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Abstract  In this article, the improved ( )/G G′ -expansion method has been implemented to generate travelling 
wave solutions, where ( )G ξ  satisfies the second order linear ordinary differential equation. To show the advantages 
of the method, the (3+1)-dimensional Kadomstev-Petviashvili (KP) equation has been investigated. Higher-
dimensional nonlinear partial differential equations have many potential applications in mathematical physics and 
engineering sciences. Some of our solutions are in good agreement with already published results for a special case 
and others are new. The solutions in this work may express a variety of new features of waves. Furthermore, these 
solutions can be valuable in the theoretical and numerical studies of the considered equation. Also, in order to 
understand the behaviour of solutions, the graphical representations of some obtained solutions have been presented. 
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1. Introduction 
Partial differential equations (PDEs) are widely used as 

models for describing important physical phenomena 
arising in scientific and engineering fields, such as, plasma 
physics, fluid mechanics, solid state physics, quantum 
mechanics, nonlinear optics, chemical physics and many 
others. It is more significant to construct analytical 
solutions of nonlinear evolution equations (NLEEs) to 
disclose more information for better understanding various 
nonlinear complex phenomena as well as further 
applications in real time scientific fields. During recent 
past, many important and powerful methods have been 
developed to obtain traveling wave solutions and to reveal 
their properties. For example, the inverse scattering method 
[1], the Hirota’s bilinear method [2], the homogeneous 
balance method [3], the Backlund transformation method 
[4,5], the Jacobi elliptic function expansion method [6], the 
tanh-coth method [7,8], the F-expansion method [9], the 
Exp-function method [10,11,12,13,14], the first integral 
method [15,16] and others [17,18,19,20]. 

Another important method presented to construct exact 
solutions of nonlinear PDEs is the basic ( )/G G′ -
expansion method. The concept of this method was first 
proposed by Wang et al. [21], consequently, many 
researchers applied the ( )/G G′ -expansion method to 
solve different kinds of NLEEs [22,23,24,25,26]. More 
recently, Zhang et al. [27] extended the basic ( )/G G′ -

expansion method which is called the improved ( )/G G′ -
expansion method to establish abundant traveling wave 
solutions of nonlinear PDEs. This method is one of the 
most powerful and effective method to handle different 

NLEEs. They employed ( ) ( )'/
jw

j
j w

B c G Gξ
= −

= ∑ , as 

traveling wave solutions, where either wc−  or wc  may be 
zero, but both wc−  and wc  cannot be zero at the same 
time. Subsequently, it has been successfully implemented 
to solve several classes of nonlinear problems [28-33]. 

Many researchers applied a variety of methods to obtain 
exact solutions of the (3+1)-dimensional KP equation. For 
instance, Peng and Krishnan [34] studied this equation by 
using extended mapping method to construct analytical 
solutions. In Ref. [35], Khalfallah implemented 
homogeneous balance method to establish traveling wave 
solutions of the same equation. Bekir and Uygun [36] 
investigated this equation for obtaining traveling wave 
solutions via the ( )'/G G -expansion method. In this basic 

( )'/G G -expansion method, they utilized 

( ) ( )
0

'/ ,
im

i
i

u a G Gξ
=

= ∑  where 0,ma ≠  as traveling wave 

solutions, instead of ( ) ( )'/ ,
jw

j
j w

B c G Gξ
= −

= ∑  where 
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either wc−  or wc  may be zero, but both wc−  and wc  
cannot be zero at a time. 

The significance of our present work is, in order to 
generate abundant traveling wave solutions, the (3+1)-
dimensional KP equation has been considered by applying 
the improved ( )'/G G -expansion method. 

2. The Improved ( )'/G G -Expansion 
Method  

Suppose the general nonlinear partial differential 
equation: 

 ( ), , , , , , , , ,... 0,t x y z t t xt xx xxxQ u u u u u u u u u =  (1) 

where ( ), , ,u u x y z t=  is an unknown function, Q  is a 

polynomial in ( ), , ,u x y z t  and its partial derivatives in 
which the highest order derivatives and nonlinear terms 
are involved. The main steps of the method are as follows: 
Step 1. Consider the traveling wave variable: 

 ( ) ( ), , , , ,u x y z t B x y z F tξ ξ= = + + −  (2) 

where F  is the wave speed. Now using Eq. (2), Eq. (1) is 
converted into an ordinary differential equation for ( ) :B ξ  

 ( ), ', , ,... 0,H B B B B′′ ′′′ =  (3) 

where the superscripts indicate the ordinary derivatives 
with respect to .ξ  
Step 2. According to possibility, Eq. (3) can be integrated 
term by term one or more times, yields constant(s) of 
integration. The integral constant may be zero, for 
simplicity. 
Step 3. Suppose that the traveling wave solution of Eq. (3) 
can be expressed in the following form: 

 ( ) ( )'/
jw

j
j w

B c G Gξ
= −

= ∑  (4) 

with ( )G G ξ= satisfies the second order linear ODE: 

 0,G G Gδ η′′ ′+ + =  (5) 

where ( )0, 1, 2,..., ,jc j w δ= ± ± ± and η  are constants. 
Step 4. To determine the positive integer w , taking the 
homogeneous balance between the highest order nonlinear 
terms and the highest order derivatives appearing in Eq. (3). 
Step 5. Substituting Eq. (4) and Eq. (5) into Eq. (3) with 
the value of w  obtained in Step 4, yield polynomials in 

( ) ( )'/ , 0, 1, 2,... ,rG G r = ± ±  then setting each coefficient 
of the resulted polynomials to zero, we obtain a set of 
algebraic equations for ( )0, 1, 2,..., ,jc j w= ± ± ± ,F β  
and .η  
Step 6. Solving the system of algebraic equations which 
are obtained in step 5 with the aid of algebraic software 
Maple and we obtain values for ( )0, 1, 2,...,jc j w= ± ± ±  
and .F  Then, we substitute obtained values in Eq. (4) 
along with the general solution of Eq. (5) which is well 

known to us, we can obtain the traveling wave solutions of 
Eq. (1). 

3. Application of the Method 
In this section, the (3+1)-dimensional KP equation has 

been studied to obtain abundant traveling wave solutions 
including solitons, periodic and rational solutions by 
applying the improved ( )'/G G -expansion method. 

3.1. The (3+1)-Dimensional KP Equation 
The KP equation is used to model shallow-water waves 

with weakly nonlinear restoring forces. 
The (3+1)-dimensional KP equation is being 

considered which is followed by Bekir and Uygun [36]:  

 26 6 0.xt x xx xxxx yy zzu u uu u u u+ + − − − =  (6) 

Now, we use the wave transformation Eq. (2) into the 
Eq. (6), which yields: 

 ( ) ( ) ( )2 42 6 6 0.F B B BB B′′ ′ ′′− + + + − =  (7) 

Integrating twice and setting the constants of 
integration to zero, we obtain 

 ( ) 22 3 0.F B B B′′− + + − =  (8) 

Taking the homogeneous balance between the nonlinear 
term 2B and the highest order derivative B′′  in Eq. (8), 
we obtain 2.w =  

Therefore, the solution of Eq. (8) is of the form: 

 
( ) ( ) ( )

( ) ( )

2 1
2 1

2
0 1 2

'/ '/

'/ '/ ,

B c G G c G G

c c G G c G G

ξ − −
− −= +

+ + +
 (9) 

where 2 1 0 1, , ,c c c c− −  and 2c  are constants to be 
determined. 

Substituting Eq. (9) together with Eq. (5) into the Eq. 
(8), the left-hand side of Eq. (8) is converted into 

polynomials in ( ) ( )'/ , 0, 1, 2,... .rG G r = ± ±  Then, 
equating each coefficient of the resulted polynomials to 
zero, yields a set of algebraic equations (for simplicity, 
which are not presented) for 2 1 0 1 2, , , , , ,c c c c c F β− −  and 

.η  Solving the system of obtained algebraic equations 
with the aid of algebraic software Maple, we obtain four 
different values. 
Case 1: 

 ( )
2 1 0 1

2
2

0, 0, 2 , 2 ,

2, 4 2 ,

c c c c

c F

η β

β η

− −= = = =

= = − − +
 (10)

 

where β  and η  are free parameters. 
Case 2: 

 
( )

( )

2
2 1 0

2
1 2

10, 0, 2 ,
3

2 , 2, 4 2 ,

c c c

c c F

β η

β β η

− −= = = +

= = = − −
 (11) 

where β  and η  are free parameters. 
Case 3: 

 



66 American Journal of Applied Mathematics and Statistics  

 ( )
2

2 1 0
2

1 2

2 , 2 , 2 ,

0, 0, 4 2 ,

c c c

c c F

η βη η

β η

− −= = =

= = = − − +
 (12) 

where β  and η  are free parameters.  
Case 4: 

 
( )

( )

2 2
2 1 0

2
1 2

12 , 2 , 2 ,
3

0, 0, 4 2 ,

c c c

c c F

η βη β η

β η

− −= = = +

= = = − −
 (13) 

where β  and η  are free parameters. 
Substituting the general solution Eq. (5) into Eq. (9), we obtain 
three different families of traveling wave solutions of Eq. (8): 
Family 1: Hyperbolic function solution: When 

2 4 0,β η− >  yields 

 

( )
2

2
1

2
22

2
2

1

2
2

1
2

1

2
22

1
2

1

2
2

0

1sinh 4
2
1cosh 41 24
12 2 cosh 4
2
1sinh 4
2

1sinh 4
2
1cosh 41 24
12 2 cosh 4
2
1sinh 4
2

B

P

P
c

P

P

P

P
c

P

P

c

ξ

β η ξ

β η ξβ β η
β η ξ

β η ξ

β η ξ

β η ξβ β η
β η ξ

β η ξ

−

−

−

−

 − 
 
 + −− = + − 

− 
 
 

+ − 
 

 − 
 
 + −− + + − 

− 
 
 

+ − 
 

+

+

2
1

2
22

1
2

1

2
2

2
2

1

2
22

2
2

1

2
2

1sinh 4
2
1cosh 41 24
12 2 cosh 4
2
1sinh 4
2

1sinh 4
2
1cosh 41 24 .
12 2 cosh 4
2
1sinh 4
2

P

P
c

P

P

P

P
c

P

P

β η ξ

β η ξβ β η
β η ξ

β η ξ

β η ξ

β η ξβ β η
β η ξ

β η ξ

 − 
 
 + −− + − 

− 
 
 

+ − 
 

 − 
 
 + −− + + − 

− 
 
 

+ − 
 

(14) 

If 1P  and 2P  are taken particular values, various known 
solutions can be rediscovered. 
Family 2: Trigonometric function solution: When 

2 4 0,β η− <  we obtain 

 

( )
2

2
1

2
22

2
2

1

2
2

1
2

1

2
22

1
2

1

2
2

0

1

1sin 4
2

1cos 41 24
12 2 cos 4
2
1sin 4
2

1sin 4
2

1cos 41 24
12 2 cos 4
2
1sin 4
2

2

B

P

P
c

P

P

P

P
c

P

P

c

c

ξ

η β ξ

η β ξβ η β
η β ξ

η β ξ

η β ξ

η β ξβ η β
η β ξ

η β ξ

β

−

−

−

−

 − − 
 
 + −− = + − 

− 
 
 

+ − 
 

 − − 
 
 + −− + + − 

− 
 
 

+ − 
 

+

−
+ +

2
1

2
22

2
1

2
2

2
2

1

2
22

2
2

1

2
2

1sin 4
2

1cos 41 24
12 cos 4
2
1sin 4
2

1sin 4
2
1cos 41 24 .

12 2 cos 4
2

1sin 4
2

P

P

P

P

P

P
c

P

P

η β ξ

η β ξ
η β

η β ξ

η β ξ

η β ξ

η β ξβ η β
η β ξ

η β ξ

 − − 
 
 + − − 

− 
 
 

+ − 
 

 − − 
 
 + −− + + − 

− 
 
 

+ − 
 

(15) 

If 1P  and 2P  are taken particular values, various known 
solutions can be rediscovered. 
Family 3: Rational function solution: When 

2 4 0,β η− =  we obtain 

 
( )

2 1
2 2

2 1
1 2 1 2

2
2 2

0 1 2
1 2 1 2

2 2

.
2 2

P P
B c c

P P P P

P P
c c c

P P P P

β β
ξ

ξ ξ

β β
ξ ξ

− −

− −
− −

= + + +
+ +

− −
+ + + + +

+ +

   
   
   

   
   
   

(16) 

Substituting Eqs. (10), (11) (12) and (13) together with 
the general solution Eq. (5) into the Eq. (9), yields the 
hyperbolic function solution Eq. (14), we obtain following 
solutions respectively (if 1 0P =  but 2 0P ≠ ): 

 ( )
( )2 2

2
1

4 1coth 4 1 ,
2 2

B
β η

ξ β η ξ
−    = − −    

 

where ( )2 4 2 .x y z tξ β η= + + + − +  
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 ( )
( )2 2

2
2

4 13coth 4 1 ,
6 2

B
β η

ξ β η ξ
−    = − −    

  

where ( )2 4 2 .x y z tξ β η= + + − − −  

 ( )

2
2

2

3 1
2

2

4 1
coth 4

2 2 2
2

4 1
coth 4 1

2 2 2

B

β ηβ
η β η ξ

ξ η

β ηβ
β β η ξ

−

−

−−
+ −

−−
+ + − +

=

    
  
  

 
  
      

 

where ( )2 4 2 .x y z tξ β η= + + + − +  

 
( )

( )

2
2

2

4 1
2

2

4 1
coth 4

2 2 2
2

4 1
coth 4

2 2 2

21 2 ,
3

B

β ηβ
η β η ξ

ξ η

β ηβ
β β η ξ

η β

−

−

−−
+ −

=

−−
+ + −

    
  
  

 
  
      

+ +

 

where ( )2 4 2 .x y z tξ β η= + + − − −  

Again, substituting Eqs. (10), (11), (12) and (13) together 
with the general solution Eq. (5) into the Eq. (9), we obtain 
the hyperbolic function solution Eq. (14), our traveling wave 
solutions become respectively (if 2 0P =  but 1 0P ≠ ): 

 ( )
( )2 2

2
5

4 1tanh 4 1 .
2 2

B
β η

ξ β η ξ
−    = − −    

 ( )
( )2 2

2
6

4 13tanh 4 1 .
6 2

B
β η

ξ β η ξ
−    = − −    

 

 ( )

2
2

2

7 1
2

2

4 1
tanh 4

2 2 2
2 .

4 1
tanh 4 1

2 2 2

B

β ηβ
η β η ξ

ξ η

β ηβ
β β η ξ

−

−

−−
+ −

=

−−
+ + − +

    
  
  

 
  
      

 

( )

( )

2
2

2

8 1
2

2

2

4 1
tanh 4

2 2 2
2

4 1
tanh 4

2 2 2

1
2 .

3

B

β ηβ
η β η ξ

ξ η

β ηβ
β β η ξ

η β

−

−

−−
+ −

=

−−
+ + −

+ +

      
  

 
  
  
    

 

Substituting Eqs. (10), (11), (12) and (13) together with 
the general solution Eq. (5) into the Eq. (9), yields the 
trigonometric function solution Eq. (15), our exact 
solutions become respectively (if 1 0P =  but 2 0P ≠ ): 

 ( )
( )2 2

2
9

4 1cot 4 1 ,
2 2

B
η β

ξ η β ξ
−    = − +    

 

where ( )2 4 2 .x y z tξ β η= + + − − +  

 ( )
( )2 2

2
10

4 13cot 4 1 ,
6 2

B
η β

ξ η β ξ
−    = − +    

 

where ( )2 4 2 .x y z tξ β η= + + + − −  

 ( )

2
2

2

11 1
2

2

4 1
cot 4

2 2 2
2 ,

4 1
cot 4 1

2 2 2

B

η ββ
η η β ξ

ξ η

η ββ
β η β ξ

−

−

−−
+ −

=

−−
+ + − +

    
  
  

 
  
      

 

where ( )2 4 2 .x y z tξ β η= + + − − +  

 
( )

( )

2
2

2

12 1
2

2

2

4 1
cot 4

2 2 2
2

4 1
cot 4

2 2 2

1
2 ,

3

B

η ββ
η η β ξ

ξ η

η ββ
β η β ξ

η β

−

−

−−
+ −

=

−−
+ + −

+ +

    
  
  

 
  
      

 

where ( )2 4 2 .x y z tξ β η= + + + − −  

Also, substituting Eqs. (10), (11), (12) and (13) together 
with the general solution Eq. (5) into the Eq. (9), yields 
the trigonometric function solution Eq. (15), we construct 
following solutions respectively (if 2 0P =  but 1 0P ≠ ): 

 ( )
( )2 2

2
13

4 1tan 4 1 .
2 2

B
η β

ξ η β ξ
−    = − +    

 

 ( )
( )2 2

2
14

4 13tan 4 1 .
6 2

B
η β

ξ η β ξ
−    = − +    

 

 ( )

2
2

2

15 1
2

2

4 1
tan 4

2 2 2
2 .

4 1
tan 4 1

2 2 2

B

η ββ
η η β ξ

ξ η

η ββ
β η β ξ

−

−

−−
− −

=

−−
+ − − +

    
  
  

 
  
      

 

 
( )

( )

2
2

2

16 1
2

2

2

4 1
tan 4

2 2 2
2

4 1
tan 4

2 2 2

1
2 .

3

B

η ββ
η η β ξ

ξ η

η ββ
β η β ξ

η β

−

−

−−
− −

=

−−
+ − −

+ +

    
  
  

 
  
      
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Substituting Eqs. (10), (11), (12) and (13) together with 
the general solution Eq. (5) into the Eq. (9), we obtain the 
rational function solution Eq. (16), and we construct 
following traveling wave solutions respectively (if 

2 4 0β η− = ): 

 ( ) ( )
2

22
17

1 2

21 4 ,
2

PB
P P

ξ β η
ξ

   = − −  +  
 

where ( )2 4 2 .x y z tξ β η= + + + − +  
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where ( )2 4 2 .x y z tξ β η= + + − − −  
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where ( )2 4 2 .x y z tξ β η= + + + − +  
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+ +   +  
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where ( )2 4 2 .x y z tξ β η= + + − − −  

4. Results and Discussion 
It is important to point out that some of constructed 

solutions are in good agreement with already published 
results which have been shown in the Table 1. 
Furthermore, some of obtained traveling wave solutions 
are expressed in Figure 1 to Figure 8. 

Table 1. Comparison between Bekir and Uygun [36] solutions and 
Our obtained solutions 

Bekir and Uygun [36] solutions Our solutions 
i. If 1 20, 0, 3C C λ= ≠ = and 

2µ =  solution Eq. (5.14) (from 
section 5) becomes: 

( ) 2
1

1 1
coth 1 .

2 2
u ξ ξ= − 

 
 

 

i. If 3, 2β η= =  and 

( ) ( )1 1 ,B uξ ξ=  solution 

( )1B ξ  becomes: 

( ) 2
1

1 1
coth 1 .

2 2
u ξ ξ= − 

 
 

 

ii. If 1 20, 0, 4C C λ≠ = =  

and 3µ =  solution Eq. (4.14) 
(from section 5) becomes: 

( ) ( )2
1 2 tanh 1 .u ξ ξ= −  

ii. If 4, 3β η= =  and 

( ) ( )5 1 ,B uξ ξ=  solution 

( )5B ξ  becomes: 

( ) ( )2
1 2 tanh 1 .u ξ ξ= −  

iii. If 

1 20, 0, 4C C λ= ≠ = and 

5µ =  solution Eq. (5.16) (from 
section 5) becomes: 

( ) ( )2
3 2 cot 1 .u ξ ξ= +  

iii. If 4, 5β η= =  and 

( ) ( )9 3 ,B uξ ξ=  solution 

( )9B ξ  becomes: 

( ) ( )2
3 2 cot 1 .u ξ ξ= +  

iv. If 1 20, 0, 1C C λ≠ = =  

and 1µ =  solution Eq. (5.16) 
(from section 5) becomes: 

( ) ( )( )2
3

3
tan 3 / 2 1 .

2
u ξ ξ= +

 

iv. If 1, 1β η= =  and 

( ) ( )13 3 ,B uξ ξ=  solution 

( )13B ξ  becomes: 

( ) ( )( )2
3

3
tan 3 / 2 1

2
.u ξ ξ= +

 
Beside above table, many new traveling wave solutions 

have been constructed, such as, 2B  to 4 ,B  6B  to 8 ,B  

10B  to 12B  and 14B  to 20B  which are not being revealed 
in the previous literature. 

4.1. Graphical Representations of the 
Solutions 

The graphical depiction of some solutions has been 
described in the figures with the aid of commercial 
software Maple: 

 

Figure 1. Solitons solution for 3, 2β η= =  

 

Figure 2. Solitons solution for 6, 8β η= =  
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Figure 3. Solitons solution for 3, 3β η= =  

 

Figure 4. Solitons solution for 5, 6β η= =  

 

Figure 5. Periodic solution for 7, 12β η= =  

 

Figure 6. Solitons solution for 4, 5β η= =  

 

Figure 7. Solitons solution for 5, 7β η= =  

 

Figure 8. Solitons solution for 8, 17.5β η= =  

5. Conclusions 

In this article, we apply the improved ( )'/G G -
expansion method to generate a rich class of new traveling 
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wave solutions of the highly nonlinear PDE, namely, the 
(3+1)-dimensional Kadomstev-Petviashvili equation. The 
presented solutions may express a variety of new features 
of waves. Moreover, the obtained exact solutions reveal 
that the improved ( )'/G G -expansion method is a 
promising mathematical tool, because, it can establish 
abundant new traveling wave solutions with different 
physical structures. Subsequently, the used method could 
lead to construct many new traveling wave solutions for 
various nonlinear PDEs which frequently arise in 
scientific real time application fields. 
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