j j j

f f
dist

f f
+ −

=

−
=

−
∑  (6) 

where fj corresponds to the j-th objective function. 

4.3. Treatment of Constraints 
In this work the treatment of constraints is made 

through the Static Penalization Method, proposed by 
Castro [16]. This approach consists in assigning limit 
values to each objective function to play the role of 
penalization parameters. According to Castro [16], it is 
guaranteed that any non-dominated solution dominates 
any solution that violates at least one of the constraints. In 
the same way, any solution that violates only one 
constraint will dominate any solution that presents two 
constraint violations, and so on. For a constrained problem 
the vector containing the objective functions to be 
accounted for is given by: 

 ( ) ( ) p violf x f x r n≡ +  (7) 

where f(x) it is the vector of objective functions, rp it is the 
vector of penalty parameters that depends on the type of 
problem considered, and nviol is the number of violated 
constraints. 

5. Results and Discussion 
To evaluate the performance of the MOFA two 

classical (bio) chemical engineering system are considered 
in this section. The first one is related to the alkylation 
process optimization; the second deals with the 
optimization of  a batch stirred tank reactor. 

Parameters used for the MOFA: population size equal 
to 50, maximum number of iterations equal to 200, 
maximum attractiveness value and absorption coefficient 
both equal to 0.9. The stopping criterion used was the 
maximum number of iterations. Parameters used for the 
NSGA II: population size equal to 50, maximum number 
of iterations equal to 200, crossover probability equal to 
0.8 and mutation probability equal to 0.01. 

In this analysis, three combination of parameters are 
considered: the maximum attractiveness (β0) [0.5 0.8 1.0], 
the absorption coefficient (γ) [0.5 0.8 1.0] and the random 
perturbation rate (α) [0.2 0.5 0.8]. Other parameters used: 
population size equal to 50, maximum number of 
iterations equal to 200 and the stopping criterion used was 
the maximum number of iterations. 
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5.1. Alkylation Process Optimization 
The alkylation process, wherein a light olefin such as 

propene, butene or pentene reacts with isobutane in the 
presence of a strong sulfuric acid catalyst to produce the 
alkylate product (2,2,4 tri-methyl pentane from butene and 
isobutane) is an important process in petroleum refining. 
The alkylate product is used for blending with refinery 
products such as gasoline and aviation fuel. 

Figure 1 shows a simplified process flow diagram of 
the alkylation process [17]. 

 

Figure 1. Simplified schematic of the alkylation process 

The process has a reactor with olefin feed; isobutene 
makeup and isobutane recycle as the inlet streams. Fresh 
acid is added to catalyze the reaction and spent acid is 
withdrawn. The exothermic reactions between olefins and 
isobutane occur at around room temperature, and excess 
isobutane is used. The hydrocarbon outlet stream from the 
reactor is fed into a fractionator from where isobutane is 
recovered at the top and recycled back to the rector, and 
the alkylate product is withdrawn from the bottom. 

In the literature, various works lead with the solution of 
mono-objective problem, i.e., to maximize the profit 
[18,19,20] and multiple objectives [21]. 

In this work two problems are considered [17,18]: Case 
A (maximize profit and maximize octane number, x7) and 
Case B (maximize profit and minimize isobutane recycle, 
x2). As mentioned by Rangaiah [17], the alkylate product 
with a higher octane number is better for blending with 
refinery products. On the ohter hand, minimizing 
isobutane recycling helps to reduce fractionation and other 
costs associated with the recycle stream. The profit is 
defined as [17] 

 4 7 1 2 3 50.063 5.04 0.035 10 3.36x x x x x x− − − −  (8) 

In both cases, the optimization problem considered is 
subject to following constraints 

 4 1 8
2
8

0 ( (1.12 0.13167

0.006667 )) 5000

x x x

x

≤ ≡ +

− ≤
 (9) 

 5 4 10 ( 1.22 ) 2000x x x≤ ≡ − ≤  (10) 

 2 1 8 50 ( ) 16000x x x x≤ ≡ − ≤  (11) 

 7
8

8 2

85 (x6 89+( (86.35

1.098 0.038 )) / 0.325) 93

x

x x

≤ ≡ − +

+ − ≤
 (12) 

 10 7145 ( 133 3 ) 162x x≤ ≡ − + ≤  (13) 

 9 101.2 ( 35.82 0.222 ) 4x x≤ ≡ − ≤  (14) 

 3 4 6 9 60 ( 0.001( ) / (98 )) 120x x x x x≤ ≡ − ≤  (15) 

 10 2000x≤ ≤  (16) 

 790 95x≤ ≤  (17) 

 83 12x≤ ≤  (18) 

where x1 is olefin feed (barrels/day), x2 is isobutane recycle 
(barrels/day), x3 is acid addition rate (thousand 
pounds/day), x4 is alkylate production rate (barrels/day), x5 
is isobutane feed (barrels/day), x6 is spent acid strength 
(weight percent), x7 is octane number, x8 is isobutane to 
olefin ratio, x9 is acid dilution factor, and x10 is F-4 
performance number. 

Table 1 shows the effects of parameters β0, γ and α in 
objectives, maximization of profit and maximization of x7 
for case A. 

Table 1. Effects of MOFA parameters for case A 
Parameters 

Profit ($/day) x7 β0 γ α 
0.5 0.5 0.2 1095.47 94.99 
0.8 0.5 0.2 1162.00 94.18 

0.8 0.5 0.2 1095.47 94.99 

0.8 0.5 0.5 1162.00 94.82 
1.0 1.0 0.8 1162.04 94.99 

In this table is possible to observe that in terms of the 
octane number, the similar values are obtained with the 
parameters presented. In terms of the profit, high values to 
β0, γ and α lead with best values of this objective. 

Figure 2 present the Pareto Curve solutions obtained by 
NSGA II and MOFA algorithms. Figures 3 and 4 presents 
the olefin feed versus profit profile and octane number 
versus profit profile, respectively. 
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Figure 2. Pareto Curve for the alkylation process for case A (β0=1.0, 
γ=1.0, α=0.8) 
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Figure 3. Olefin feed versus profit for the alkylation process for case A 
(β0=1.0, γ=1.0, α=0.8) 
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In these figures it is important to observe that by 
increasing profit from 1080 to 1106 $/day is accompanied 
by x7 decreasing from 95 to 94.1. Thus, the two objectives, 
profit and x7 are contradictory leading to the optimal 
Pareto Curve in Figure 2. 
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Figure 4. Octane number versus profit for the alkylation process for case 
A (β0=1.0, γ=1.0, α=0.8) 

Table 2 shows the effects of parameters β0, γ and α in 
the objectives (maximization of profit and minimization of 
x2 for case B). In this table we can observe that high 
values of β0, γ and α lead to the best solutions for the 
present problem. 

Table 2. Effects of MOFA parameters for case B 
Parameters 

Profit ($/day) x2 (barrels/day) 
β0 γ α 

0.5 0.5 0.2 1161.70 15992.04 

0.8 0.5 0.2 1161.81 15995.21 

0.8 0.5 0.2 1161.60 15996.94 

0.8 0.5 0.5 1161.82 15996.94 

1.0 1.0 0.8 1161.82 15996.94 

Figure 5 presents the Pareto Curve solutions obtained 
by the algorithms NSGA II and MOFA. Figures 6 and 7 
present the olefin feed versus profit profile and octane 
number versus profit profile, respectively. 
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Figure 5. Pareto Curve for the alkylation process for case B (β0=1.0, 
γ=1.0, α=0.8) 

In these figures, the optimal profit increases from about 
900 to 1200$/day as x2 increases from 12000 to 16000 
barrels/day. As observed in Case A, the two objectives are 
contradictory. In Case B, all decision variables contribute 
to the optimal Pareto front and none of them is constant 
over the range of profit shown in these figures. 
Interestingly, both olefin feed and octane number increase 

with profit. Further, the optimal values of the decision 
variables in Case B are generally different from those 
found for Case A. 
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Figure 6. Olefin feed versus profit for the alkylation process for case B 
(β0=1.0, γ=1.0, α=0.8) 

900 950 1000 1050 1100 1150
93.0
93.2
93.4
93.6
93.8
94.0
94.2
94.4
94.6

 MOFA
 NSGA II

x 7

Profit ($/day)
 

Figure 7. Octane number versus profit for the alkylation process for case 
B (β0=1.0, γ=1.0, α=0.8) 

5.2. Batch Stirred Tank Reactor 
This case considers the maximization of the overall 

production rate and the final concentration of gluconic 
acid in the production process of fermentation of glucose 
to gluconic acid by the micro-organism Pseudomonas 
ovalis in a batch stirred tank reactor [17,22]. The overall 
biochemical reaction can be expressed as: 

 Cells + Glucose + Oxygen More cells→
 Glucose + Oxygen Gluconolactone→  

 Gluconolactone + Water Gluconic Acid→  

Mathematically, this process can be modeled in terms 
of the concentrations of cells (X), gluconic acid (P), 
gluconolactone (l), glucose substrate (S) and dissolved 
oxygen (C) [22]: 

 
0

m
S

dX SC X
dt k C k S SC

µ=
+ +

 (19) 

 P
dP k l
dt

=  (20) 

 0.9l P
l

dl Sv X k l
dt k S

= −
+

 (21) 
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 (23) 

with initial conditions X(0)=X0, P(0)=0, l(0)=0, S(0)=S0, 
C(0)=C1. The symbols and constants are defined in Table 
3 [23]. 

Table 3. Values of the parameters for the simulation of gluconic acid 
production 

Parameter Value Unit 
μm 0.39 h-1 
kS 2.50 g/L 
k0 0.00055 g/L 
kP 0.645 h-1 
vl 8.30 mg/UOD h 
kl 12.80 g/L 
Ys 0.375 UOD/mg 
Y0 0.890 UOD/mg 
C1 0.00685 g/L 

In this work, the following objectives are 
simultaneously considered: to maximize the overall 
productivity of gluconic acid, as defined by the ratio of the 
final gluconic acid concentration over the duration of the 
batch (P(tf)/tf), and to maximize the final gluconic acid 
concentration (P(tf)) [17]. The four decision variables are 
the duration of the batch fermentation (tf) ∈ [5-15h], the 
initial substrate concentration (S0) ∈ [20-50g/L], the 
overall oxygen mass transfer coefficient (KLa) ∈ [50-
300h-1], and the initial biomass concentration (X0) ∈ 
[0.05-1.0UOD/mL]. In order to solve the simulation 
problem, the Runge-Kutta 5th order Method (RK5th) is 
used. 

The computational scheme for solving the optimization 
problem consists first in defining the design variables and 
the MOFA parameters. For each evaluation of the 
objective function a system of ordinary differential 
equations (simulation problem) is solved by using the 
RK5th. Figure 8 illustrates this procedure. 

Table 4 shows the effects of the parameters β0, γ and α 
in the objective functions maximization of P(tf)/tf and 
maximization of P(tf). 

In this table it is possible to observe that, in terms of 
overall productivity of gluconic acid (P(tf)/tf) and final 
gluconic acid concentration (P(tf)), the values used for β0, 
γ and α lead with similar values for each objective 
function. 

Figure 9 present the Pareto Curve solutions obtained by 
the algorithms NSGA II and MOFA. In this figure, it is 
important to observe the good compromise solution found 
for the two objectives. 

As presented in Figure 9 and mentioned by Rangaiah 
[17], the objectives seeking to maximize P(tf)/tf and P(tf) 
are contradictory: by increasing the latter (total production 
of gluconic acid in a batch) generally results in a lower 

productivity, due to the longer batch fermentation time 
that would be required. 

 

Figure 8. Flow chart for the proposed procedure 

Table 4. Effects of MOFA parameters 
Parameters P(tf)/tf (gh-1/L)/P(tf) (g/L) β0 γ α 

0.5 0.5 0.2 3.467/51.952 6.863/35.702 
0.8 0.5 0.2 3.461/51.950 6.850/35.701 
0.8 0.5 0.2 3.455/51.959 6.855/35.702 
0.8 0.5 0.5 3.467/51.949 6.861/35.698 
1.0 1.0 0.8 3.467/51.954 6.860/35.702 
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Figure 9. Pareto Curve for the batch stirred tank reactor (β0=1.0, γ=1.0, 
α=0.8) 

Figure 10 Figure 11, Figure 12 presents the initial 
substrate concentration, the overall oxygen mass transfer 
coefficient and the initial biomass concentration versus the 
overall productivity of gluconic acid, respectively. 

These figures shows that the initial substrate 
concentration is around 50g/L, the overall oxygen mass 
transfer coefficient increasing from 60 to 300h-1, and the 
initial biomass concentration is around 0.995 UOD/mL. 

6. Conclusions 
In this contribution, a new algorithm is presented for 

dealing with multi-objective optimization problems. The 
methodology consists in the extension of the Firefly 
Algorithm to problems with multiple objectives, through 
the incorporation of special operators to the original 
algorithm, namely the mechanisms of rank ordering and 
crowding distance. 

The proposed algorithm was applied to (bio)chemical 
engineering system design. The results lead to the 
conclusion that the Multi-objective Optimization Firefly 
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Algorithm presented better results as compared with those 
found in the literature by using the same number of 
objective function evaluations as considered by the Non-
dominated Sorting Genetic Algorithm II (50+50×200). 

Finally, the results presented are very encouraging and 
the approach developed for the solution of the inverse 
problem deserves further investigation regarding its 
application to more complex problems. 
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Figure 10. Initial substrate concentration versus overall productivity of 
gluconic acid (β0=1.0, γ=1.0, α=0.8) 
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Figure 11. Overall oxygen mass transfer coefficient versus overall 
productivity of gluconic acid (β0=1.0, γ=1.0, α=0.8) 
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Figure 12. Initial biomass concentration versus overall productivity of 
gluconic acid (β0=1.0, γ=1.0, α=0.8) 

Acknowledgement 
The authors acknowledge the financial support 

provided by FAPEMIG. Dr Steffen Jr acknowledges the 
financial support provided by FAPEMIG and CNPq 
(INCT-EIE). 

References 
[1] Stadler, W., 1986, Multicriteria optimization in mechanics - a 

survey, Applied Mechanics Reviews, 37 (2), 277-286, 1986. 
[2] Deb, K., Multi-Objective optimization using evolutionary 

algorithms, John Wiley & Sons, Chichester, UK, ISBN 0-471-
87339-X, 2001. 

[3] Omkar, S. N., Khandelwal, R., Yathindra, S., Naik, N. G. and 
Gopalakrishnan, S. Artificial immune system for multi-objective 
design optimization of composite structures, Engineering 
Applications of Artificial Intelligence, 2 (21), 1416-1429, 2008. 

[4] Wong, E. Y. C., Yeung, H. S. C. and Lau, H. Y. K., Immunity-
based hybrid evolutionary algorithm for multi-objective 
optimization in global container repositioning, Engineering 
Applications of Artificial Intelligence, 22 (2), 842-854, 2009. 

[5] Lobato, F. S., Steffen Jr, V. and Silva-Neto, A. J., Self-adaptive 
differential evolution based on the concept of population diversity 
applied to simultaneous estimation of anisotropic scattering phase 
function, albedo and optical thickness, Computer Modeling in 
Engineering & Sciences, 1, 1-17, 2010. 

[6] Yang, X.-S., Nature-Inspired Metaheuristic Algorithms, Luniver 
Press, Cambridge, 2008. 

[7] Edgeworth, F. Y., Mathematical Psychics (P. Keagan, London, 
England, 1881. 

[8] Pareto, V., Manuale di Economia Politica, Societa Editrice 
Libraria, Milano, Italy, Translated into English by A.S. Schwier as 
Manual of Political Economy, Macmillan, New York, 1971, 1906. 

[9] Yang, X.-S. Firefly algorithm, Lévy flights and global 
optimization, Research and Development in Intelligent Systems 
XXVI (Eds M. Bramer, R. Ellis, M. Petridis), Springer London, 
209-218, 2010. 

[10] Lukasik, S. and Zak, S. Firefly algorithm for continuous 
constrained optimization task, ICCCI 2009, Lecture Notes in 
Artificial Intelligence (Eds. N. T. Ngugen, R. Kowalczyk, S. M. 
Chen), 5796, 97-100, 2009. 

[11] Luz, E. F. P., Becceneri, J. C. and Campos Velho, H. F. Firefly 
Algorithm Contextualization and Its Application Heat Conduction 
Problems (in portuguese), IX Workshop do Curso de Computação 
Aplicada, INPE - São José dos Campos, SP, Brazil, 2009. 

[12] Yang, X. S., Firefly algorithm for multimodal optimization, 
Stochastic Algorithms: Foundations and Applications, 5792 (2), 
169-178, 2009. 

[13] Pfeifer, A. A. and Lobato, F. S. Solution of singular optimal 
control problems using the firefly algorithm, Proceedings of VI 
Congreso Argentino de Ingeniería Química - CAIQ2010, 2010. 

[14] Apostolopoulos, T. and Vlachos, A., Application of the firefly 
algorithm for solving the economic emissions load dispatch 
problem, International Journal of Combinatorics, 1(5), 1-23, 2011. 

[15] Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T. A fast and 
elitist multi-objective genetic algorithm-NSGA-II, KanGAL 
Report Number 2000001, 2000. 

[16] Castro, R. E., Multi-objective optimization of structures using 
genetic algorithm, PhD Thesis (in portuguese). Federal University 
of Rio de Janeiro, Brazil, 2001. 

[17] Rangaiah, G. P., Advances in Process Systems Engineering – 
Multi-objective Optimization, Techniques and Applications in 
Chemical Engineering, First Edition, 2009. 

[18] Seider, W. D., Seader, J. D. and Lewin, D. R. Product and 
Process Design Principles: Synthesis, Analysis, and Evaluation, 
John Wiley, New York, 2003. 

[19] Luus, R. and Jaakola, T. H. I. Optimization by direct search and 
systematic reduction of the size of search region. AIChE Journal, 
19, 760-766, 1973. 

[20] Edgar T. F., Himmelblau D. M. and Lasdon L. S. Optimization of 
Chemical Processes. New York, McGraw-Hill, 2001. 

[21] Luus, R. Optimization of systems with multiple objective 
functions. International Congress, European Federation of 
Chemical Engineering, Paris, 3-8, 1978. 

[22] Ghose, T. K. and Gosh, P.. Kinetic analysis of gluconic acid 
production by Pseudomonas ovalis. J. App. Chemical 
Biotechnology, 26, 768-777, 1976. 

[23] Johansen, T. A., Foss, B. A. Semi-empirical modeling of non-
linear dynamic systems through identification of operating 
regimes and locals models. In: Neural Network Engineering in 
Control Systems, K Hunt, G Irwin and K Warwick, Eds., pp. 105-
126, Springer-Verlag, 1995. 

 

 


