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Abstract  In this paper, we solve a class of boundary value problems of the composite first Weber system. In the 
process of solving the problem, first of all, we introduce functions of guide solution. Secondly, we constructive 
similar kernel functions. Finally, solutions with a form of continued fraction product to boundary value problem of 
the composite first Weber system are obtained by assembling coefficients of the non-homogeneous left boundary 
condition, functions of guide solution, coefficients of two connection conditions and similar kernel functions. Then a 
new method is obtained for solving the composite boundary value problem-Similar Constructing Method (shortened 
as SCM). This method is not only simple and effective for solving the complicated boundary value problem of 
differential system, but also is a kind of innovative idea. 
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1. Introduction 
As is known to all, a lot of mathematical models, which 

are abstracted from engineering technical problems such 
as heat conduction of composite material and seepage in 
composite medium, can be attributed to models for 
solving boundary value problems of composite ordinary 
differential system. Thus acquiring the solution to the 
boundary value problem is very important for solving 
practical engineering problems. 

At the beginning of this century, the thought of similar 
structure of the solution began to form. Li Shunchu and 
others studied solutions to some second order linear 
homogeneous ordinary differential equations [1-8], partial 
differential equations which can be transformed into 
ordinary differential equations [9,10,11,12] and some 
seepage equations in oil and gas reservoir engineering [13-
26] respectively. Some gratifying results have been 
achieved that solutions to boundary value problems of 
differential equations can be expressed as a continued 
fraction or continued fraction product form (i.e. solutions 
have the similar structure) by introducing the similar 
kernel functions, while structure of solutions only are 
associated with the non-homogeneous boundary condition, 
and similar kernel functions are associated with the 
governing equation and other homogeneous boundary 
condition. 

Based on the above study, this paper will study a class 
of boundary value problems of the composite first Weber 
system. Firstly, we structure functions of guide solution of 
left region by using two linear independent solutions to 
governing equation of left region of the boundary value 
problem and structure functions of guide solution of right 
region by using two linear independent solutions to 
governing equations of right region of the boundary value 
problem respectively. Secondly, we structure the similar 
kernel function of right region by using functions of guide 
solution of right region and coefficients of the right 
homogeneous boundary condition and structure the 
similar kernel function of left region by using functions of 
guide solution of left region, coefficients of two 
connection conditions and the right similar kernel function. 
Finally, the solution of left region to boundary value 
problem is obtained by assembling coefficients of the left 
non-homogeneous boundary condition and the similar 
kernel function of left region. The solution of right region 
to boundary value problem is obtained by assembling 
coefficients of the left non-homogeneous boundary 
condition, similar kernel functions of left and right region, 
coefficients of two connection conditions and functions of 
guide solution of left region. 

In this paper, boundary value problem of the composite 
first Weber system is studied as follows: 
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where D E F M N a b c、 、 、 、 、 、 、  are constant, 
1,in ≥ 0 a c b< < < , 2 2 0M N+ ≠ . 

2. Preliminary Knowledge 

2.1. Lemma 1 

With the variable substitutions ( )
1 2
2 1,2

x
i iz e y i

−
= = , 

the first Weber equations ( ) ( )22 1 0 1,2i i iz n x z i′′+ + − = =  

can be transformed into Hermite equations of order 
( )2 1,2in i =  as follows [27]. 

 ( )2 2 0 1,2i i i iy xy n y i′′ ′− + = =  (2) 

2.1.1. Proof 

By taking variable substitution 
1 2
2

x
i iz e y

−
=  for the 

first Weber equation and calculating first-order derivative 

and two-order derivative of 
1 2
2

x
i iz e y

−
= to x  

(i.e. ( ) ( )
1 12 2

22 2, 2 1
x x

i i i i i i iz e y xy z e y xy x y
− −

′ ′ ′′ ′′ ′= − = − + − 
  ), 

the first Weber equation can be transformed into the 
equation as follows: 

 ( )2 2 0 1,2i i i iy xy n y i′′ ′− + = =  

Where, Eq. (2) is the Hermite equation of order 2 in . 

2.2. Lemma 2 
General solution to the first Weber equation can be 

expressed as [27]: 

 ( ) ( ) ( )
1 2
2 1,2

x
i i n i ni iz e A H x B G x i

−
 = + =   (3) 

where ,i iA B are arbitrarily real constants, 
and ( )niH ⋅ , ( )niG ⋅  are the first and the second class of 

Hermite functions of order in . 

2.2.1. Proof 
General solution to the Hermite equation can be 

expressed as: 

 ( ) ( )( )1,2i i n i ni iy A H x B G x i= + = . 

According to the lemma 1, we let
1 2
2

x
i iz e y

−
= , and 

then general solution to the first Weber equation can be 
obtained as follows: 

 ( ) ( ) ( )
1 2
2 1,2

x
i i n i ni iz e A H x B G x i

−
 = + =  . 

2.3. Lemma 3 

( ) ( )
1 12 2
2 2,

x x
n ni ie H x e G x

− −
 are two linear independent 

solutions to the first Weber 

equations ( ) ( )22 1 0 1,2i i iz n x z i′′+ + − = = . Defining 

functions of guide solution as follows: 
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1 2 2
2
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where 1i = denotes left region ( )a x c≤ ≤ , 2i = denotes 

right region ( )c x b≤ ≤ . 

3. The Main Theorem and Its Proof 

3.1. Theorem 
If the boundary value problem (1) has unique solution, 

then the solution of left region is expressed as: 

 

( )
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( ) ( )1 1
1

1
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1

z D x a x c
F aE
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= ⋅ ⋅ ⋅Φ ≤ ≤
+ Φ+

+ Φ

(8) 

and the solution of right region is expressed as: 
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where ( )2 xΦ is called the similar kernel function of right 
region: 
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and ( )1 xΦ is called the similar kernel function of left 
region: 
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3.1.1. Proof 
According to the lemma 2, we know that general 

solutions to governing equations of left and right region of 
the boundary value problem (1) are 

 ( ) ( ) ( )
1 2
2 ( 1,2)

x
i i n i ni iz x e A H x B G x i

−
 = + =   (12) 

We calculate derivative of ( )iz x  to x : 
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By substituting Eqs.(12) and (13) into left and right 
boundary conditions and two connection conditions of the 
boundary value problem (1), we obtain the following 
equations respectively: 
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According to the uniqueness of solution to the boundary 
value problem (1), we know that the coefficient 
determinant ∆  of linear system (Eqs.(14) ~ (17)) about 
undetermined coefficients is not equal to zero, and 
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Values of 1 1 2 2, , ,A B A B  can be obtained by using the 
Cramer rule as follows: 
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By substituting values of 1 1 2 2, , ,A B A B  (19)-(22) into 
Eq.(12) and using the similar kernel function of right 
region Eq.(10) and the similar kernel function of left 
region Eq.(11), solutions of left and right regions to the 
boundary value problem (1) are obtained respectively. i.e. 
Eq.(8) and Eq.(9). 

3.1.2. Corollary 1 
In the boundary value problem (1), if the right boundary 

condition is ( )2 0z b =  (i.e. 0, 0M N≠ = ), the 
corresponding similar kernel function of right region is  

 ( ) ( )
( )

2
0,0

2 2
1,0

,
.

,

x b
x

c b

ϕ

ϕ
Φ =  

3.1.3. Corollary 2 
In the boundary value problem (1), if the right boundary 

condition is ( )2 0z b′ =  (i.e. 0, 0M N= ≠ ), the 
corresponding similar kernel function of right region is  

 ( ) ( )
( )

2
0,1

2 2
1,1

,
.

,

x b
x

c b

ϕ

ϕ
Φ =  

3.1.4. Corollary 3 
The first continued fraction, which belongs to the 

structure of the solution (i.e. Eq. (8)) to the boundary 
value problem (1), has the following property: 

 ( ) ( )

( )
1 1

1

1x a
Dz x Fz x

E
F a

=
′+ =  

+
+Φ

 (23) 

4. Steps of the SCM 
According to the proof of lemma 2 and theorem 1, it is 

easy to induce steps of the SCM for solving the boundary 
value problem of the composite first Weber system. The 
concrete steps are as follows: 

4.1. Step 1 Constructing Functions of Guide 
Solution 

we structure the function of guide solution of left region 

by using two linear independent solutions ( )
1 2
2

1

x
ne H x

−
 

and ( )
1 2
2

1

x
ne G x

−
 to the governing equation of the left 

region of the boundary value problem (1) and structure the 
function of guide solution of right region by using two 

linear independent solutions ( )
1 2
2

2

x
ne H x

−
 

and ( )
1 2
2

2

x
ne G x

−
 to the governing equation of the left 

region of the boundary value problem (1) as follows: 
( )( )0,0 , 1, 2i x iϕ ξ = . Other functions of guide solution can 

be obtained by calculating partial derivatives of 
( )0,0 ,i xϕ ξ  to x , ξ  respectively. 

4.2. Step 2 Constructing Similar Kernel 
Functions of Left and Right Regions 

The similar kernel function ( )2 xΦ of right region of 
the boundary value problem (1) can be structured by using 
functions of guide solution of right region and 
coefficients M , N of the homogeneous right boundary 
condition, as shown Eq.(10). Further we calculate 

( )2 cΦ .The similar kernel function ( )1 xΦ  of left region 
of the boundary value problem (1) can be structured by 
using functions of guide solution of left region, 
coefficients λ , µ  of two connection conditions and 

( )2 cΦ , as shown Eq.(11). Further we calculate ( )1 aΦ . 

4.3. Step 3 Obtaining Solutions to the 
Boundary Value Problem 

To the boundary value problem (1), the solution of the 
left region can be obtained by assembling 
coefficients D , E , F of the non-homogeneous left 
boundary condition,  the similar kernel function ( )1 xΦ of 

left region and ( )1 aΦ , as shown Eq.(8). The solution of 
the right region can be obtained by assembling the 
coefficients D , E , F of the non-homogeneous left 
boundary condition, the function of guide solution of left 
region, coefficients λ , µ  of two connection conditions,  
the similar kernel function ( )2 xΦ  of right region, 

( )2 cΦ and ( )1 aΦ , as shown Eq.(9).  
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5. The Application of the SCM 
Solving the boundary value problem as follows: 
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Comparing with the boundary value problem (1) and 
(24), we know that 1 1,n =  2 2,n =  0,a =  2,b =  1,c =  

1,λ =  2,µ =  1,D =  0,E =  0,M =  2N = . Governing 
equations of left and right regions of the boundary value 
problem (24) are the first Weber equation, then two linear 
independent solutions of the left governing equation are 

( )
1 2
2 1

x
e H x
−

 and ( )
1 2
2 1

x
e G x
−

, and two linear 
independent solutions of the right governing equation are 

( )
1 2
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x
e H x
−

 and ( )
1 2
2 2

x
e G x
−

. According to steps of the 
SCM, we solve the boundary value problem (24). 

5.1. Step 1 Constructing Functions of Guide 
Solution 

According to Eqs.(4) ~ (7), we structure functions of 
guide solution of left and right regions as follows: 
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5.2. Step 2 Constructing Similar Kernel 
Functions of Left and Right Regions 

According to the Eq.(10), we structure the similar 
kernel function of right region of the boundary value 
problem (24) as follows: 
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so 
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Then according to the Eq. (11), we structure the left 
similar kernel function of the boundary value problem (24) 
as follows: 
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Let 0x = , then 

 ( ) ( )

( ) ( )

2
1

2
0

2 1 1
0

11 4 2
! 2 1n

e e
n n

∞

=

Φ +
Φ =

Φ − +
+∑

. 

5.3. Step 3 Obtaining Solutions of The 
Boundary Value Problem (24) 

According to Eqs.(8) and (9), solutions of left and right 
regions of the boundary value problem (24) can be 
obtained respectively as follows: 
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6. Conclusions and Understanding  
(1) In the process of solving the boundary value 

problem of the composite first Weber system, we just need 
to obtain two linear independent solutions to governing 
equation of left region and two linear independent 
solutions to governing equation of right region of the 
boundary value problem respectively. Then according to 
Steps of the SCM, we can obtain solutions to the boundary 
value problem. Thus, using SCM can avoid the tedious 
calculation process. 

(2) According to structural equations of similar kernel 
functions Eqs. (10) and (11) and structural equations of 
solutions of the boundary value problem (1) Eqs. (8) and 
(9), we know that we only need to change coefficients of 
boundary conditions to obtain solutions to the boundary 
value problem (1), when boundary conditions of the 
boundary value problem (1) change. Thus, Similar 
Constructing Method is simple and effective for solving 
the complicated boundary value problem of differential 
system. 
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