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Abstract  In this paper, we will compare the performance of Adomian decomposition method and the wavelet-
Galerkin method applied to the Lane-Emden type differential equation. The Galerkin Wavelet method (GWM), 
which is known as a numerical approach is used for the Lane- Emden equation, as an initial value problem. This 
approach consists of using integral operator, to convert the Lane- Emden equation in to an integral equation, then 
applying Galerkin Wavelet method to solve the resulted integral equation. The properties of Galerkin Wavelet 
method (GWM) and the Adomian Decomposition Method are also addressed. Although the Adomian decomposition 
solution required slightly more computational effort than the wavelet-Galerkin solution, it resulted in more accurate 
results than the wavelet-Galerkin method. To illustrate the methods two examples are provided and the results are in 
good agreement with exact solution. 
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1. Introduction 
In recent years, the studies of initial value problems, 

presented as second order ordinary differential equations 
(ODEs) have attached the attention of many 
mathematicians and physicists. One of the known 
equations of this type is the Lane- Emden equation, 
formulated as the fallowing 

 ( ) ( ) ( , ) ( ), 0 1, 0u x u x f x u g x x
x
α α′′ ′+ + = < ≤ ≥  (1) 

With initial conditions 

 (0) , (0) ,u A u B′= =  (2) 

Where ,A B are constant, ( , )f x u is a continuous real 
valued function, and [ ]( ) 0,1 .g x C∈ Eq. (1) has been used 
to model several phenomena in mathematical physics and 
astrophysics such as the theory of staller structure, the 
thermal behavior of a spherical cloud of gas [1,2,3]. 

Several methods, for solving the Lane-Emden equation 
are known. A discussion of formulation of some of these 
models and the physical structure of the solutions can be 
found in [4,5,6]. Most algorithms currently in use for 
handling the Lane-Emden type problems are based on 
series solutions. Wavelet theory is a relatively new and an 
emerging area in mathematical research. It has been 
applied in a wide range of engineering disciplines; 
particularly, wavelets are successfully used in signal 
analysis for wave form representation and segmentations, 

time-frequency analysis and fast algorithms for easy 
implementation [7]. 

2. Wavelets and Galerkin Wavelets 
Wavelets constitute a family of functions constructed 

from dilation and translation of a single function called the 
mother wavelet. When the dilation parameter a and the 
translation parameter ,b vary continuously we have the 
following family of continuous wavelets [8]: 

 
1
2, ( ) ( ), , , 0.a b

t bt a a b R a
a

φ φ− −
= ∈ ≠  

If we restrict the parameters a  and b to discrete values 
as 0 0 0 0 0, , 1, 0k ka a b nb a a b− −= = > >  where ,n k  are 
positive integers, we have the following family of discrete 
wavelets. 

 2, 0 0 0( ) ( ).
k

k
k n t a a t nbφ φ= −  

Where , ( ),k n tφ a wavelet basis in 2 ( ).L R  In particular, 
if 0 02, 1a b= = , then , ( )k n tφ  forms an orthonormal basis, 
[8]. 

A Multi-resolution analysis of 2 ( )L R  is defined as a 
sequence of closed subspaces jv  with the following 
properties, [4] 

1) 1 ,j jv v j Z+⊂ ∀ ∈  
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2) 1( ) (2 ) ,j jf x v f x v +∈ ⇔ ∈  

3) 0 0( ) ( 1) ,f x v f x v∈ ⇔ + ∈  

4) j
j z

v
∈


Are dens in 2 ( ) , 0.j
j z

L R v
∈

=


 

The existence of a scaling function ( )xϕ is required for 
which the translate generate a basis in each jv i.e. 

 { }j ji i z
v span ϕ

∈
=  

With 

 22 (2 ) , .
j

j
ji x i i j Zϕ ϕ= − ∈  

In the classical case this basis is orthonormal, so that  

 , ,ji jk ikR
ϕ ϕ δ=  (3) 

Where , ( ) ( ) ,f g f x g x dx
∞

−∞

= ∫  is the usual inner product. 

Let jw denote a subspace complementing the subspace 

jv in 1jv +  i.e. 1 .j j jv v w+ = ⊕  

Each element of 1jv +  can be uniquely written as the 

sum of two elements, one in jv and the other in ,jw which 
contains the details needed to pass from an approximation 
at the level j to an approximation at the level 1.j +  

Based on the function ( )xϕ . One can find ( ),xφ the so-
called mother wavelet, of which the translates and dilates 
constitute orthonormal bases of the spaces 

{ }, ,j j ji i z
w w span ϕ

∈
= generated by the following 

wavelets 

 22 (2 ) , .
j

j
ji x i i j Zϕ φ= − ∈  

Each function 2 ( ),f L R∈  can now be expressed as 

 0 0
0

( ) ( ),j i j i j i ji
i z j j i z

f x c d xϕ φ
∞

∈ = ∈
= +∑ ∑ ∑  (4) 

Where 

 , , , .ji ji ji jiR R
c f d fϕ φ= =  

Of course, in numerical application the summation (4) are 
truncated, which corresponds to the projection of f  into a 

subspace 2 ( ).jv L R⊂  as otherwise by construction, 

 
, ,

, 0 .

ji lk jl ik

ji lk j l

φ φ δ δ

φ ϕ

=

= ≥
 

In addition to (3). 

3. Solution of Lane-Emden Equation 
In the Wavelet- Galerkin method, the solution ( )u x of 

the equation can be approximated by the J th level 
wavelet series on the interval [ ]0,1 , by 

 
2 1

2 ,
2

( ) 2 (2 ),
JJ

J
J k

k l
u x u x kφ

−

=− +
= −∑  (5) 

Therefore, the Galerkin discritization scheme to Eq. (1) 
gives a nonlinear system of equations that involves the 
coefficients of connection. For details about the GWM 
and its application for solving problem, we refer the reader 
to [9]. 

Introducing Eq. (5) into Eq. (1) we obtain 

 

5 2 1
2

2
3 2 1
2

2

2 1
2

2

2 (2 )

2 (2 )

( , 2 (2 ))

( ),

J
J J

k
k l

J
J J

k
k l

JJ
J

k
k l

u x k

u x k
x

f x u x k

g x

φ

α φ

φ

−

= −

−

= −

−

= −

′′ −

′+ −

+ −

=

∑

∑

∑

 (6) 

In the other expression 

 
2 1 2 1

2 2
( , ) ( ),

J J

k Jk k Jk k
k l k l

u u f x u g x
x
αφ φ

− −

= − = −

′′ ′+ + =∑ ∑  (7) 

To determine the coefficient ,ku we take the inner 
product of both sides of Eq. (7) with ,Jlφ as 

 

12 1

2 0

1 12 1

2 0 0
1

0

( , )

( ) ,

2 ,3 ,..., 2 .

J

k JL Jk
k l

J

k JL Jk JL k
k l

JL

J

u dx

u dx f x u dx
x

g x dx

L l l l

φ φ

α φ φ φ

φ

−

= −

−

= −

′′

′+ +

=

= − − −

∑ ∫

∑ ∫ ∫

∫

 (8) 

Or 

 

1 12 1 2 1

2 20 0
1

0
( ( ) ( , )) ,

2 ,3 ,..., 2 1.

J J

k JL Jk k JL Jk
k l k l

JL k

J

u dx u dx
x

g x f x u dx

L l l

αφ φ φ φ

φ

− −

= − = −

′′ ′+

= −

= − − −
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∫  (9) 

We assume that 
0

( ( ) ( , )) ,
m

i
k i

i
g x f x u a x

=
− = ∑

 
is a 

polynomial of degree m  in .x  
We write the Eq. (9) as 

 
2 1 2 1

2 2
,

2 ,3 ,..., 2 1,

J J
J J J
kL k kL k mL

k l k l
J

c u b u d
x

L l l

α− −

= − = −
+ =

= − − −

∑ ∑  (10) 

Where 
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1
0
1
0

1
0

0

( ) ( ) ,

( ) ( ) ,

( ) .

J
kL Jk JL

J
kL Jk JL

m
J i
kL i JL

i

c x x dx

b x x dx

d a x x dx

φ φ

φ φ

φ
=

′′=

′=

=

∫

∫

∑∫

 (11) 

Equation (10) can be further put into the matrix-vector 
form  

 1 ,A U D=  (12) 

Where 

 
1 2 , 2 1

2 , 2 1 2 , 2 1

, [ ] ,

[ ] , [ ]

J
kl JL k l

J J
kl J kl JL k l L k l

A C B A B b

C c D d

α β
− ≤ ≤ −

− ≤ ≤ − − ≤ ≤ −

= + + =

= =
 (13) 

And 

 2 3 2 1
[ , ,..., ] ,t

l l JU u u u− − −
=  

Where ,t denotes the matrix transpose. Now we have a 

linear system of 2 2J L+ − equations of the 2 2J L+ −  
unknown coefficients. We can obtain the coefficients of 
the approximate solution by solving this linear system. 
The solution ,U gives the coefficients in the Wavelet-
Galerkin approximation ( )Ju x  of ( ).u x  

4. Adomian Decomposition Method 
Consider the following equation 

 ( ) ,y N y f− =  (14) 
Where ,N  is a nonlinear operator from a Hilbert space H 
in to H and f is a given function in H. Now, we are 
looking for y H∈  satisfying (14). 

At the beginning of the 1980, Adomian developed a 
very powerful method to solve Equation (14) in which the 
solution ,y  was considered as the sum of decomposition 
series: 

 
0

,i
i

y y
∞

=
= ∑  (15) 

And ( )N y as the sum of the decomposition series: 

 
0

( ) .n
n

N y A
∞

=
= ∑  (16) 

The method consist of the following recursion scheme  

 0 1 0 1, ( , ,..., ), 0,1,...n n ny f y A y y y n+= = =  (17) 

Where the ,
nA s is polynomials depending on 

0 1, ,..., ,ny y y are called the Adomian polynomials; these 
are defined as 

 0
0

! [ ( )] , 0,1,...
n n

i
n in

i

dn A N y n
d λλ
λ =

=
= =∑  (18) 

The Adomian technique is equivalent to determining 
the sequence: 

 1 2 ...n nS y y y= + + +  (19) 

By using the iterative scheme 

 1 0 0( ), 0n nS N y S S+ = + =  (20)  

Associated with the functional equation 

 0( )S N y s= +  (21) 

For the study of the numerical resolution (21), 
Cherruault used fixed point theorem [10,11,12]. In 
particular, we know that if ,N  is a contraction ( 1N < ) 
then the sequence { nS } defined by (20) converges to the 
only solution S  of (21). 

Furthermore we have 1 0.n n n ny S S − →∞= − →  

5. Illustrative Examples 
To illustrate the methods two examples are provided  

5.1. Example 1 
Consider the following Lane-Emden equation  

 
2 3( ) ( ) ( ) 6 12 ,

0 1, 0 1, (0) 0, (0) 0.

y x y x y x x x x
x

x y y

α

α

′′ ′+ + = + + +

′< ≤ < ≤ = =
 (22) 

The presented method is applied for J=6. 

Table 5.1. The absolute errors at different times and space locations 
for example 1 

(X, α ) E W E decomposition 
(0.25, 0.1) 8.5436E_005 3.7747E_015 
(0.5, 0.1) 9.3299E_005 4.8849E_015 

(0.75, 0.1) 1.7983E_005 6.2172E_015 
(0.25, 0.5) 5.4634E_004 7.2729E_009 
(0.5, 0.5) 7.6003E_004 9.3386E_009 

(0.75, 0.5) 5.7020E_004 1.1991E_008 
(0.25, 0.1) 1.3965E_004 3.9273E_006 
(0.5, 0.1) 1.7219E_004 5.0428E_006 

(0.75. 0.1) 9.1179E_005 6.4750E_006 

5.2. Example 2 
Let’s consider the following form of the Lane-Emden 

equation; 

 ( ) ( ) 2(2 3) ( ),

0 1, 0 1. (0) 1, (0) 0.

y x y x x y x
x

x y y

α

α

′′ ′+ = +

′< ≤ < ≤ = =
 (23) 

The presented method is applied for J=6. 

Table 5.2. The absolute errors at different times and space locations 
for example 2 

(X, α ) E W E decomposition 
(0.25, 0.1) 4.7799E_003 1.6077E_009 
(0.5, 0.1) 3.8654E_003 2.2736E_009 

(0.75, 0.1) 2.7143E_003 1.6077E_009 
(0.25, 0.5) 6.5798E_002 5.5213E_004 
(0.5, 0.5) 7.3478E_002 7.8084E_004 

(0.75, 0.5) 1.8764E_002 5.5213E_004 
(0.25, 0.1) 3.2385E_001 1.2245E_001 
(0.5, 0.1) 5.7492E_001 1.7317E_001 

(0.75. 0.1) 4.2954E_001 1.2245E_001 
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6. Conclusion 
Many excellent properties of wavelet, such as 

‘‘locality’’ and vanishing moments, causes the wavelet 
basis to be a better choice than others, in function 
approximation.. In other way it is seen that decomposition 
method can be an alternative way for the solution of 
partial differential equations that have no exact solutions. 
These two methods have been applied for Lane-Emden 
equation, successfully. As the results of illustrative 
examples show the solutions are in a good agreement with 
the exact ones, even up to 9 digits significant. This 
agreement of the solutions are so high that one can clams 
that these methods are a powerful numerical tools for fast 
and accurate solution, for such kind of differential 
equations. 
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