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Abstract  In this paper, we provide a very accurate, non-perturbative, semi-analytical solution to a system of 
nonlinear first-order differential equations modeling the transmission of tuberculosis (TB) in a homogeneous 
population. Our analysis is based on Homotopy Analysis Method (HAM). Maple 15 software is used to carry out 
the computations. Our results show the validity and potential of HAM for computing the solution of nonlinear 
equations. 
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1. Introduction 
Infection with tuberculosis (TB) is caused by a bacterial 

known as Mycobacterium Tuberculosis [1,2,3]. Globally, 
TB is one of the greatest diseases of public concern 
because the pandemic is a substantial threat to socio-
economic development imposing a heavy burden on 
families, communities and economies [4,5,6]. In 1993, the 
World Health Organisation (WHO) declared TB a global 
emergency and about 2 billion people were estimated to 
be globally infected with TB that year [7]. However, with 
drastic global treatment measures, the incidence of TB has 
reduced across the globe. According to a recent global TB 
reports, 9.4 million people acquired the disease in 2008 
resulting in 1.8 million deaths while the number of active 
cases has reduced to 5.7 million in 2011 with 1.4 million 
deaths showing that TB mortality has decreased by 22% 
globally since 2008 [8,9]. 

Mathematical models have been widely used in 
different forms for studying the transmission dynamics of 
TB epidemics [10-17]. However, the dilemma with many 
models in epidemiology is sometimes how to obtain 
analytic solutions of the nonlinear equations describing 
the dynamics of these diseases [18]. 

In 1992, a non-perturbative method known as 
homotopy analysis method (HAM) was proposed by Liao 
[19].This method was based on homotopy, an important 
part of topology [20]. HAM is a general analytic technique 
developed for the purpose of obtaining approximate 
analytic series solutions to different types of nonlinear 
equations especially those with strong nonlinearity. This 
method has been successfully applied to solve many types 
of nonlinear problems arising in the field of science, 

engineering and finance [21-38]. The HAM offers certain 
advantages over previous non-perturbative methods. 
Firstly, its validity does not depend upon small parameters 
of the considered nonlinear problem. Secondly, it provides 
a simple way to ensure the convergence of series solutions. 
Furthermore, we have great freedom to choose auxiliary 
linear operator so that one can approximate a nonlinear 
equation more efficiently by means of better base 
functions. Equal importantly, a few new solutions of some 
nonlinear problems which are neglected by all other 
analytic and numerical techniques are found using HAM. 
In addition, as proved in [25], HAM logically contains the 
three traditional non-perturbation methods such as 
Lyapunov artificial small parameter method [39], δ-
expansion method [40] and Adomian decomposition 
method [41]. The homotopy perturbation method 
developed in [42] is also a special case of HAM as pointed 
out by Sajid and Hayat [43], Liang and Jeffery [44] and 
other researchers. 

2. Mathematical Formulation 
In this paper, we consider the following TB epidemic 

model proposed by Egbetade and Ibrahim [45] 

 ( )1S sI IS Sγ π β µ′ = − + − −  (2.1) 

 ( ) ( )1E IS Eρ β µ υ′ = − − +  (2.2) 

 ( )TI d IS D E s Iρ υ µ µ′ = + − + +  (2.3) 

 R I sI IR Rε β µ′ = − − −  (2.4) 

where S= number of susceptible who do not have the 
disease but could get it 
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E= number of exposed who are infected but are yet to 
show any sign of symptoms 
I= number of infectives who have the disease and can 
transmit it to others 
R= number of recovered or removed who can not get the 
disease or transmit it. 
γ= proportion of recruitment due to immigration 
π= rate of recruitment of susceptible individuals 
S= treatment rate of TB 
β= transmission rate of TB 
µ= natural death rate 
µT= death rate of TB 
ν= rate of slow progression 
ρ= rate of fast progression 
D= detection rate of TB 
ε= rate at which susceptible individuals recover. 
In section 3, we shall apply the homotopy analysis method 
described in the next section to solve equations (2.1) – 
(2.4). 

3. Homotopy Analysis Method 
For the sake of completeness and readability of the 

present work, we give below a systematic description of 
the procedures of HAM. 

Consider a nonlinear equation of the form 

 ( ) 0N u t =    (3.1) 

where N is a nonlinear operator, t denotes the time and u(t) 
is an unknown function. Let u0(t) denote an initial 
approximation of u(t) and L denote an auxiliary linear 
operator, Liao [21] constructs the zero-order deformation 
equation. 

 ( ) ( ) ( ) ( ) ( )01 ; ;p L t p u t phH t N t pφ− − =    (3.2) 

where p∈[0,1] is the embedding parameter, h≠0 is a 
nonzero auxiliary parameter, H(t) ≠ 0 is a non-zero 
auxiliary function. 
When p=0 and p=1, the zero-order deformation equations 
becomes respectively 

 ( ) ( )0;0t u tφ =  (3.3) 

and 

 ( ) ( );0t u tφ =  (3.4) 

Thus, as p increases from 0 to 1, the solution φ(t; p) varies 
continuously from the initial approximation u0(t) to the 
exact solution u(t). Such a kind of continuous variation is 
called deformation in topology. Expanding φ(t; p) by 
Taylor’s series in power series of p, we have 

 ( ) ( )0
1

; m
m

m
t p u t u pφ

∞

=
= + ∑  (3.5) 

where 

 ( ) ( );1
!

m

m m
t p

u t
m p

φ∂
=

∂
 (3.6) 

is the deformation derivative. 

If the auxiliary linear operator N, the initial approximation 
u0(t) , the auxiliary parameter h and the auxiliary function 
H(t) are properly chosen so that 

(1) the solution ( );t pφ  of the zero-order deformation 

equation (3.2) exists for all [ ]0,1p∈ . 
(2) the deformation derivative (3.6) exists for all 

1, 2,m =   
(3) the series (3.5) converges at p=1. 

Then, we have the series solution 

 ( ) ( ) ( )0
1

;1 m
m

t u t u tφ
∞

=
= + ∑  (3.7) 

Define the vector 

 ( ) ( ) ( ) ( ){ }0 1, , ,m mu t u t u t u t=


  (3.8) 

According to the definition (3.6), the governing equation 
can be derived from the zero-order deformation equation 
(3.2). Differentiating (3.2) m  times with respect to the 
embedding parameter p , then setting 0p =  and finally 
dividing by !m , we obtain the m th order deformation 
equation 

 ( ) ( ) ( ) ( )( )1 1m m m m mL y t u t hH t Q u tχ − −− =  
  (3.9) 

where 

 ( )( ) ( )
( )1

1 1

;1
1 !

m

m m m

N t p
Q u t

m p

φ−

− −

∂   =
− ∂

  (3.10) 

and 

 
0, 1
1, 1m

m
m

χ
≤

=  >
 (3.11) 

Note that according to the definition (3.10), the right 
hand side of (3.9) depends only on ( )1mu t− . Thus, we 

easily gain the series ( ) ( )1 2, ,u t u t   by solving the linear 
high-order deformation equation (3.9) using symbolic 
computation software such as Matlab, Maple or 
Mathematica. 

4. Solution of SEIR Model by HAM 
To solve the model equation (2.1) – (2.4) by HAM, we 

consider equation (2.1) and choose the linear operator 

 ( ) ( );
;

dS t p
N S t p

dt
=    (4.1) 

with the property that 

 [ ]1 0N c =  (4.2) 

where 1c  is a constant of integration. The inverse operator 
1N −  is given by 

 ( ) ( )1
0
t

N dt− = ∫   (4.3) 

Let the nonlinear operator be defined as 
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 ( ) ( ) ( ) ( )

( ) ( ) ( )

;
; 1 ;

; ; ;

dS t p
N S t p sI t p

dt
I t p S t p uS t p

γ π

β

= − − −  

+ +
 (4.4) 

By constructing the zero-order deformation equation 

 ( ) ( ) ( ) ( ) ( )01 ; ; ;p N S t p s t p phH t N S t p− − =       (4.5) 

we have that for 
0p = , then ( ) ( )0;0S t s t=  

1p = , then ( ) ( );1S t s t=  
Then, we have the m th order deformation equation 

 ( ) ( )[ ] ( ) ( )( )1 1 , 1m m m mN S t S A hH t Q S t mχ − −− = ≥


(4.6) 

where 

 ( )( ) ( ) ( ) ( )

( ) ( ) ( )

1
1 1

1 1 1

1m
m m m

m m m

dS t
Q S t sI t

dt
I t S t S t

γ π

β µ

−
− −

− − −

= − − −

+ +



 (4.7) 

The solution of the m th order deformation equation (4.6) 
for 1m ≥  and using 1h = −  and ( ) 1H t =  is given by 

 

( ) ( )

( ) ( )

( ) ( ) ( )
( )

1

1

1 1 10

1

1

, 1

m m m

m

t
m m m

m

S t S t

d
S t

dt
sI t I t S t dt m

S t

χ

γ π

β

µ

−

−

− − −

−

=

− −

− − + ≥

+

 
 
 
 
 
 
 

∫
(4.8) 

Following earlier steps, we get 

 

( ) ( )

( )

( ) ( ) ( )
( ) ( )

1

1

1 10

1

1 , 1

m m m

m

t
m m

m

E t E t

d
E t

dt
I t S t dt m

E t

χ

ρ β

µ υ

−

−

− −

−

=

− − − ≥

+ +

 
 
 
 
 
 
 

∫
 (4.9) 

 

( ) ( )

( ) ( ) ( )

( )
( ) ( ) ( )

1

1 1 1

10

1 1

, 1

+

m m m

m m m

t
m

T m m

I t I t

d
I t d I t S t

dt
d E T dt m

I t sI t

χ

ρβ

υ

µ µ ε

−

− − −

−

− −

=

−

− − ≥

− + +

 
 
 
 
 
 
 

∫
(4.10) 

 

( ) ( )

( ) ( )

( )
( ) ( ) ( )

1

1 1

10

1 1 1

, 1

m m m

m m

t
m

m m m

R t R t

d
R t I t

dt
sI t dt m

sI t R t R t

χ

ε

µ

−

− −

−

− − −

=

−

− + ≥

+ +

 
 
 
 
 
 
 

∫
(4.11) 

5. Numerical Results and Discussion 
For numerical results, the following values for 

parameters are considered. 

Table 1. Parameter values for the series solutions 
Parameter Assigned values 

S 20 
E 10 
I 15 
R 5 
β 0.02 
γ 0.08 
s 0.2 
µ 0.1 
µT 0.03 
U 0.04 
ε 0.3 
d 0.4 
π 0.3 
ρ 0.05 

For high accuracy of results, we use Maple 15 
computation software [46].For the graphs, dot lines: 
Susceptibles; dash lines: Exposed; dashdot lines: 
Infectives; longdash lines: Recovered. The 5th, 6th, 7th and 
8th terms approximations for S(t), E(t), I(t) and R(t) are 
calculated and presented below. 
5th terms approximations 

 ( ) 2 3
5

4 5

20 4.724 0.5782 0.00844498667

0.00251226171 0.00034215451

S t t t t

t t

= − + +

− −
 

 ( ) 2 3
5

4 5

10 4.46 0.266284 0.0116749093

0.00338895936 0.0006101162407

E t t t t

t t

= + − +

+ −
 

 ( ) 2 3
5

4 5

15 3.66 0.4487436 0.03337370672

0.00194694054 0.000106838353

I t t t t

t t

= + + +

+ +
 

 ( ) 2 3
5

4 5

5 0.5 0.1 0.00111333333

0.000599807669 0.0000090582606

R t t t t

t t

= − + −

− +
 

6th terms approximations 

 

( ) 2
6

3 4

5 6

20 4.724 0.5782

0.00844498667 0.00251226171

0.00034215451 0.00005700487683

S t t t

t t

t t

= − +

+ −

− −

 

 

( ) 2
6

5 6

43

10 4.46 0.266284

0.0116749093 0.00338895936

0.0006201162407 0.00001953571468

E t t t

t t

t t

= + −

+ +

− +

 

 

( ) 2
6

3 4

5 6

15 3.66 0.4487436

0.03337370672 0.00194694054

0.000106838353 0.00000197134589

I t t t

t t

t t

= + +

+ +

+ +

 

 

( ) 2
6

3 4

5 6

5 0.5 0.1

0.00111333333 0.000599807669

0.0000090582606 0.00000235519466

R t t t

t t

t t

= − +

− −

+ +

 

7th terms approximations 
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( ) 2 3
7

4 5

6 7

20 4.724 0.5782 0.00844498667

0.00251226171 0.00034215451

0.00005700487683 , 0.0000106219886

S t t t t

t t

t t

= − + +

− −

− +

 

 

( ) 2 3
7

4 5

6 7

10 4.46 0.266284 0.0116749093

0.00338895936 0.0006201162407

0.00001953571468 0.000006581417588

E t t t t

t t

t t

= + − +

+ −

+ −

 

 

( ) 2 3
7

4 5

6 7

15 3.66 0.4487436 0.03337370672

0.00194694054 0.000106838353

0.00000197134589 0.00009629017459

I t t t t

t t

t t

= + + +

+ +

+ −

 

 

( ) 2 3
7

4 5

6 7

5 0.5 0.1 0.00111333333

0.000599807669 0.0000090582606

0.00000235519466 0.00005687282

R t t t t

t t

t t

= − + −

− +

+ +

 

8th terms approximations 

 

( ) 2
8

3 4

5 6

7 8

20 4.724 0.5782

0.00844498667 0.00251226171

0.00034215451 0.00005700487683

0.0000106219886 0.000049876956

S t t t

t t

t t

t t

= − +

+ −

− −

+ +

 

 

( ) 2
8

3 4

5 6

7 8

10 4.46 0.266284

0.0116749093 0.00338895936

0.000106838353 0.00000197134589

0.00009629017459 0.00000286668947

E t t t

t t

t t

t t

= + −

+ +

+ +

− +

 

 

( ) 2
8

3 4

5 6

7 8

15 3.66 0.4487436

0.03337370672 0.00194694054

0.000106838353 0.00000197134589

0.00009629017459 0.00000286668947

I t t t

t t

t t

t t

= + +

+ +

+ +

− +

 

 

( ) 2
8

3 4

5 6

7 8

5 0.5 0.1

0.00111333333 0.000599807669

0.0000090582606 0.00000235519466

0.00005687282 0.00000127768296

R t t t

t t

t t

t t

= − +

− −

+ +

+ +

 

 
Figure 1. Plots of 5th terms approximations for S(t), I(t) and R(t) against time(t) 

 
Figure 2. Plots of 6th terms approximations for S(t), I(t) and R(t) against time(t) 

 
Figure 3. Plots of 7th terms approximations for S(t), E(t), I(t) and R(t) 
against time(t) 

 

Figure 4. Plots of 8th terms approximations for S(t), E(t), I(t) and R(t) 
against time(t) 

From the various order of approximations, the HAM 
yields convergent series solutions that are reasonable and 
easy to express. The plots show that while the number of 
susceptible (S) decreases the population who are 
infectives (I) increases in the period of the epidemic. 
Meanwhile, the number of exposed (E) increases while the 
number of recovered (R) decreases. However, from figure 
4, as the infection dies out (i.e. as I→0, the number of 
susceptible, exposed and recovered increases. In particular, 
as I→0, S approaches some positive value S=6.0513 
which is the eventual population who were never infective. 

6. Conclusion 

In this paper, the HAM has been successfully applied to 
approximately solve a system of nonlinear equations in 
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tuberculosis dynamics. The results show the potential and 
efficiency of HAM in solving nonlinear problems. We 
thus conclude that, combined with high performance 
computer and symbolic computation software such as 
Maple and so on, the homotopy analysis method might 
become a new powerful analytic tool to get satisfactory 
approximations for nonlinear problems in science and 
engineering. 
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