Generalised Common Fixed Point Theorems of ACompatible and S-Compatible Mappings

Shahidur Rahman, Yumnam Rohen ${ }^{*}$, M. Popeshwar Singh
National Institute of Technology Manipur, Imphal, India
*Corresponding author: ymnehor2008@yahoo.com

Received February 26, 2013; Revised March 12, 2013; Accepted April 15, 2013

Abstract

In this paper we prove a common fixed point theorem of four self mappings satisfying a generalized inequality using the concept of A-compatible and S-compatible mappings. Our result generalizes many earlier related results in the literature.

Keywords: common fixed point, complete metric space, compatible mappings, compatible mappings of type (A), Acompatible mappings, S-compatible mappings

1. Introduction

The first important result in the theory of fixed point of compatible mappings was obtained by Gerald Jungck in 1986 [2] as a generalization of commuting mappings. In 1993 Jungck, Murthy and Cho [3] introduced the concept of compatible mappings of type (A) by generalizing the definition of weakly uniformly contraction maps. Pathak and Khan [6] introduced the concept of A-compatible and S-compatible by splitting the definition of compatible mappings of type (A). Fixed point results of compatible mappings are found in [1-8].

Sharma and Sahu [8] proved the following theorem.
THEOREM 1.1 Let A, S and T be three continuous mappings of a complete metric space (X, d) into itself satisfying the following conditions:
(i) A commutes with S and T respectively
(ii) $S(X) \subseteq A(X)$ and $T(X) \subseteq A(X)$
(iii) $[d(S x, \quad T x)]^{2} \leq a_{1} d(A x, \quad S x) d(A y, \quad T y)+a_{2} d(A y$, $S x) d(A x, T y)+a_{3} d(A x, S x) d(A x, T y)+a_{4} d(A y, T y) d(A y$, $S x)+a_{5} d^{2}(A x, A y)$

For all $x, y \in X$, where $a_{i} \geq 0, i=1,2,3,4,5$ and $a_{1}+a_{4}+$ $a_{5}<1,2 a_{1}+3 a_{3}+2 a_{5}<2$.

Then A, S and T have a unique common fixed point in X.
Murthy [6] pointed out that the constraints taken by Sharma and Sahu in condition (iii) of theorem 1.1 is not true and suggested the corrected replacement as max $\left\{a_{1}+2 a_{3}+a_{5}, a_{1}+2 a_{4}+a_{5}, a_{2}+a_{5}\right\}<1$ and proved a new fixed point theorem.

The aim of this paper is to prove a common fixed point theorem of S-compatible mappings in metric space by considering four self mappings. Further we give another common fixed point theorem of A-compatible mappings.

2. Preliminaries

Following are definitions of types of compatible mappings.

Definition 2.1 [2]: Let A and S be mappings from a complete metric space X into itself. The mappings A and S are said to be compatible if $\lim _{n \rightarrow \infty} d\left(A S x_{n}, S A x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that $\lim _{n \rightarrow \infty} A x_{n}=$ $\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$.

Definition 2.2 [3]: Let A and S be mappings from a complete metric space X into itself. The mappings A and S are said to be compatible of type (A) if $\lim _{n \rightarrow \infty} d\left(A S x_{n}, S S x_{n}\right)$ $=0$ and $\lim _{n \rightarrow \infty} d\left(S A x_{n}, A A x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that for $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$.

Definition 2.3 [5]: Let A and S be mappings from a complete metric space X into itself. The mappings A and S are said to be A-compatible if $\lim _{n \rightarrow \infty} d\left(A S x_{n}, S S x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that for $\lim _{n \rightarrow \infty} A x_{n}=$ $\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$.

Definition 2.4 [5]: Let A and S be mappings from a complete metric space X into itself. The mappings A and S are said to be S-compatible if $\lim _{n \rightarrow \infty} d\left(S A x_{n}, A A x_{n}\right)=0$ whenever $\left\{x_{n}\right\}$ is a sequence in X such that for $\lim _{n \rightarrow \infty} A x_{n}=$ $\lim _{n \rightarrow \infty} S x_{n}=t$ for some $t \in X$.
Proposition 2.5 [6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is A-compatible on X and $S t=A t$ for $t \in X$, then $A S t=S S t$.
Proposition 2.6 [6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is S-compatible on X and $S t=A t$ for $t \in X$, then $S A t=A A t$.

Proposition 2.7 [6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is

A-compatible on X and $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$ for $t \in X$, then $S S x_{n} \rightarrow A t$ if A is continuous at t.

Proposition 2.8 [6]: Let A and S be mappings from a complete metric space (X, d) into itself. If a pair (A, S) is S-compatible on X and $\lim _{n \rightarrow \infty} A x_{n}=\lim _{n \rightarrow \infty} S x_{n}=t$ for $t \in X$, then $A A x_{n} \rightarrow S t$ if S is continuous at t.

Now we prove the following theorem.
LEMMA 2.9 Let A, B, S and T be mapping from a metric space (X, d) into itself satisfying the following conditions:
(1) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$
(2) $[d(A x, B x)]^{2} \leq a_{1} d(A x, S x) d(B y, T y)+a_{2} d(B y, S x) d(A x$, $T y)+a_{3} d(A x, S x) d(A x, T y)+a_{4} d(B y, T y) d(B y, S x)+a_{5} d^{2}(S x$, Ty)
where $a_{1}+a_{2}+2 a_{3}+a_{4}+a_{5}<1$ and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \geq 0$
(3) Let $x_{0} \in X$ then by (1) there exists $x_{1} \in X$ such that $T x_{1}=A x_{0}$ and for x_{1} there exists $x_{2} \in X$ such that $S x_{2}=B x_{1}$ and so on. Continuing this process we can define a sequence $\left\{y_{n}\right\}$ in X such that
$y_{2 n+1}=T x_{2 n+1}=A x_{2 n}$ and $y_{2 n}=S x_{2 n}=B x_{2 n-1}$ then the sequence $\left\{y_{n}\right\}$ is Cauchy sequence in X.
Proof. By condition (2) and (3), we have

$$
\begin{aligned}
& {\left[d\left(y_{2 n+1}, y_{2 n}\right)\right]^{2}=} {\left[d\left(A x_{2 n}, B x_{2 n-1}\right)\right]^{2} } \\
& \leq a_{1} d\left(A x_{2 n}, S x_{2 n}\right) d\left(B x_{2 n-1}, T x_{2 n-1}\right) \\
&+a_{2} d\left(B x_{2 n-1}, S x_{2 n}\right) d\left(A x_{2 n}, T x_{2 n-1}\right) \\
&+a_{3} d\left(A x_{2 n}, S x_{2 n}\right) d\left(A x_{2 n}, T x_{2 n-1}\right) \\
&+a_{4} d\left(B x_{2 n-1}, T x_{2 n-1}\right) d\left(B x_{2 n-1}, S x_{2 n}\right) \\
&+a_{5} d^{2}\left(S x_{2 n}, T x_{2 n-1}\right) \\
&= a_{1} d\left(y_{2 n+1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n-1}\right) \\
&+a_{2} d\left(y_{2 n}, y_{2 n}\right) d\left(y_{2 n+1}, y_{2 n-1}\right) \\
&+a_{3} d\left(y_{2 n+1}, y_{2 n}\right) d\left(y_{2 n+1}, y_{2 n-1}\right) \\
&+a_{4} d\left(y_{2 n}, y_{2 n-1}\right) d\left(y_{2 n}, y_{2 n}\right) \\
&+a_{5} d^{2}\left(y_{2 n}, y_{2 n-1}\right) \\
& {\left[d\left(y_{2 n+1}, y_{2 n}\right)\right]^{2} \leq } a_{1} d\left(y_{2 n+1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n-1}\right) \\
&+a_{3} d^{2}\left(y_{2 n+1}, y_{2 n}\right) \\
&+a_{3} d\left(y_{2 n+1}, y_{2 n}\right) d\left(y_{2 n}, y_{2 n-1}\right) \\
&+a_{5} d^{2}\left(y_{2 n}, y_{2 n-1}\right) \\
&\left(1-a_{3}\right)\left\{\frac{d\left(y_{2 n+1}, y_{2 n}\right)}{d\left(y_{2 n}, y_{2 n-1}\right)}\right\} \leq\left(a_{1}+a_{3}\right)\left\{\frac{d\left(y_{2 n+1}, y_{2 n}\right)}{d\left(y_{2 n}, y_{2 n-1}\right)}\right\}+a_{5} \\
& \Rightarrow \lambda^{2}-\lambda B-C \leq 0
\end{aligned}
$$

Where $\lambda=\frac{d\left(y_{2 n+1}, y_{2 n}\right)}{d\left(y_{2 n}, y_{2 n-1}\right)}$
$B=\frac{a_{1}+a_{3}}{1-a_{3}}$
$C=\frac{a_{5}}{1-a_{3}}$

Since $a_{1}+a_{2}+2 a_{3}+a_{4}+a_{5}<1$ and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \geq 0$.
In order to satisfy the inequation, one value of λ will be positive and the other will be negative. We also note that the sum and product of the two values of λ is less than 1 and -1 respectively. Neglecting the negative value, we have $\frac{d\left(y_{2 n+1}, y_{2 n}\right)}{d\left(y_{2 n}, y_{2 n-1}\right)}<p$ where $0<\mathrm{p}<1$.

$$
d\left(y_{2 n+1}, y_{2 n}\right)<p d\left(y_{2 n}, y_{2 n-1}\right)
$$

Hence $\left\{y_{n}\right\}$ is Cauchy sequence.

3. Main Results

We prove the following theorem.
THEOREM 3.1: Let A, B, S and T be self maps of a complete metric space (X, d) satisfying the following conditions:
(1) $\mathrm{A}(\mathrm{X}) \subseteq \mathrm{T}(\mathrm{X})$ and $\mathrm{B}(\mathrm{X}) \subseteq \mathrm{S}(\mathrm{X})$
(2) $[\mathrm{d}(\mathrm{Ax}, \mathrm{Bx})] 2 \leq \mathrm{a} 1 \mathrm{~d}(\mathrm{Ax}, \mathrm{Sx}) \mathrm{d}(\mathrm{By}, \mathrm{Ty})+\mathrm{a} 2 \mathrm{~d}(\mathrm{By}$, Sx)d(Ax, Ty) $+\mathrm{a} 3 \mathrm{~d}(A x, S x) d(A x, T y)+a 4 d(B y, T y) d(B y$, Sx) $+\mathrm{a} 5 \mathrm{~d} 2(\mathrm{Sx}, \mathrm{Ty})$
where $\mathrm{a} 1+\mathrm{a} 2+2 \mathrm{a} 3+\mathrm{a} 4+\mathrm{a} 5<1$ and $\mathrm{a} 1, \mathrm{a} 2, \mathrm{a} 3, \mathrm{a} 4, \mathrm{a} 5 \geq 0$
(3) Let $\mathrm{x} 0 \in \mathrm{X}$ then by (1) there exists $x_{1} \in X$ such that $T x_{1}=A x_{0}$ and for x_{1} there exists $x_{2} \in X$ such that $S x_{2}=B x_{1}$ and so on. Continuing this process we can define a sequence $\left\{y_{n}\right\}$ in X such that

$$
y_{2 n+1}=T x_{2 n+1}=A x_{2 n} \text { and } y_{2 n}=S x_{2 n}=B x_{2 n-1}
$$

then the sequence $\left\{y_{n}\right\}$ is Cauchy sequence in X.
(4) One of A, B, S or T is continuous.
(5) $[A, S]$ and $[B, T]$ are S-compatible mappings on X.

Then A, B, S and T have a unique common fixed point in X.

Proof: By lemma 2.9, $\left\{y_{n}\right\}$ is Cauchy sequence. Since X is complete, there exists a point $z \in X$ such that $\lim y_{n}=$ z as $n \rightarrow \infty$. Consequently subsequences $A x_{2 n}, S x_{2 n}, B x_{2 n-1}$ and $T x_{2 n+1}$ converges to z.
Let S be a continuous mapping. Since A and S are Scompatible mappings on X, then by proposition 2.8., we have $A A x_{2 n} \rightarrow S z$ and $S A x_{2 n} \rightarrow S z$ as $n \rightarrow \infty$.

Now by condition (2) of lemma 2.9, we have

$$
\begin{aligned}
d^{2}\left(A A x_{2 n}, B x_{2 n-1}\right) \leq & a_{1} d\left(A A x_{2 n}, S A x_{2 n}\right) d\left(B x_{2 n-1}, T x_{2 n-1}\right) \\
& +a_{2} d\left(B x_{2 n-1}, S A x_{2 n}\right) d\left(A A x_{2 n-1}, T x_{2 n-1}\right) \\
& +a_{3} d\left(A A x_{2 n}, S A x_{2 n}\right) d\left(A A x_{2 n}, T x_{2 n-1}\right) \\
& +a_{4} d\left(B x_{2 n-1}, T x_{2 n-1}\right) d\left(B x_{2 n-1}, S A x_{2 n}\right) \\
& +a_{5} d^{2}\left(S A x_{2 n}, T x_{2 n-1}\right)
\end{aligned}
$$

As $n \rightarrow \infty$, we have

$$
\begin{aligned}
d^{2}(S z, z) \leq & a_{1} d(S z, S \mathrm{z}) d(z, z)+a_{2} d(z, S \mathrm{z}) d(S z, z) \\
& +a_{3} d(S z, S \mathrm{z}) d(S z, z)+a_{4} d(z, z) d(z, S \mathrm{z}) \\
& +a_{5} d^{2}(S z, z)[d(S z, z)]^{2} \\
& \leq\left(a_{2}+a_{5}\right)[d(S z, z)]^{2},
\end{aligned}
$$

which is a contradiction. Hence $S z=z$,
Now

$$
\begin{aligned}
{\left[d\left(A z, B x_{2 n-1}\right)\right]^{2} } & \leq a_{1} d(A z, S z) d\left(B x_{2 n-1}, T x_{2 n-1}\right) \\
& +a_{2} d\left(B x_{2 n-1}, S z\right) d\left(A z, T x_{2 n-1}\right) \\
& +a_{3} d(A z, S z) d\left(A z, T x_{2 n-1}\right) \\
& +a_{4} d\left(B x_{2 n-1}, T x_{2 n-1}\right) d\left(B x_{2 n-1}, S z\right) \\
& +a_{5} d^{2}\left(S z, T x_{2 n-1}\right)
\end{aligned}
$$

Letting $n \rightarrow \infty$, we have $[d(A z, z)]^{2} \leq a_{3}[d(A z, z)]^{2}$. Hence $A z=z$.

Now since $A z=z$, by condition (1), $z \in T(X)$. Also T is self map of X so there exists a point $u \in X$ such that $z=A z$ $=T u$. More over by condition (2), we obtain,

$$
\begin{aligned}
{[d(z, B u)]^{2} } & =[d(A z, B u)]^{2} \\
& \leq a_{1} d(A z, S z) d(B u, T u)+a_{2} d(B u, S z) d(A z, T u) \\
& +a_{3} d(A z, S z) d(A z, T u)+a_{4} d(B u, T u) d(B u, S z) \\
& +a_{5} d^{2}(S z, T u)
\end{aligned}
$$

i.e., $[d(z, B u)]^{2} \leq a_{4}[d(z, B u)]^{2}$.

Hence $B u=z$ i.e., $z=T u=B u$.
By condition (5), we have

$$
d(T B u, B T u)=0
$$

Hence $d(T z, B z)=0$ i.e., $T z=B z$.
Now,

$$
\begin{aligned}
{[d(z, T z)]^{2} } & =[d(A z, B z)]^{2} \\
& \leq a_{1} d(A z, S z) d(B z, T z)+a_{2} d(B z, S z) d(A z, T z) \\
& +a_{3} d(A z, S z) d(A z, T z)+a_{4} d(B z, T z) d(B z, S z) \\
& +a_{5} d^{2}(S z, T z)
\end{aligned}
$$

i.e., $[\mathrm{d}(z, T z)]^{2} \leq a_{2}[d(z, T z)]^{2}$ which is a contradiction. Hence $z=T z$ i.e, $z=T z=B z$.

Therefore z is common fixed point of A, B, S and T. Similarly we can prove that z is a common fixed point of A, B, S and T if any one of A, B or T is continuous.

Finally, in order to prove the uniqueness of z, suppose w be another common fixed point of A, B, S and T Then we have,

$$
\begin{aligned}
{[d(z, w)]^{2} } & =[d(A z, B w)]^{2} \\
& \leq a_{1} d(A z, S z) d(B w, T w)+a_{2} d(B w, S z) d(A z, T w) \\
& +a_{3} d(A z, S z) d(A z, T w)+a_{4} d(B w T w) d(B w S z) \\
& +a_{5} d^{2}(S z, T w)
\end{aligned}
$$

which gives $[d(z, T w)]^{2} \leq a_{2}[d(z, T w)]^{2}$. Hence $z=w$.

This completes the proof.
THEOREM 3.2: Let A, B, S and T be self maps of a complete metric space (X, d) satisfying the following conditions:
(1) $A(X) \subseteq T(X)$ and $B(X) \subseteq S(X)$.
(2) $[d(A x, B x)]^{2} \leq a_{1} d(A x, S x) d(B y, T y)+a_{2} d(B y, S x) d(A x$, $T y)+a_{3} d(A x, S x) d(A x, T y)+a_{4} d(B y, T y) d(B y, S x)+a_{5} d^{2}(S x$, Ty)
where $a_{1}+a_{2}+2 a_{3}+a_{4}+a_{5}<1$ and $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \geq 0$.
(3) Let $x_{0} \in X$ then by (1) there exists $x_{1} \in X$ such that $T x_{1}=A x_{0}$ and for x_{1} there exists $x_{2} \in X$ such that $S x_{2}=B x_{1}$ and so on. Continuing this process we can define a sequence $\left\{y_{n}\right\}$ in X such that

$$
y_{2 n+1}=T x_{2 n+1}=A x_{2 n} \text { and } y_{2 n}=S x_{2 n}=B x_{2 n-1}
$$

then the sequence $\left\{y_{n}\right\}$ is Cauchy sequence in X.
(4) One of A, B, S or T is continuous.
(5) $[A, S]$ and $[B, T]$ are A-compatible mappings on X.

Then A, B, S and T have a unique common fixed point in X .

Proof: Similar to theorem 3.1.

Remark:

(i) By taking $a_{1}=a_{2}=k_{1}$ and $a_{3}=a_{4}=k_{2}$ and $a_{5}=0$ and (A, S) and (B, T) as compatible mappings theorem 3.1 reduces to theorem 1 of Bijendra and Chouhan [1].
(ii) By taking $S=T$ and (A, S) and (A, T) as commuting mappings or compatible mappings of type (A) theorem 3.1 reduce to results of Murthy [6] and Sharma and Sahu [8] under certain conditions.

References

[1] Bijendra Singh and M.S. Chauhan, On common fixed points of four mappings, Bull. Cal. Math. Soc. 88, 1996 451-456.
[2] Jungck G., Compatible maps and common fixed points, Inter .J. Math. and Math. Sci. 9, 1986 771-779.
[3] Jungck G., Murthy P.P. and Cho Y.J., Compatible mappings of type (A) and common fixed points, Math. Japonica 38 1993, 381390.
[4] Koireng M., Leenthoi N. and Rohen Y., Common fixed points of compatible mappings of type (R) General Mathematics Notes, 10(1) May 2012, 58-62.
[5] P. P. Murthy, Remarks on fixed point theorem of Sharma and Sahu, Bull. of Pure and Appl. Sc., 12 E(1-2), 1993 7-10.
[6] H.K. Pathak and M.S. Khan, A comparison of various types of compatible maps and common fixed points, Indian J. pure appl. Math., 28(4): April 1997. 477-485.
[7] H.K. Pathak, M.S. Khan and Reny George, Compatible mappings of type (A-1) and type (A-2) and common fixed points in fuzzy metric spaces, International Math. Forum, 2(11): 2007 515-524.
[8] Sharma B. K. and Sahu N. K., Common fixed point of three continuous mappings, The Math. Student, 59 (1) 1991 77-80.

