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Abstract The idea of difference sequence spaces were defined by Kizmaz [6] and generalized by Et and Colak [5].

Later Esi et al. [4] introduced the notion of the new difference operator A, for fixed n,meN. In this article we

introduce new type generalized difference sequence space m(M AL, p) using by the Orlicz function. We give

various properties and inclusion relations on this new type difference sequence space.
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1. Introduction

Throughout the article w, 1., and 1P denote the spaces
all, bounded and p absolutely summable sequences,
respectively. The zero sequence is denoted by
®=(0,0,0,..) . The sequence space m(¢p) was
introduced by Sargent [11], who studied some of its

properties and obtained its relationship with the space 1P .
Later on it was investigated from sequence space point of
view by Rath [9], Rath and Tripathy [10], Tripathy and
Sen [15], Tripathy and Mahanta [14], Esi [2] and others.

An Orlicz function is a function M: [0,00)— [0,%0) ,
which is continuous, non-decreasing and convex with
M(0)=0, M(x) >0 for x>0 and M(X) > o asx—oo.

An Orlicz function is said to satisfy A,-condition for all
values of u, if there exists a constant K > 0, such that
M(2u) < KM(u),u > 0.

Remark. An Orlicz function satisfies the inequality
M (Ax)<AM (x) forall 2 with0<A<1.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz
function to construct the sequence space

Iy ={(xk): %M[m]<oo, forsomep>o}.

P

The space Iy, with the norm

||x||=inf{p>0: Zk:M [%Jsl}

becomes a Banach space which is called an Orlicz
sequence space. The space |, is closely related to the

space |p which is an Orlicz sequence space with

M(x)=xP,1< p <.

In the later stage different Orlicz sequence spaces were
introduced and studied by Tripathy and Mahanta [14] , Esi
[1], Esi and Et [3], Parashar and Choudhary [8], and many
others.

Kizmaz [6] defined the difference sequence spaces
£ (A), c(A) and c(A) as follows:

Z(A) ={(x¢) : (Axc) € Z},

forZ= ¢, cand co, where Ax = (Ax )= (X — X1 ) for
allk e N.
The above spaces are Banach spaces, normed by

[l =Pal+suplax|

Later, the difference sequence spaces were generalized

by Et and Colak [5] as follows: Let ne N be fixed
integer,  then X(A") ={(x):(A"x ) e X}  for

X =l,,cand c,, where A"x, = A" x, —A" Ly, ,; and

n
so A"x, = Z(—l)v(n)ka.
v=0 v
They showed that the above spaces are Banach spaces,
normed by

n
Jos0l, = bl supa”
i=1
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After then, the notion new type of difference sequence
spaces were further generalized Esi and etal. [4] as
follows:

Let m,ne N be fixed integers, then

X (Am) ={(x) : (Amxc) € X}

n n-1 n-1
for X =1,,cand c,, where ApXe =Am X —Am  Xgam

and A?nxk =X, forall ke N. The new type generalized
difference has the following binomial representation:

n n
D C

v=0
They showed that the above spaces are Banach spaces,
normed by

r

n

1G4 1l =% [+sup [l Agx |l
m =1 k

where, r=mn for r=nform=0 and

r=m forn=0.

mn=1 ;

2. Definitions and Background

Throughout the article @ denotes the set of all subsets

of N, the set of natural numbers, those do not contain more
than s elements. Further (pg) will denote a non-

decreasing sequence of positive real numbers such that
N@ng <(n+1)p, for all neN. The class of all the

sequences (gg) satisfying this property is denoted by ®.
The space m(¢) introduced and studied by Sargent [11]
is defined as follows:

m(p)= {(Xk ) ¥l =

Recently Tripathy and Mahanta [13] defined and
studied the following sequence space: Let M be an Orlicz
function, then

m(M,A,¢)={(xk): sup 1Z{M[Axkﬂ<w, forsomep>0}.

s2loeps Ps keo P

sup iZ|xk|<oo}

s2l,oeps ¥s keo

The purpose of this paper is to introduce and study a
class of new type generalized difference sequences related

to the space IP (A) using by Orlicz function.

In this article we introduce the following sequence
space: Let M be an Orlicz function and p=(py) be

bounded sequence of strictly positive real numbers and
m,n >0 be fixed integers, then

0 VTP
1 Amxk‘
(%): sup —>|M|—— <o, forsome p>0}.
k
s>l,oeps Ps keo P

Taking p, =1 for all k and m=n=1 i.e., considering
only first difference we have the following difference
sequence space which were defined and studied by
Tripathy and Mahanta [13]

m(M,Aﬂq,q;, p):

‘AXK‘
P

m(M,A,gD):{(Xk)Z sup iZM{

s>loepg Ps keo

]<oo, for some p > 0}

Taking p, =1 for all k, M(x)=x and m=n=1 i.e,
considering only first difference we have the following
difference sequence space which were defined and studied
by Tripathy [12]

m(A,w)z{(xk): sup S Z|Axk|<oo}.

s>l,oeps Ps keo

Taking p, =1 for all k, M(x)=x and n=1, we have the

following difference sequence space which were defined
and studied by Esi [2]

m(Am,go):{(xk): sup iz ‘Amxk‘<oo}

s>loeps s keo

The space 1P (A) for 0< p <1 is defined by Rath [9]
as follows:

Let x = (X, ) be asequence, then S (X ) denotes the set

of all permutations of the elements of (x ) i.e.,S(X)=
{(xﬂ(k)): 7 ( k) is a permutation on N}. A sequence

space E is said to be symmetric if S (X ) c E for all x € E.
A sequence space E is said to be monotone, if it
contains the canonical pre-images of its step spaces.
The following inequality will be used throughout the

paper
P+ i [P = i P+ ¥

where  x, and y, are complex numbers,

C =max(1,2H‘1) and H =supy py <.

3. Main Results

In this section we prove some results involving the
sequence space m(M AN, p).

Theorem 1. Let p=(py) be bounded sequence of
strictly  positive real numbers.Then the space
m(M AN, p). is a linear space over the complex field
C.

Proof: Let (x) , (¥) € m(M,A%,w, p). and
a, B € C. Then there exists positive numbers p; and p,
such that

Pk
n
Amxk‘

sup iz M

s>Loeps Ps keo A1
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and
Pk
n

1 ‘Am yk‘
sup — > |M|—— <o
s>loeps Ps keo P2

Since M is non-

Let p3= max(2|a|p1,2|,3|p2) .
decreasing and convex

Pk

5| Am (@ + BYx)
keo Ps3

p
A (e ‘

~—

Am (By, ‘
Sz M . m( k)
keo P3 P3
Pk

AR (%
<cY M (%) +CY M
keo P keo P2

AR (%)

Pk
AN (e + Yy
sup 1 z ‘ m( k k)‘

s>loeps s keo P3

r 7Pk

A (X ‘
<C Sup i z M M
s>loeps Ps keo A

Pk

25 (%)
+ sup iz M m (%)
s>Loeps s keo P2

<0

Hence a (X )+ B(Yk) e m(M,Am,w, p).
Theorem 2. Let p=(py) be bounded sequence of
strictly positive real numbers and H = max(l,supk pk) .

Then m(M,A%,fp, p). is a linear topological space

paranormed by

+

r Pi M
g(x) =[Z A ]

i=1
on ‘An Xk‘ Pk
inf pAZ sup iz m|
s>l,oeps Ps keo P

where r=mn for m>1,n>1; r=n for m=0 and r=m
for n=0.

Proof: Clearly g(x)=g(-x). Next (x)=© implies
AfX =0 and such as M (0)=0, therefore g(®)=0. It
can be easily shown that g(x)=0= (x)=©.

¥,

<lLnm=123,..

Next, let p, >0 and p, >0 be such that

A Pk
1 mxk‘
sup — > |M|I—— <1
s>l,o0epg Ps keo PL
and
Pk
Ay, ‘
1 m Yk
sup — > |M|—— <o
s>1,0epq Ds veo P2

Let p= p + py. Then we have

Pk
AN (% +Yy
sup —1 E M —‘ m(k k)‘

s>loeps s keo P

H ‘A” X ‘

m”k

< [L] sup i E M| —
At P2 s>l,0epg Ds keo P1

Pk
H Al
1 myk‘
+(Lj sup — > |M|——
PLTP2 ) s2loepg Ps keo P2
<1
Since the p's are non-negative, we have
: Y
g<x+y>-[zA;<xi+yi) ] +
i=1
Pk %4
Am (%
inf pp%: sup lZ[M[m(ka)H <Lnm=123,..
s>loeps Ps keo P
‘ mYR (o oy
<[ZA%(X.) ] +[2Aa<m ]
i=1 i=1
[ ()] || "
n A (X
+inf plpmz sup lz{M[ X H <1L,nm=123,..
s>Loeps Ps keo PL

s>l,oepg Ps keo P2

o)
+inf pzp%:[ sup 1Z{M[mykﬂ } <1nm=123..

=g(x+y)
Next, for 4 € C, without loss of generality, let 2 =0,
then

+

: Y
g(ﬂx)-[zAPﬂWi ) J

i=1

oy Lo (e[
infip 7H: sup —> |M|‘F—F
s>l,oeps Ps keo P

<1,nm=123,..

inf (Ar)p%:{ sup 1Z{M[Am(jxﬁﬂ } <Lnm=123,..

s2loeps s keo
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P

]

= g(Ax) = max(1, l)[i

where r =

Am (%)

Pi J%"

max (1, | 4])inf rp%:[ sup 12‘[M[

s2loeps Ps keo

Y
An”‘(lxk)ﬂpk} <Lnm=123,..
=max(1|])g(x)

So, the continuity of the scalar multiplication follows
from the above inequality.

Theorem 3. m(M,A”m,go, p). c m(M,A%,\P, p) if

and only if sups>lﬁ <o,
Ly

Proof: Let supsﬂé)]—s«n and (Xk)em(M,Anm,go, p).
S

Then
Pk
Anmxk‘
sup JE— <o,
s>l,oepg Ds keo P
for some p>0.
So,
Pk
n
1 ‘Amxk‘
sup — > M| ——
s>l,oepq ¥ keo P
Pk
Al x ‘
1 m”2k
< {suppl &} sup — > |M|——
¥s s>loeps s keo P
< o,
Therefore (x ) e m(M,Am,‘I’, p)

Conversely , let m(M,Aﬂq,w, p). c m(M,A%,‘I’, p).

Suppose that supsﬂz—szoo .Then there exists a

S

sequence of natural such  that
. Ps;
|Imi_>oo\Pi:oo. Let (x¢)e m(M,A”m,go, p). Then

Si

numbers  (s;)

there exists p >0 such that

Pk

1
sup — > |M|——
s>l,0epg Ds veo P
Now we have
Pk

sup iz M

s>1,oepqg ¥s keo P

()
> dsupjs; —-t  sup —z M| t— = o0,
\P ixLoeps Psi keo P

Therefore (X ) ¢ m(M,A%,\P, p). As such we arrive

at a contradiction. Hence supszlfs—S <o,
S
The following result is a consequence of Theorem 3.
Corollary 4: Let M be an Orlicz function. Then

m(M,A%,gp,p) = m(M,Aﬂq,‘P,p) if and only if

Ps

¥
Sups>1\P <o and supgsg —> < oo forall s=1,2,3,..

s Ps
Theorem 5: Let p=(px) be bounded sequence of

strictly positive real numbers and let M and M, be Orlicz
functions satisfying A,-condition. Then

m(M, AR ¢, p) < m(MoMy, A%, p)

Proof: Let (x ) e m(Ml,ARMp, p). Then we have

n
Amxk‘

sup iz M

s>l,0epg Ps keo Y

< oo,

forsome p>0.
Let 0<e<1 and choose & with 0< ¢ <1 such that

n
Amxk‘

M(t)<e for 0<t<s. Let y, = My for all

m and n and for any o € P, let
Z[M (] =XM ()] + XM ()]

keo
where the first summation is over y, <¢ and the second

is over y, >¢ . For the first summation above, we can
write

XM (] <M Z[0]™ <l ZloI™ )
(by using Remark)

For the second summation, we will make following
procedure. For y, > &, we have

Yk
<1+
Yi o

Since M is non-decreasing and convex, it follows that

Yk Yk

<M1+ |<=M(2 + M 2—

M () ( 5 J @ [ 5 J

Since M satisfies A, condition, we can write

K Ye | K Yk Yk

M <—MQ2)| = [+—M KM (2
(%) 2 ”[5} 2 ()[5j ()( j

Hence

Z[M (yk)}Pk <max( [ M(Z)} J;[(yk)]Pk )]

2
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By (1) and (2), we have (x, ) e m(MoMl,Aﬂ],gp, p).

Taking M;(x)=x in Theorem 5, we have the

following result.
Corollary 6: Let p=(p,) be bounded sequence of

strictly positive real numbers and let M be an Orlicz
function satisfying A,-condition. Then

m(Af.0.p) < m(M.A% 0. p)

From Theorem 3 and Corollary 6, we have
Corollary 7: Let p=(py) be bounded sequence of

strictly positive real numbers and let M be an Orlicz
function satisfying A,-condition. Then

m(Aﬂ],(D, p)gm(M,A“m,‘P, p)

if and only if sups>1& <o,
Ly

Corollary 8: The space m(M,A”m,go, p) is not solid

and symmetric in general.
Proof: To show this space is not solid and symmetric in
general, consider the following examples, respectively.
Example 1. Let m=n=1, ¢, =1, p, =1 and x, =1 for

allke N . Consider 2 :(ﬂk):((—l)k) forallke N and

(x)e

(ﬂ,kxk)e m(M AL, p). Hence the space is not solid in

M(x)=x.  Then m(M AL, p) but

general.

Example 2. Let m=n=1, ¢, =k, py =1 and x, =1
for all ke N and M(x)=x. Then the sequence (x ) define
X, =k for all ke N is in m(M,Aﬂwgo, p). Consider the
sequence (Y ), the rearrangement of x =(x, ) define as
follows

(Yk):(X11XZYX4VXSvngX51X16!X61X27!X71X36!X8vX49vX101X64vX111'")

Then (yy) ¢ m(M,A%,(p, p). Hence the space is not
symmetric in general.
Finally, in this section, we consider that p =(py ) and

q :(qk) are any bounded sequences of strictly positive

real numbers. We are able to prove below results only
under additional conditions.

Corollary 9: a) If 0 <inf, p, < p, <1 for all k, then

m(M,A”m,co, p)gm(M,A?nwo)

b) If 1< py <supy px =H <o forall k, then

m(M,Anm,(D)Qm(M:Anm:% p)

c) Let 0< py <q for all k and [q—kj be bounded,
Pk

then
m(M.AR.0.q) < m(M,A%.0.p)

Proof: Using the same technique as in Theorem 4 in [1],
it is easy to prove the Corollary 9.
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