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Abstract  The paper introduces stochastic DEA with a Perfect Object (SDEA PO). The Perfect Object (PO) is a 
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1. Introduction 
Data Envelopment Analysis (DEA) estimates the 

relative efficiency of a group of objects referred to as 
Decision-Making Units (DMUs) that use inputs 

( , 1,..., ) 0jX j r= = >X  to produce outputs 

( , 1,..., ) 0iY i s= = >Y . It was developed in publications 
[3], [4], and [5]. DEA combines all of the indicators of 
each object into an efficiency index E scaled to an interval 
[0,1]. An object is considered efficient if it receives a score 
equal to 1, and inefficient if it receives a score of less than 
1. The DEA efficiency measure is based on the efficiency 
ratio suggested in [7] 
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where u = (u1,..., us) ≥ 0 and v = (v1,..., vr) ≥ 0 are the 
weights assigned to outputs and inputs, respectively. To 
estimate the weights, DEA sets up a series of optimization 
problems similar to the following one: 

For each DMUk, k = 1,..., N, find vectors uk = (uk1,..., uks) 
≥ 0 and vk = (vk1,..., vkr) ≥ 0 such that: 
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1,…, N, in the group with the same weight coefficients uk 
= (uk1,…, uks)  and vk = (vk1,…, vkr).  

Reference [4] showed that maximization of the 
efficiency ratio (2) is equivalent to solving a linear 
programming (LP) problem, one for each DMU in a group:  

For each DMUk, k  = 1,..., N, 
Minimize θ 
subject to 
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The LP algorithm forms a linear combination of DMUs 
that outperforms the currently selected DMU by both 
inputs and outputs. Publications [6,11] provide details and 
reviews of contemporary DEA. 

One of the disadvantages of DEA is that it measures the 
relative efficiency only. To work around this, some DEA 
publications suggest a best practice comparison. But all of 
them remain within the framework of conventional DEA 
and use the LP algorithm. In publications [17,18,19] 
explicit formulas for the DEA efficiency scores are 
obtained, assuming that a Perfect Object (PO) is added to 
the group of actual DMUs. The PO is a virtual DMU 
having the smallest inputs and greatest outputs; it serves 
as a benchmark for efficiency comparisons. The obtained 
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formulas obviate the need to use the LP algorithm and 
require only a moderate number of simple operations with 
ratios of inputs and outputs. 

Another disadvantage of conventional DEA is its 
deterministic nature. Some authors claim that the DEA, 
unable to deal with stochastic noise in inputs and outputs, 
cannot distinguish between actual inefficiency and short-
lived negative effects or plain bad luck. To address these 
concerns, a stochastic version of DEA (SDEA) was 
developed in publications [2,10,15], to name just a few. 
SDEA is a rapidly developing dimension of DEA, and 
new approaches, procedures, and algorithms continue to 
appear. 

Conventional SDEA is aiming to find a region of 
stochastic dominance or to eliminate the stochastic noise. 
Since DEA with a Perfect Object (DEA PO) furnishes an 
explicit formula for the efficiency index, it provides new 
opportunities for stochastic extension of DEA. Firstly, the 
explicit formula allows for the computation of the 
probability density function (pdf) of the efficiency index 
directly. Secondly, it introduces stochasticity unrelated to 
imprecision in data measurement. Thirdly, it introduces an 
alternative breakdown of the efficiency index into two 
components. The first component is related to the 
efficiency of a group as a whole, the second - to the 
relative efficiency of an individual DMU in the group. 
This decomposition stems from the fact that in the 
framework of stochastic DEA with a perfect object 
(SDEA PO), an individual DMU may be considered as an 
occurrence of a random normalized DMU, having all 
inputs and outputs scaled to the interval of [0,1]. The 
mathematical expectation of the normalized DMU’s 
efficiency, referred to below as common efficiency, is due 
to fundamental, systemic factors underlying the group. 
The difference between the observed and common 
efficiency is called partial efficiency, which is determined 
by the factors specific to a particular DMU. This paper 
develops the above-mentioned SDEA PO approach and 
demonstrates its application.  

The paper is organized as follows. In Section 2, 
stochastic DEA with a perfect object is developed, and 
Section 3 presents its application to the analysis of 
prospective environmental performance of the major 
economies and regions. The appendix provides a computer 
program written in the R language, meant to compute the 
common efficiency. 

2. Stochastic DEA with a Perfect Object 
Consider a group of Decision Making Units DMUk , k = 

1,…, N using inputs ( , 1,..., ) 0k jkX j r= = >X  to 

produce outputs ( , 1,..., ) 0k ikY i s= = >Y . Add to the 
group a Perfect Object with smallest inputs and greatest 
outputs, and denoted as DMU0.   Then, for each k = 1,…, 
N , we get: 
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When it is unambiguous, we drop the lower index k for 
readability. The values of i and j providing maximum 
values to the ratios Yi/Y0i and X0j/Xj  for DMUk are labeled 
as i* and j*, respectively: 
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The following theorem was proved in [18]: 
Theorem. Let i* and j* be unique for each DMU in a 

group.  Then the IM CRS PO and OM CRS PO efficiency 
scores are equal to each other and may be found as: 
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where IM, OM, and CRS stand for input minimization, 
output maximization, and constant returns to scale, 
respectively. 

In case of non-unique i* or j*, any of them may be used 
in the formula (6). For ease of notation, we will refer to 
ECRS PO simply as E. Figure 1 provides a geometric 
interpretation of the theorem for one input and one output. 
In this case, the IM efficiency score equals to the ratio of 
the distances from the y-axis to the frontier and to the 
DMU, while the OM efficiency, to the ratio of the 
distances from the x-axis to the DMU and to the frontier. 
The theorem follows from elementary geometric 
considerations.  

 

Figure 1. DEA frontiers for one input and one output 

A Perfect Object (DMU0) is located at the point X0 = min Xk, Y0 = max Yk, 
k = 1,…,N. 

As follows from formula (6), given the joint 
distribution of relative inputs and outputs, the probability 
distribution of the efficiency score can be found explicitly. 
The underlying theory and corresponding formulas can be 
found in [16]. From formula (6), it follows that the 
efficiency scores for each DMUk k = 1,…, N are 
determined by the product of maximum normalized inputs 
and outputs. This observation allows for the introduction 
of stochasticity into DEA PO that is not related to the 
inaccuracy in the measurement of inputs or outputs. In 
contrast, stochastic DEA PO considers normalized actual 
DMUs as occurrences of identically distributed random 
DMUs. By doing so, it converts a group of DMUs under 
consideration into a statistical sample for which the 
probability distribution of the efficiency score can be 
estimated. The mathematical expectation of the group's 
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efficiency score is referred to below as common efficiency 
Ec: 

 ( ) , 0 1c cE M E E= ≤ ≤  (7) 

where symbol M stands for the mathematical expectation. 
The common efficiency is the efficiency of the whole 
group and it serves as a benchmark for the evaluations of 
the partial efficiencies of the group's individual members. 

Common efficiency shows how well the group is 
performing overall. Its use in the group-oriented approach 
to efficiency estimation is practical in some applications, 
such as a comparative study of national and regional 
environmental efficiency. In this case it is useful to 
evaluate how well a group of economies meets 
environmental standards, as well as efficiency variation 
among its members. For every particular DMUk, the 
difference between individual efficiency and common 
efficiency is referred to as partial efficiency Epk: 

  , 1 1.pk k c pkE E E E= − − ≤ ≤  (8) 

As follows from formula (8), partial efficiency Epk is 
scaled to the interval [-1,1]. It shows how well an 
individual DMUk performs with regard to the group as a 
whole. Negative values of partial efficiency Epk mean that 
a corresponding DMU performs worse than the group at 
large and requires special attention of the regulatory body.  

It should be noted that while conventional DEA 
efficiency scores are bound to the interval [0,1], 
publications [1] and [13] introduced “super efficiency” 
that allows it to be greater than 1. Similarly, negative 
values of the partial efficiency introduced in this paper 
extend the interval of feasible values of  efficiency scores 
further to values below zero. 

Introduction of common and partial efficiency leads to 
additive decomposition of the total efficiency of the 
DMUk as follows: 

   k c pkE E E= +  (9) 

where Ek, Ec , and Epk stand for the total efficiency score 
and its common and partial components for DMUk, 
respectively.  

With inputs and outputs normalized to the interval [0,1] 
and considered as occurrences of identically distributed 
random objects, the Beta distribution is a convenient 
choice for fitting their distributions, see [8]. The support 
of the Beta distribution is the interval [0,1] - same as that 
of the DEA PO normalized inputs and outputs. It has two 
parameters: α and β that control the shape of the 
probability density function (pdf). Depending on the 
values of α and β, the Beta-pdf may be increasing, 
decreasing, bell–shaped, U–shaped, or horizontal. A 
statistical computer language R provides a procedure to 
estimate parameters of the Beta distribution. It is available 
on the internet for free download [22]. 

Recall that the pdf of the Beta distribution is:  

 1 1 1( ) ( , )Βf x Β x xα βα β − − −=  (10) 

where Β(α,β) is the Beta–function 
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The mathematical expectation and variance of the Beta 
distribution are as follows: 
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A cumulative distribution function  (cdf) of the 
maximum normalized inputs and outputs that appear in 
the formula (6) can be found using the formulas for the 
probability distribution of order statistics, see [16]. Let ζ = 
<ζ1,ζ2,…,ζp> be a random vector with cdf 

( ) ( )1 2 1 1 2 2, , , , , ,p p pF x x x P x x xζ ζ ζ ζ… = < < … <  (13) 

and η = max(ζq,q=1,…,p). Then the cdf of the random 
variable η is: 
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A pdf of the random variable η, denoted as fη(x), can be 
found by partial differentiation of its cdf wth respect to  
x1,x2,…,xp and consequent  substituting  x for every xq, q = 
1,…p: 
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where Fqζ (x,x,…,x) stands for the partial derivative of Fζ 
(x,x,…,x) with respect to q-th argument, q = 1,…,p. 

In case of independent random variables ζ1,ζ2,…,ζp, 

 ( ) ( ) ( )1 2  ( ),pF x F x F x F xη ζ ζ ζ= …  (16) 

so that: 
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where fξq(x) is a pdf of the random variable ζq. In the case 
of two inputs and two outputs considered in the next 
section, this formula becomes: 

 ( ) ( ) ( ) ( ) ( )1 2 2 1    .f x f x F x f x F xη ζ ζ ζ ζ= +  (18) 

For three inputs or outputs, the formula is: 
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It may be noted that the number of additive terms in 
formulas (16) through (19) grows linearly with the 
number of inputs or outputs, and their computation 
requires just minor changes in the computer program. 

In addition to the pdf of the maximum value, a formula 
(6) also requires computation of the pdf of the product of 
two random variables having support [0,1]. Designating 
the pdf of the joint distribution of the factors as g(x,y), we 
get [16], 
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that simplifies to 



60 American Journal of Applied Mathematics and Statistics  

 

 
1

1 2
0

1( ) ( ) xf x g t g dt
t t

 =  
 ∫  (21) 

for two independent random variables. 
Publication [9] emphasizes computational problems 

that may arise when formulas (20) or (21) are used in 
practice. However, these problems may be avoided if 
inputs and outputs are independent. In this case, the 
mathematical expectation of the product of the maxima of 
normalized inputs and outputs equals to the product of 
their mathematical expectations: 
 ,c output inputE E E= ×  (22) 

where  
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where Eoutput and Einput are calculated using a formula (18) 
for two elements, formula (19) for three, and formula (17), 
for a greater number of the elements. Formula (22) holds 
for any number of inputs and outputs. 

Formulas (17), (18), (19), (22) and (23) shed light on 
how SDEA PO operates, and on its ability to fix a 
problem related to conventional DEA revealed in the 
literature. As mentioned in literature - [1], for example - 
DEA may assign an efficiency score of 1 (fully efficient) 
to an object with a single very large output or a very small 
input. Similarly, DEA PO may assign a high efficiency 
score to an object having just one very large output and 
one very small input. These observations may undermine 
the ability of DEA to assign ranks objectively. Contrary to 
the deterministic versions, stochastic DEA PO, when 
producing a common efficiency score Ec, blends all of the 
indicators of all objects. By doing so, it obviates an 
opportunity for any single input or output to have a 
decisive impact.  

The steps performed by the SDEA PO on the way to 
finding the common efficiency Ec are as follows. First, it 
blends inputs and outputs into two random vectors, with 
each component corresponding to one input or output, 
respectively. Next, it fits the Beta - distribution to the 
sample, and uses the distributions of inputs and outputs to 
obtain the pdf's of maximum values of relative inputs and 
outputs – finput and foutput – as shown by formulas (17), (18) 
and (19). Then the mathematical expectations Eoutput and 
Einput, as given by formulas (23), are produced. Finally, the 
common efficiency score Ec is obtained as a product of 
two mathematical expectations, see formula (22) - a 
stochastic equivalent of formula (6). As a result, all inputs 
and outputs, rather than the maxima only, are included in 
the common efficiency score Ec. 

It may be noted that computationally SDEA PO is 
robust with regard to the numbers of inputs and outputs. 
Each additional input or output just adds one more 
additive term in the structure of formula (17) and one 
multiplicative term to each addend. 

3. Example of Applications 

This section presents an example of application of the 
SDEA PO to the prospective comparative analysis of 
environmental efficiency of major national and regional 
economies. While conventional DEA is widely used in 
environmental performance research, see [20], for 
example, SDEA PO extends the opportunities in this arena. 
In this section, we analyze how well a group of major 
national and regional economies is expected to perform 
from the environmental point of view, and which of them 
need improvement. In calculations, we use prospective 
data for 2030, available on the website of the Energy 
Information Administration of the United States [21]. The 
website provides prospective data for GDP, population, 
total primary energy consumption, and carbon dioxide 
emissions. The data on the area were collected from the 
website of the United Nations Statistics Division [23]. 

Efficiency scores obtained by using a DEA PO or an 
SDEA PO are independent of the units of measurement. 
For convenience, we transformed the quantitative 
indicators into the percentage of the world total, as shown 
in Table 1. A select group of objects includes major 
national and regional economies that cover 80% to 94% of 
the total for each quantitative indicator. At the next step, 
the data in Table 1 were further transformed into the ratios 
presented in Table 2, columns (2) to (5), similar to that 
suggested in [14].  

In general, given five quantitative indicators: Gross 
Domestic Product (G), Population (P), Area (A), Primary 
Energy Consumption (R), and Equivalent CO2 Emissions 
(C), there are 20 ratios available for inclusion in the DEA 
model, as shown in Table 3. However, most of these ratios 
are functionally dependent. Thus, the ratios that are 
symmetrical about the main diagonal of Table 3 are 
inverses of each other. For example, R/C = 1/(C/R). Also, 
any three ratios that form an L-shape in Table 3 are 
interconnected as well. For instance, (P/R)(A/P) = (A/R). 
It may be shown that with five quantitative indicators, 
there are only four functionally independent ratios.  

In this paper, we used functionally independent ratios 
with clear economic interpretations referred to below as 
environmental ratios. Among them are Energy intensity of 
GDP (R/G) and Emissions intensity of energy (C/R) – the 
ratios typical for environmental studies. They were used 
as DEA inputs. For outputs, we used GDP per capita 
(G/P), a commonly used economic indicator, and the ratio 
of the Area to CO2-equivalent emissions (A/C). The last 
ratio is atmospheric clearness of a country or region. By 
choosing it, we stress the responsibility of each country or 
region for the atmospheric quality within its borders. 

Functional independence of the selected ratios can be 
proven by using a functional determinant of the Jacobian 
matrix [12]. To prove it, we consider these ratios as 
functions of the quantitative indicators C, A, R, P, and G, 
that is h1 = G/P, h2 = A/C, h3 = R/G, and h4 = C/R. With 
straightforward calculations, it can be shown that the 

Jacobian matrix 1 2 3 4( , , , )
( , , , , )
h h h h
C A R P G

∂

∂
 has rank 4, so that the 

functions hi , i=1,..4, and, therefore corresponding 
environmental ratios, are functionally independent. 

Columns (6) to (9) in Table 2 present normalized 
environmental ratios obtained as the ratios of i-output to 
maximum output, and of minimum input to j-input, 
respectively. They were used further as DEA PO inputs 
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and outputs. For example, for the United States, the 
normalized values of inputs and outputs are as follows: 
output1 = 3.6723/3.6723 = 1.0000, output2 = 
0.4141/5.8420 = 0.0709, input1 = 0.6643/1.0174 = 0.6529, 
and input2 = 0.6634/0.9278 = 0.7150. Maxima of the two 
normalized outputs and inputs are given in columns (10) 
and (11), while column (12) presents their product 

expressed in percent. For instance, for the U.S., 
max(1.0000, 0.0709) = 1.000, max(0.6529, 0.7150) = 
0.7150. The product is 1.0 × 0.7150 = 0.7150 or 71.50%, 
which is the total efficiency score calculated by the 
formula (6) and shown in column (12) of Table 2 in the 
row corresponding to the U.S.  

Table 1. Projections for 2030, % of the World Total 
Country/ Region Abbrev. CO2 Energy Population Area GDP 

(1) (2) (3) (4) (5) (6) (7) 
United States USA 15.6117 16.8257 4.5034 6.4651 16.5379 

Canada Can 1.8568 2.6725 0.4684 6.7038 1.4802 
Mexico Mex 1.3852 1.4726 1.5372 1.3189 2.2039 

OECD Europe OECDE 11.1136 13.3488 6.8212 3.3716 16.8056 
Australia/New Zealand ANZ 1.3014 1.2272 0.3603 5.3442 1.1965 

Russia Rus 4.8381 5.4950 1.4891 11.4800 3.0767 
China Chi 29.2555 23.0979 17.5093 6.4722 19.2757 
India Ind 5.2507 4.7723 18.0857 2.2071 7.1841 

Middle East MidE 5.6430 5.6040 3.5307 4.7408 3.7110 
Africa Afr 3.4733 3.2179 18.2299 20.2911 4.3336 
Brazil Bra 1.7639 2.6588 2.8342 5.7170 2.8527 

Other Central and South America CSAnB 2.4463 2.9179 4.1792 6.6127 3.6535 

 Max 29.2555 23.0979 18.2299 20.2911 19.2757 

 Min 1.3014 1.2272 0.3603 1.3189 1.1965 

 Average 6.9950 6.9426 6.6290 6.7270 6.8593 

Table 2. Prospected ratios and efficiency 
2030 Projected ratios Normalized ratios a Efficiency 

 Output-1 Output-2 Input-1 Input-2 Output-1 Output-2 Input-1 Input-2 Max 
Output 

Max 
Input 

DEA 
PO,% b 

Partial 
Eff,% c 

 GDP/Pop Area/CO2 Energy/ 
GDP 

CO2/ 
Energy GDP/ Pop Area/CO2 Energy/ 

GDP 
CO2/ 

Energy 
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) 

USA 3.6723 0.4141 1.0174 0.9278 1.0000 0.0709 0.6529 0.7150 1.0000 0.7150 71.50 25.07 
Can 3.1604 3.6104 1.8055 0.6948 0.8606 0.6180 0.3679 0.9548 0.8606 0.9548 82.17 35.74 
Mex 1.4337 0.9521 0.6682 0.9407 0.3904 0.1630 0.9942 0.7052 0.3904 0.9942 38.81 -7.62 

OECDE 2.4637 0.3034 0.7943 0.8326 0.6709 0.0519 0.8363 0.7968 0.6709 0.8363 56.11 9.68 
ANZ 3.3211 4.1067 1.0256 1.0605 0.9044 0.7030 0.6477 0.6256 0.9044 0.6477 58.57 12.14 
Rus 2.0661 2.3728 1.7860 0.8805 0.5626 0.4062 0.3719 0.7535 0.5626 0.7535 42.39 -4.04 
Chi 1.1009 0.2212 1.1983 1.2666 0.2998 0.0379 0.5544 0.5238 0.2998 0.5544 16.62 -29.81 
Ind 0.3972 0.4203 0.6643 1.1003 0.1082 0.0720 1.0000 0.6029 0.1082 1.0000 10.82 -35.61 

MidE 1.0511 0.8401 1.5101 1.0069 0.2862 0.1438 0.4399 0.6588 0.2862 0.6588 18.86 -27.57 
Afr 0.2377 5.8420 0.7425 1.0794 0.0647 1.0000 0.8946 0.6146 1.0000 0.8946 89.46 43.03 
Bra 1.0065 3.2412 0.9320 0.6634 0.2741 0.5548 0.7127 1.0000 0.5548 1.0000 55.48 9.05 

CSAnB 0.8742 2.7032 0.7987 0.8384 0.2381 0.4627 0.8317 0.7913 0.4627 0.8317 38.49 -7.94 
Max 3.6723 5.8420 1.8055 1.2666         
Min 0.2377 0.2212 0.6643 0.6634         

Notes: 
a. Normalization is done by taking the ratios of i-output to the maximum output and of the minimum input to j-input, respectively. 
b. DEA PO efficiency is a product of normalized Max Output by Max Input ratios. The value is given in %. 
c. The difference between DEA PO efficiency and the common efficiency of 46.43%. 

Table 3. Ratio matrix 
 C R P A G 

C - C/R C/P C/A C/G 
R R/C - R/P R/A R/G 
P P/C P/R - P/A P/G 
A A/C A/R A/P - A/G 
G G/C G/R G/P G/A - 

For analysis, we used SDEA PO to separate total 
efficiency into additive components: common and partial 
efficiency, as given by the formula (9). The common 
component Ec is a part of the total efficiency; it was 
calculated using SDEA PO and a computer program 
provided in the Appendix section. Methodologically, Ec 

corresponds to the  worldwide environmental efficiency 
level obtained by weighing CO2-equivalent emissions 
against economic development, technological progress, 
energy consumption, area, and population. It was 
calculated by fitting the Beta distribution to the 
normalized environmental ratios and then by using 
formula (18) for finding the probability distribution of the 
corresponding maxima, and formulas (23) and (22) for 
calculations of the mathematical expectations and 
common efficiency, respectively. For the calculations, we 
used a program written by the author in R - language, 
version R 2.13.0 given in the Appendix. 

While the R language procedure “fitdist” with default 
parameters (maximum likelihood method) gave the best 
results in simulations, it failed to fit to actual data. 
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Because of that, we used the program parameters 
providing maximum goodness of fit estimation (MGE) 
using the Cramér–von Mises (CvM) distance. Table 4 
presents the values of the parameters α and β for the Beta 
distribution. These values were used in the pdf functions 
g1 and g2 in formula (10). By doing so, we obtained the 
common efficiency score Ec = 46.43%. This value was 
used in column 13 of Table 2 to calculate partial 
efficiency scores as the difference between total and 
common efficiency, see formula (8).  

Table 4. Beta-distribution parameters, 2030 

 
GDP/Pop Area/CO2 Energy/GDP CO2/Energy 

α 0.807672 0.598249 2.063552 10.20527 
β 0.939740 1.092585 0.988334 4.295321 
Figure 2 shows total and partial efficiency graphically. 

As follows from Table 2 and Figure 2, the U.S. and 
Canada are expected to have high values of total 
efficiency (71.50% and 82.17%, respectively), and 
positive values of partial efficiency (25.07% and 35.74%, 
respectively). For the OECD countries of Europe and 
Australia/New Zealand region, the expected total 
efficiency is sufficiently lower: 56.11%  and 58.57%, 
respectively, though partial efficiency is still positive - 
9.68% and 12.14%, respectively. When looking at the 
BRIC countries (Brazil, Russia, India, and China) that are 
conventionally considered as the leading force of future 
economic development, it may be noted that only Brazil is 
expected to have positive partial efficiency of 9.05%. The 
other three bear negative values: Russia -4.04%, China -
29.81, and India -35.61%. The Middle East is another 
region with a large negative partial efficiency score of -
27.57%.  

Obtained results may be used to develop 
recommendations on economic restructuring leading to 
better environmental performance worldwide.  

 

Figure 2. Total and partial efficiency. Common efficiency = 46.43% 

4. Conclusions 
The paper introduces Stochastic DEA with a Perfect 

Object (SDEA PO) and demonstrates its application to 
prospective analysis of environmental efficiency.  

SDEA PO considers a group of DMUs as a sample of 
identically-distributed normalized DMU occurrences. An 
explicit formula derived for the DEA PO efficiency index 
allows us to obtain the probability distribution of the 
group’s efficiency score. The mathematical expectation of 
this score characterizes the efficiency of the group at large 
and is called common efficiency. The deviation of the 

observed or prospective efficiency of a particular DMU 
from the group level is called partial efficiency. It reflects 
the relative performance of a specific DMU in the group. 
The SDEA PO approach is applied to the analysis of 
environmental efficiency of major national and regional 
economies. It reveals how different national and regional 
economies perform and can aid in the development of 
clean air policies.  
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Appendix 
This section presents a program in the R language, 

version R 2.13.0, for fitting parameters of the Beta 
distribution to statistical data for two inputs and two 
outputs. In case of a greater number of inputs or outputs, 
the functions maxoutpdf and maxinppdf need be changed 
appropriately, as given in the text by formulas (17) or (19). 
In this version of the program, the statistical data were 
included in the R script file. In general, they should be 
imported from a spreadsheet or database using R language 
tools. Symbol “#” stands for a comment line or a part of it. 

library (fitdistrplus) #MML 
#---------------------- DEA Outputs -------------------------- 
#GDP/Pop 2030 
d1<-c(1.000000, 0.860593, 0.390419, 0.670897, 
0.904363, 0.562622, 0.299780, 0.108168, 0.286214, 
0.064733, 0.274090, 0.238058) 
#vv1<-fitdist(d1,"beta") 
vv1<-fitdist(d1,"beta", method="mge ", gof="CvM") 
a1=vv1$estimate[1][[1]] 
b1=vv1$estimate[2][[1]] 
a1 
b1 
#-------------------------------------------------------------- 
#Area/CO2 2030 
d2<-c(0.070886, 0.618005, 0.162977, 0.051930, 
0.702954, 0.406162, 0.037869, 0.071951, 0.143808, 
1.000000, 0.554806, 0.462710) 
#vv2<-fitdist(d2,"beta") 
vv2<-fitdist(d2,"beta", method="mge", gof="CvM") 
a2=vv2$estimate[1][[1]] 
b2=vv2$estimate[2][[1]] 

a2 
b2 
#---------------------------------------------------------------- 
#---------------------- DEA Inputs -------------------------- 
#Energy/GDP 2030 
d3<- c(0.652922, 0.367918, 0.994173, 0.836308, 
0.647689, 0.371945, 0.554360, 1.000000, 0.439888, 
0.894605, 0.712715, 0.831749) 
#vv3<-fitdist(d3,"beta") 
vv3<-fitdist(d3,"beta", method="mge", gof="CvM") 
a3=vv3$estimate[1][[1]] 
b3=vv3$estimate[2][[1]] 
a3 
b3 
#-------------------------------------------------------------- 
#CO2/Energy 2030 
d4<-c(0.714979, 0.954810, 0.705225, 0.796809, 
0.625570, 0.753452, 0.523762, 0.602941, 0.658813, 
0.614608, 1.000000, 0.791293) 
#vv4<-fitdist(d4,"beta") 
vv4<-fitdist(d4,"beta", method="mge", gof="CvM") 
a4=vv4$estimate[1][[1]] 
b4=vv4$estimate[2][[1]] 
a4 
b4 
#-------------------------------------------------------------- 
#---------- pdf's for DEA max ratios for outputs and 
inputs------------------- 
maxoutpdf<-function(x,aa1,bb1,aa2,bb2) 
{dbeta(x,aa1,bb1)*pbeta(x,aa2,bb2)+dbeta(x,aa2,bb2)*
pbeta(x,aa1,bb1)} 
maxinppdf<-function(x,aa3,bb3,aa4,bb4) 
{dbeta(x,aa3,bb3)*pbeta(x,aa4,bb4)+dbeta(x,aa4,bb4)*
pbeta(x,aa3,bb3)} 
maxout<-function(x) {x*maxoutpdf(x,a1,b1,a2,b2)} 
maxinp<-function(x) {x*maxinppdf(x,a3,b3,a4,b4)} 
#---------- Mathematical expectations of  max ratios of 
inputs and outputs ------------ 
effout<-integrate(maxout,0,1) 
effout$value 
effinp<-integrate(maxinp,0,1) 
effinp$value 
#------------------------------------------------------------------ 
#------------ Common efficiency ---------------------------- 
effcomm=effout$value*effinp$value 
effcomm 

 


