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Abstract  The space of nonempty compact sets of  is well-known to be a nonlinear space. This fact essentially 

complicates the research of set-valued differential and integral equations. In this article we consider set-valued 

Volterra integral equations and prove the existence and uniqueness theorem. 
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1. Introduction 

The majority of the theories describing the world we 

live in, are based on differential and integral equations. 

Such equations appear not only in the physical sciences, 

but in biology, medicine, chemistry, sociology, and all 

scientific disciplines that attempt to understand the world 

surrounding us. Recently the set-valued differential or 

integral equations have attracted the increasing interest of 

scientists. The development of the theory of set-valued 

differential equations (SDEs) begun from works of F.S. de 

Blasi and F. Iervolino [1]. After that the properties of 

solutions of SDEs [2-14], the set-valued integro-

differential equations (SIDEs) [15], the impulse set-valued 

differential equations [9,11,16], set-valued control systems 

[12,17,18,19], the set-valued integral equations (SIEs) 

[20,21] and asymptotic methods [9,11,12,19] were 

considered. On the other hand, SDEs and SIEs are useful 

in other areas of mathematics. For example, SDEs and 

SIEs are used as an auxiliary tool to prove the existence 

results for differential and integral inclusions [9,13,14]. 

Also, one can employ SDEs and SIEs in the investigation 

of fuzzy differential and integral equations 

[5,7,8,11,23,24,25]. Moreover, SDEs and SIEs are a 

natural generalization of usual ordinary differential and 

integral equations in finite (or infinite) dimensional 

Banach spaces. Therefore, in this article we consider set-

valued Volterra integral equations and prove the existence 

and uniqueness theorem.  

2. Main Result 

Let )R(conv n  be the family of all nonempty convex 

compact subsets of  with the Hausdorff metric 

 
0

( , ) min{ ( ), ( )}r r
r

h A B B S A A S B


    

where ( )rS A  be a r -neighborhood of the set A . 

Lemma 2.1 [26]. The following properties hold: 

1. ( ( ), )nconv R h  is a complete metric space, 

2. ( , ) ( , )h A C B C h A B   , 

3. ( , ) | | ( , )h A B h A B    for all , , ( )nA B C conv R  

and R  . 

Definition 2.1 [27]. Let , ( )nX Y conv R . A set 

( )nZ conv R  such that X Y Z   is called a Hukuhara 

difference of the sets X  and Y  and is denoted by 
H

X Y . 

Consider the set-valued Volterra integral equation 

 

0

( ) ( , , ( ))

t

X t F t s X s ds A   (2.1) 

where 1,t s R , 0 s t  , ( )nX conv R , ( , , ) :F     

1 1 ( ) ( )n nR R conv R conv R     is a set-valued mapping, 

( )nA conv R . The integral is understood in the sense of 

[27]. 

Definition 2.2. A set-valued mapping 

( ) :[0, ] ( )nX T conv R   is called a solution of integral 

equation (2.1) if it is continuous and satisfies integral 

equation (2.1) on interval [0, T]. 

Remark 2.1. There exist , ( )nA B conv R  such that 

( ) ( )diam A diam B  but there exists no such 

( )nC conv R  that A C B  . For example, 

2{ : 1}A a R a   , 2{ :| | 2, 1,2}iB b R b i    . In this 

case there exists such 2( )C conv R  that A C B  , but 

does not exist such 2( )C conv R  that A C B  . 
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Let ( ), ( 2)nCC R n   be a space of all nonempty 

strictly convex closed sets of nR  and all element of nR  

[28]. 

Remark 2.2. If , ( )nA B CC R  and A C B   then 

( )nC CC R  [28].  

Definition 2.3. It is said that the set ( )nB CC R  can 

be embedded in the set ( )nC CC R  if there exists 

( , ) nB C R   such that ( , )B B C C  . 

Theorem 2.1. Let in the domain 
1 1{( , , ) ( )}nQ t s X R R CC R      the following 

conditions hold: 

i) for any fixed ( , )s X  the set-valued mapping 

( , , )F s X  is continuous; 

ii) for any fixed ( , )t X  the set-valued mapping 

( , , )F t X  is continuous; 

iii) there exists a positive constant L  such that 

 ( ( , , '), ( , , ")) ( ', ")h F t s X F t s X Lh X X  

for all ( , , '), ( , , ")t s X t s X Q ; 

iv) there exists 0K   such that  

 ( ( , , ),{0}) (1 ( ,{0})h F t s X K h X   

for all ( , , )t s X Q ; 

v) ( )nA CC R  and int A  ; 

vi) if the set ( )nB CC R  can be embedded in the set 

( )nC CC R , then the set ( , , )F t s B  can be embedded in 

the set  for all 1 1( , )t s R R   ; 

vii) ( , , ) : ( )nF Q CC R    . 

Then equation (2.1) has a unique solution on the 

interval [0, ]d . 

Proof. According to Definition 2.1. we associate with 

set integral equation (2.1) the following set integral 

equation  

 

0

( ) ( , , ( ))

t
H

X t A F t s X s ds   (2.2) 

Let us prove the existence of a solution of equation (2.2) 

on interval [0, ]d . 

a) As ( , , ) ( )nF t s X CC R  for all ( , , )t s X Q , then 

0

( , , ) ( )

t
nF t s X ds CC R  for all ( , , )t s X Q  [28]. 

Therefore, as ( )nA CC R  and int A  , then there 

exists 0d   such that the Hukuhara difference 

0

( , , )

t
H

A F t s A ds  exists for all [0, ]t d  [28]. 

b) Let us build the successive approximations of the 

solution 

 

0

1

0

( ) [0, ],

( ) ( , , ( )) [0, ].

t
k k

X t A for t d

H
X t A F t s X s ds for t d

 

 
 (2.3) 

By a), 1( )X t  exists and 1( ) ( )nX t CC R  for all 

[0, ]t d . Also by conditions i) ,ii) and iii) of the theorem 

1( )X t is continuous on [0, ]d  and the set 1( )X t  can be 

embedded in the set A  for all [0, ]t d , i.e. there exists 

1( ) :[0, ] nd R    such that 1
1( ) ( )X t t A  , where 

1

0

( ) ( , , )

t

t F t s A ds    for [0, ]t d . 

By condition vi), the set 1( , , ( ))F t s X s  can be 

embedded in the set ( , , )F t s A  for all [0, ]t d  and s t . 

Then the set 1

0

( , , ( ))

t

F t s X s ds  can be embedded in the set 

0

( , , )

t

F t s A ds  for all [0, ]t d , i.e. there exists 

1( ) :[0, ] nd R    such that 

 1
1

0 0

( , , ( )) ( ) ( , , )

t t

F t s X s ds t F t s A ds    

Therefore, 2 1

0

( ) ( , , ( ))

t
H

X t A F t s X s ds   exists and 

2( ) ( )nX t CC R  for all [0, ]t d . Also by conditions i), 

ii) and iii) of the theorem 2( )X t  is continuous on [0, ]d  

and the set 2( )X t  can be embedded in the set A  for all 

[0, ]t d , i.e. there exists 2( ) :[0, ] nd R    such that 

2
2( ) ( )X t t A  , where 1

2

0

( ) ( , , ( ))

t

t F t s X s ds    for 

[0, ]t d . 

By condition vi), the set 2( , , ( ))F t s X s  can be 

embedded in the set ( , , )F t s A  for all [0, ]t d  and s t . 

Then the set 2

0

( , , ( ))

t

F t s X s ds  can be embedded in the 

set 

0

( , , )

t

F t s A ds  for all [0, ]t d , i.e. there exists 

2( ) :[0, ] nd R    such that 

 2
2

0 0

( , , ( )) ( ) ( , , )

t t

F t s X s ds t F t s A ds    

and so on. 
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Similarly, 1

0

( ) ( , , ( ))

t
k kH

X t A F t s X s ds   exists and 

( ) ( )k nX t CC R  for all k N  and [0, ]t d . Also by 

conditions i), ii) and iii) of the theorem ( )kX t  is 

continuous on [0, ]d  and the set ( )kX t  can be embedded 

in the set A  for all [0, ]t d  for all k N . 

Besides 

 

1 0

0

0

0

0

( ( ), ( )) ( , , ) ,

( , , ) ,{0}

( ( , , ),{0})

(1 ( ,{0}))

(1 ( ,{0}))

t

t

t

t

H
h X t X t h A F t s A ds A

h F t s A ds

h F t s A ds

K h A ds

K h A t

 
 
 
 

 
 
 
 



 

 









 

2 1

1 0

0 0

1 0

0 0

1 0

0

1 0

0 0

( ( ), ( ))

( , , ( )) , ( , , ( ))

( , , ( )) , ( , , ( ))

( ( , , ( )), ( , , ( )))

( ( ), ( )) (1 ( ,{0}))

(1 ( ,{0}))

t t

t t

t

t t

h X t X t

H H
h A F t s X s ds A F t s X s ds

h F t s X s ds F t s X s ds

h F t s X s F t s X s ds

Lh X s X s ds LK h A s ds

t
LK h A

 
 
 
 

 
 
 
 



  

 

 

 



 

2

2!

 

 

3 2 2 1

0

2
2

0

3
2

( ( ), ( )) ( ( ), ( ))

(1 ( ,{0}))
2!

(1 ( ,{0}))
3!

t

t

h X t X t Lh X s X s ds

s
L K h A ds

t
L K h A



 

 



  

and so on. 

Therefore, 

 

1 1

0

0

1

( ( ), ( )) ( ( ), ( ))

(1 ( ,{0}))
!

(1 ( ,{0}))
( 1)!

t
n n n n

t n
n

n
n

h X t X t Lh X s X s ds

s
L K h A ds

n

t
L K h A

n

 





 

 




  

Then 

1

[0, ]

1 2 1

[0, ] [0, ]

1 0 0

[0, ] [0, ]

1

1

1

max ( ( ), )

max ( ( ), ( )) ... max ( ( ), ( ))

max ( ( ), ( )) max ( ( ), )

(1 ( ,{0})) ... (1 ( ,{0}))
( 1)!

(1 ( ,{0}) ( )

!

(

n

t d

n n

t d t d

t d t d

n
n

in

i

h X t A

h X t X t h X t X t

h X t X t h X t A

d
L K h A K h A d

n

K h A Ld

L i

K







 

 







  

 

    









1 ( ,{0}) Ldh A
e b

L




 

Hence, it follows that the sequence of the set-valued 

mappings 0{ ( )}k
kX t 
  in uniformly bounded: 

 ( ( ),{0}) ( ,{0})kh X t b h A   

for all [0, ]t d . 

Let us show that the sequence of the set-valued 

mappings 0{ ( )}k
kX t 
  is a Cauchy sequence. For any 

,m p N  we have 

 

1 1

0 0

1 1

0

1 1

0

( ( ), ( ))

( , , ( )) , ( , , ( ))

( ( , , ( )), ( , , ( )))

( ( ), ( ))

m p p

t t
m p p

t
m p p

t
m p p

h X t X t

h F t s X s ds F t s X s ds

h F t s X s F t s X s ds

L h X s X s ds



  

  

  

 
 
 
 





 





 

Hence, 

 

1

1

0 0

( ( ), ( )) ... ( ( ), ) ...

! !

p

t pt
m p p p m

p p

p p p p

h X t X t L h X t A dt dt

bL t bL d

p p


 

 

 



 

Therefore, the sequence 0{ ( )}k
kX t 
  is a Cauchy 

sequence. Its limit is a continuous set-valued mapping that 

we will denote by ( )X t . Owing to the theorem conditions 

in (2.3) it is possible to pass to the limit under the sign of 

the integral. We receive that the set-valued mapping ( )X t  

satisfies equation (2.2), i.e. ( )X t  is the solution of (2.1) 

on the interval [0, ]d . 

To prove the uniqueness, suppose that there exist at 

least two different solutions ( )X   and ( )Y   of (2.1) on 

[0, ]d , then 
[0, ]

max ( ( ), ( )) 0
t d

h X t Y t


  . 

As 

t

0

ds))s(X,s,t(F
H

A)t(X  and 

t

0

ds))s(Y,s,t(F
H

A)t(Y  

then 
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0 0

0

0

( ( ), ( )) ( , , ( )) , ( , , ( ))

( ( , , ( )), ( , , ( )))

( ( ), ( ))

t t

t

t

h X t Y t h F t s X s ds F t s Y s ds

h F t s X s F t s Y s ds

L h X s Y s ds L t L d 

 
 
 
 



  

 





 

Similarly, 

 
2 2 2 2

0

( ( ), ( )) ,...,
2! 2!

t
L t L d

h X t Y t L L s ds
 

    

 ( ( ), ( ))
!

k kL d
h X t Y t

k


  

Then 
[0, ]

max ( ( ), ( ))
!

k k

t d

L d
h X t Y t

k





  . Therefore, 

1
!

k kL d

k
  for any k N  that contradicts lim 0

!

k k

k

L d

k
 . 

This concludes the proof. 

Finally we consider example for case 2( )CC R . 

Example 3.1. Consider the following set-valued 

integral equation 

 1

0

1
( ) ( )

0

t

X t X s ds S
 

   
 

  (2.4) 

where 1 2( ) : ( )X R CC R  . It is obvious that  

 ( )
0

t

te

e
X t S





 
   

 

 

is the solution of equation (2.4) (see Figure 2.1) 

 

Figure 2.1. The graph of a solution of system (2.4) 

3. Conclusion 

Also it is possible to prove the similar results if instead 

of ( )nCC R  we consider a space of all nonempty M -

strongly convex closed sets of nR  and all elements of nR  

[29], i.e. ( )nMCC R . 

Example 3.1. Consider the example 2.1 if 
2

1 2{ : | | | | 1} ( )nA x R x x MCC R     . It is obvious 

 2
1 2( ) { :| | | | tX t x R x x e     

is the solution (see Figure 3.1). 

 

Figure 3.1. The graph of a solution of example 3.1 
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