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Abstract  In this paper we prove a common fixed point theorem of four self mappings satisfying a generalized 

inequality using the concept of A-compatible and S-compatible mappings. Our result generalizes many earlier 

related results in the literature. 
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1. Introduction 

The first important result in the theory of fixed point of 

compatible mappings was obtained by Gerald Jungck in 

1986 [2] as a generalization of commuting mappings. In 

1993 Jungck, Murthy and Cho [3] introduced the concept 

of compatible mappings of type (A) by generalizing the 

definition of weakly uniformly contraction maps. Pathak 

and Khan [6] introduced the concept of A-compatible and 

S-compatible by splitting the definition of compatible 

mappings of type (A). Fixed point results of compatible 

mappings are found in [1-8]. 

Sharma and Sahu [8] proved the following theorem. 

THEOREM 1.1 Let A, S and T be three continuous 

mappings of a complete metric space (X, d) into itself 

satisfying the following conditions: 

(i)   A commutes with S and T respectively 

(ii)  S (X)  A(X) and T(X)  A(X) 

(iii) [d(Sx, Tx)]
2
 ≤ a1d(Ax, Sx)d(Ay, Ty)+a2d(Ay, 

Sx)d(Ax, Ty)+a3d(Ax, Sx)d(Ax, Ty) +a4d(Ay, Ty)d(Ay, 

Sx)+a5d
2
(Ax, Ay)  

For all x, y  X, where ai ≥ 0, i = 1, 2, 3, 4, 5 and a1+a4+ 

a5< 1, 2a1+3a3+2a5<2. 

Then A, S and T have a unique common fixed point in X. 

Murthy [6] pointed out that the constraints taken by 

Sharma and Sahu in condition (iii) of theorem 1.1 is not 

true and suggested the corrected replacement as max 

{a1+2a3+ a5, a1+2a4+a5, a2+ a5} < 1 and proved a new 

fixed point theorem. 

The aim of this paper is to prove a common fixed point 

theorem of S-compatible mappings in metric space by 

considering four self mappings. Further we give another 

common fixed point theorem of A-compatible mappings. 

2. Preliminaries 

Following are definitions of types of compatible 

mappings. 

Definition 2.1 [2]: Let A and S be mappings from a 

complete metric space X into itself. The mappings A and S 

are said to be compatible if lim
n

 d(ASxn, SAxn) = 0 

whenever {xn} is a sequence in X such that lim
n

Axn = 

lim
n

Sxn = t for some t  X. 

Definition 2.2 [3]: Let A and S be mappings from a 

complete metric space X into itself. The mappings A and S 

are said to be compatible of type (A) if lim
n

 d(ASxn, SSxn) 

= 0 and lim
n

 d(SAxn, AAxn) = 0 whenever {xn} is a 

sequence in X such that for lim
n

Axn = lim
n

Sxn = t for 

some t  X. 

Definition 2.3 [5]: Let A and S be mappings from a 

complete metric space X into itself. The mappings A and S 

are said to be A-compatible if lim
n

 d(ASxn, SSxn) = 0 

whenever {xn} is a sequence in X such that for lim
n

Axn = 

lim
n

Sxn = t for some t  X. 

Definition 2.4 [5]: Let A and S be mappings from a 

complete metric space X into itself. The mappings A and S 

are said to be S-compatible if lim
n

 d(SAxn, AAxn) = 0 

whenever {xn} is a sequence in X such that for lim
n

Axn = 

lim
n

Sxn = t for some t  X. 

Proposition 2.5 [6]: Let A and S be mappings from a 

complete metric space (X, d) into itself. If a pair (A, S) is 

A-compatible on X and St = At for t  X, then ASt = SSt. 

Proposition 2.6 [6]: Let A and S be mappings from a 

complete metric space (X, d) into itself. If a pair (A, S) is 

S-compatible on X and St = At for t  X, then SAt = AAt. 

Proposition 2.7 [6]: Let A and S be mappings from a 

complete metric space (X, d) into itself. If a pair (A, S) is 
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A-compatible on X and lim
n

Axn = lim
n

Sxn = t for t  X, 

then SSxn  At if A is continuous at t. 

Proposition 2.8 [6]: Let A and S be mappings from a 

complete metric space (X, d) into itself. If a pair (A, S) is 

S-compatible on X and lim
n

Axn = lim
n

Sxn = t for t  X, 

then AAxn  St if S is continuous at t. 

Now we prove the following theorem. 

LEMMA 2.9 Let A, B, S and T be mapping from a 

metric space (X, d) into itself satisfying the following 

conditions: 

(1) A(X)  T(X) and B(X)  S(X) 

(2) [d(Ax, Bx)]
2
 ≤ a1d(Ax, Sx)d(By, Ty)+a2d(By, Sx)d(Ax, 

Ty)+a3d(Ax, Sx)d(Ax, Ty)+a4d(By, Ty)d(By, Sx) +a5d
2
(Sx, 

Ty) 

where a1+ a2 +2a3 +a4+ a5< 1 and a1, a2, a3, a4, a5 ≥ 0 

(3) Let x0  X then by (1) there exists x1 X such that 

Tx1 = Ax0 and for x1 there exists x2 X such that Sx2 = Bx1 

and so on. Continuing this process we can define a 

sequence {yn} in X such that 

y2n+1=Tx2n+1=Ax2n and y2n= Sx2n= Bx2n-1 

then the sequence {yn} is Cauchy sequence in X. 

Proof. By condition (2) and (3), we have 
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Since a1+ a2 +2a3 +a4+ a5< 1 and a1, a2, a3, a4, a5 ≥ 0. 

In order to satisfy the inequation, one value of λ will be 

positive and the other will be negative. We also note that 

the sum and product of the two values of λ is less than 1 

and -1 respectively. Neglecting the negative value, we 

have p
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Hence {yn} is Cauchy sequence. 

3. Main Results 

We prove the following theorem. 

THEOREM 3.1: Let A, B, S and T be self maps of a 

complete metric space (X, d) satisfying the following 

conditions: 

(1) A (X) ⊆ T(X) and B(X) ⊆ S(X) 

(2) [d(Ax, Bx)]2 ≤ a1d(Ax, Sx)d(By, Ty)+a2d(By, 

Sx)d(Ax, Ty)+a3d(Ax, Sx)d(Ax, Ty)+a4d(By, Ty)d(By, 

Sx) +a5d2(Sx, Ty) 

where a1+ a2 +2a3 +a4+ a5< 1 and a1, a2, a3, a4, a5 ≥ 0 

(3) Let x0  X then by (1) there exists x1 X such that 

Tx1 = Ax0 and for x1 there exists x2 X such that Sx2 = Bx1 

and so on. Continuing this process we can define a 

sequence {yn} in X such that  

 
2 1 2 1 2 2 2 2 1 and  n n n n n ny Tx Ax y Sx Bx       

then the sequence {yn} is Cauchy sequence in X.  

(4) One of A, B, S or T is continuous. 

(5) [A, S] and [B, T] are S-compatible mappings on X. 

Then A, B, S and T have a unique common fixed point 

in X. 

Proof: By lemma 2.9, {yn} is Cauchy sequence. Since 

X is complete, there exists a point z X such that lim yn = 

z as n → ∞. Consequently subsequences Ax2n, Sx2n, Bx2n-1 

and Tx2n+1 converges to z. 

Let S be a continuous mapping. Since A and S are S-

compatible mappings on X, then by proposition 2.8., we 

have AAx2n → Sz and SAx2n → Sz as n → ∞. 

Now by condition (2) of lemma 2.9, we have  
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which is a contradiction. Hence Sz = z, 

Now  
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Letting n→∞, we have [d(Az, z)]
2
 ≤ a3[d(Az, z)]

2
. Hence 

Az = z. 

Now since Az = z, by condition (1), z  T(X). Also T is 

self map of X so there exists a point u X such that z = Az 

= Tu. More over by condition (2), we obtain, 
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i.e., [d(z, Bu)]
2
 ≤ a4[d(z, Bu)]

2
. 

Hence Bu = z i.e., z = Tu = Bu. 

By condition (5), we have 

  ,   0d TBu BTu  . 

Hence d(Tz, Bz) = 0 i.e., Tz = Bz. 

Now, 
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i.e., [d(z, Tz)]
2
 ≤ a2[d(z, Tz)]

2
 which is a contradiction. 

Hence z = Tz i.e, z = Tz = Bz. 

Therefore z is common fixed point of A, B, S and T. 

Similarly we can prove that z is a common fixed point of 

A, B, S and T if any one of A, B or T is continuous. 

Finally, in order to prove the uniqueness of z, suppose 

w be another common fixed point of A, B, S and T Then 

we have, 
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which gives [d(z, Tw)]
2
 ≤ a2 [d(z, Tw)]

2
. Hence z = w.  

This completes the proof. 

THEOREM 3.2: Let A, B, S and T be self maps of a 

complete metric space (X, d) satisfying the following 

conditions: 

(1) A (X)  T(X) and B(X)  S(X). 

(2) [d(Ax, Bx)]
2
 ≤ a1d(Ax, Sx)d(By, Ty)+a2d(By, Sx)d(Ax, 

Ty)+a3d(Ax, Sx)d(Ax, Ty) +a4d(By, Ty)d(By, Sx) +a5d
2
(Sx, 

Ty) 

where a1+ a2 +2a3 +a4+ a5< 1 and a1, a2, a3, a4, a5 ≥ 0. 

(3) Let x0  X then by (1) there exists x1 X such that 

Tx1 = Ax0 and for x1 there exists x2 X such that Sx2 = Bx1 

and so on. Continuing this process we can define a 

sequence {yn} in X such that  

 
2 1 2 1 2 2 2 2 1andn n n n n ny Tx Ax y Sx Bx       

then the sequence {yn} is Cauchy sequence in X.  

(4) One of A, B, S or T is continuous. 

(5) [A, S] and [B, T] are A-compatible mappings on X. 

Then A, B, S and T have a unique common fixed point 

in X. 

Proof: Similar to theorem 3.1. 

Remark:  

(i) By taking a1= a2 =k1 and a3= a4 =k2 and a5=0 and (A, 

S) and (B, T) as compatible mappings theorem 3.1 reduces 

to theorem 1 of Bijendra and Chouhan [1]. 

(ii) By taking S = T and (A, S) and (A, T) as commuting 

mappings or compatible mappings of type (A) theorem 3.1 

reduce to results of Murthy [6] and Sharma and Sahu [8] 

under certain conditions. 
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