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Abstract  Developing compound probability distributions is very important in the field of probability and statistics 
because there are different datasets from different fields with different features. These features range from high 
skewness, peakedness (kurtosis), bimodality, highly dispersed, and so on. Existing distributions might not easily fit 
well to these emerging data of interest. So, there is a need to develop more robust and flexible distributions that are 
positively skewed, negatively skewed, and bathup shape, to handle some of these features in the emerging data of 
interest. This paper, therefore, proposed a new four-parameter distribution called the Normal-Power{logistic} 
distribution. The proposed distribution was characterized by its density, distribution, survival, hazard, cumulative 
hazard, reversed hazard, and quantile functions. Properties such as the r-th moment, heavy tail property, stochastic 
ordering, mean inactive time were obtained. A useful transformation of the proposed distribution to normal 
distribution was shown to help generate its quantiles. The method of Maximum Likelihood Estimation (MLE) was 
used to estimate the model parameters. A simulation study was carried out to test the consistency of the maximum 
likelihood parameter estimates. The result of the simulation shows that the biases reduce as the sample size increases 
for different parameter values. The importance of the new distribution was proved empirically using a real-life 
dataset of gauge lengths of 10mm. The proposed distribution was compared with five other competing distributions, 
and the results show that the proposed Normal-Power{logistic} distribution (NPLD) performed favourably than the 
other five distributions using the AIC, CAIC, BIC, HQIC criteria. 
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1. Introduction 

In the field of statistics and probability, the power 
function distribution is unimodal, skewed, and peaked 
depending on the shape parameter value [1,2]. In literature, 
many known probability distributions such as exponential, 
Weibull, gamma, and lognormal are used for modeling 
lifetime data and widely applied in a variety of studies 
because of their advantages in different situations [3], 
especially using them as baseline distribution in the  
T-R{Y} family [4,5,6]. The power function despite  
its flexibility as a lifetime distribution that arises in  
several scientific fields has not been considered in this 
regard [7].  

The power function distribution is a special model  
that can be formed or related to the uniform, Weibull, 
Kumaraswamy distributions. The power function 

distribution is considered one of the simplest and handy 
lifetime distributions. It is a special case of the beta 
distribution and one may sight the importance of the 
distribution in statistical tests such as the likelihood ratio 
test. The simplicity and usefulness of the power function 
distribution compelled the researchers to explore its 
further extensions, generalizations, and applications in 
different areas of science [8]. It is the inverse of Pareto 
distribution [9]. Estimation of the power parameters has 
been done by various authors, for instance; [10,11] 
proposed the two-parameter power function distribution as 
a simple alternative to the exponential distribution when it 
comes to modeling failure data related to mortality rate 
and component failures. The Weibull power function 
distribution was suggested by [12]. [13] studied the 
properties of the Odd Lomax-Exponential distribution. [1] 
proposed the modified power function distribution.  

The probability density function (pdf) and cumulative 
distribution function (cdf) of two-parameter power 
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function distribution with scale parameter λ and shape 
parameter k are, respectively, given as 
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The normal distribution is another lifetime distribution 
with its various advantages. Many authors have worked  
on the normal distribution and it has huge applications  
in various fields. Also, many authors have developed  
and studied convoluted distributions with normal 
distribution parameters (µ and σ). These authors include 
but are not limited to Exponentiated-Normal proposed  
and studied by [14], Beta-Normal distribution by [15], 
Gamma-Normal (GN) distribution by [16], Kumaraswamy-
Normal distribution by [17], Weibull-Normal by [18], 
Exponentiated-Generalized-Normal (EGN) distribution by 
[19], Weibull-Normal{log-logistics} distribution by [20], 
Lomax-Cauchy {Uniform} by [21], Rayleigh Cauchy 
distribution by [22] and Weibull-Inverse Rayleigh 
distribution: Classical/ Bayesian approach by [23].  

Many classical distributions have been extensively used 
for modeling real data in many areas. However, in many 
situations; there is a clear need for extended forms of these 
distributions to improve the flexibility and goodness of fit 
of these distributions. For that reason, generated families 
of continuous distributions are developed by introducing 
one or more additional shape parameter(s) to the baseline 
distribution or by combining two or more distributions to 
produced new ones. [24] described such new distributions 
as convoluted distributions.  

In this paper, the aim is to develop a novel univariate 
continuous probability distribution called the normal-
power function {logistic} distribution {NPLD}. It is 
derived from the T-Power function {Y} family proposed 
and studied by [7].  The distribution has four parameters, 
two from the normal distribution and the other two from 
the power function distribution. The scope covers different 
characterizations of the NPLD are to be established such 
as its density, distribution, survival, hazard, cumulative 
hazard, reversed hazard, and quantile function. To achieve 
this aim, different properties of the proposed distribution 
such as the r-th moment, heavy tail property, stochastic 
ordering, mean inactive time are to be obtained. The 
relationship between the proposed distribution and normal 
distribution is to be established. Thus, the proposed 
distribution can be positively skewed, negatively skewed, 
symmetric, and has a bathtub shape. The method of 
Maximum Likelihood Estimation (MLE) is used to 
estimate the model parameters. The importance of the new 
distribution will be proved empirically using a real-life 
dataset of gauge lengths of 10mm and compared with 
other convoluted distributions with normal distribution 
parameters (µ and σ). The proposed distribution will be 
very useful in engineering, medicine, and all filed of life. 
It is expected to perform well when normal distribution 
fails to fit the data of interest. 

 

The rest of the paper contains the following sections. 
The formation of the pdf and cdf of the NPLD is 
performed in Section 2. Some statistical properties of 
NPLD distribution are provided in Section 3. Estimation 
of parameters, simulation study, and application to real 
data are presented in Section 4. The article ends with 
concluding remarks in section 5. 

2. Derivation of Normal - Power{logistic} 
Distribution 

Ekum et al. [7] defined the cdf and pdf of T-Power 
{logistic} family as 
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respectively, where T can follow any probability 
distribution that has the same support with the logistic 
distribution. The quantile function of the logistic 
distribution is used, which is the log of the odd function of 
the power function distribution. 

In this research, let T follow normal distribution with 
parameters µ and σ, i.e. T~N(µ, σ). This proposed 
distribution is called the Normal-Power Function 
Distribution. 

Let T∈(-∞, ∞) be any random variable. Here, T follows 
the normal distribution with cdf and pdf given by 
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respectively. 
By substituting equation (3) into (1) we have 
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is called the error function. 
So, equation (5) is the cdf of the proposed normal-

power function {logistic} distribution (NPLD) and the 
corresponding pdf is derived by substituting (4) into (2) 
and we have 
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Figure 1. PDFs of NPLD for various values of μ, 𝜎𝜎, k and λ 

Equation (6) can be written as 
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Figure 2. CDFs and Cum. Hazard Functions of NPLD for various values of μ, 𝜎𝜎, k and λ 

 
Figure 3. Reversed Hazard Functions of NPLD for various values of μ, 𝜎𝜎, 
k and λ 

The NPLD is a novel four-parameter distribution. 
Parameters λ and σ are scale parameters, k is a shape 
parameter, while µ is a location parameter. The pdf plots 
in Figure 1 show that NPLD can be positively skewed, 
negatively skewed, symmetric (see also the histogram in 
Figure 4), and can have a bath up shape, depending on the 
parameter values. The cdf plots in Figure 2 shows that for 
increasing values of x, the cdfs increase as well, increasing 
from zero and flattened at lambda since lambda is an 
upper bound. Figure 2 shows the cumulative hazard plots, 
which rise from zero slowly and asymptotic to the vertical 
axis at lambda. The reversed hazard decreases with 
increasing values of x and it is asymptotic to both axes. 

The reversed hazard plot is adjusted to display on x values 
less than 2 for clearer curves. 

2.1. Properties of NPLD 
This section considered some major properties of the 

new proposed distribution. 

2.1.1. Survival, Hazard, Cumulative Hazard, and 
Reversed Hazard Distributions 

The survival, hazard, cumulative hazard, and the 
reversed hazard functions are given in equations (7 – 10) 
respectively. 
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2.2. Useful Transformation 

Lemma 1. If X follows the NPLD with parameters µ, σ, k, 

λ then random variable log
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normal distribution with parameters µ and σ. 
Proof. 
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Therefore, the pdf of random variable Y is given by 
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Equation (12) completes the proof. 

2.3. Quantile Function of NPLD 
The quantile function of NPLD is given by  
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where 𝑄𝑄𝑇𝑇(𝑝𝑝)  is the quantile function of the normal 
distribution with parameters µ and σ. Note that 𝑄𝑄𝑇𝑇(𝑝𝑝) is used 
to generate random variate that is normally distributed 
with mean µ and variance σ2. This can be achieved by 
using R codes [T = qnorm(p, mean = µ, sd = σ)], where  
p is vector of probabilities. It can be a sequence of 
numbers between 0 and 1 or uniformly distributed random 
values between 0 and 1. We can have in R as p = runif(n), 
where n is the number of observations to be generated. 

 
Figure 4. Histogram showing different shapes of NPLD for various values of μ, 𝜎𝜎,  k and λ 
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The quantile function of a normal distribution is given by 

 ( ) ( )12 2 1TQ p erf pµ σ −= + −  (14) 

Substitute equation (14) into (13) to have the quantile 
function of NPLD given by 
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The quantile function in (15) can be applied by using 
the quantile function in (13). 

2.3. The r-th Moment 

Consider a random variable ( ),~ , ,NPLD kX λ σ µ . 
The r-th moment of the random variable X is defined as  
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where ( )Xf x  is the pdf of the NPLD defined in equation 
(6). Substituting equation (6) into (16) and using integration 
by parts, we obtained the r-th moment of the NPLD as 
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Thus, equation (17) is the r-th moment of GPLD. 

2.4. The Heavy-tail Property 
Supposing X  is a continuous random variable with a 

probability density function ( )Xf x . Then, by definition, 
( )Xf x  is said to be heavy-tailed if and only if  
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To examine the heavy-tail property of NPLD, substitute 
equation (6) into (18) to obtain  

 

[ ]

( )
1

1 2

2

2

lim sup ( )

2

lim sup .
1exp log

2

tx
X

x

k k k

tx
kx

k k

f x e

k x x

e
x

x

λ λ πσ

µ
σ λ

→∞
−

−

→∞

  −  
  

 =      × − −     −       

 

Using the infinity property  
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Therefore, ( )Xf x  is not a heavy-tailed function. This 
can be seen from the pdf plots in Figure 1. 

2.5. Stochastic Ordering 
The comparative study of the behavior of a continuous 

random variable can be investigated using stochastic 
ordering [25,26]. 
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likelihood ratio order. 
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Hence, hrX Y≤ , mX Y≤ and stX Y≤ .  

3. Mean Inactivity Time 

The mean inactivity time function of a random variable 
X  with a known pdf and cdf is defined as  
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where t  is the time, ( )Tf t  the probability function of the 
NPLD. From the above definition, we obtain the mean 
inactive function of the NPLD as 
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4. Results and Discussion 

In this section, we derived the maximum likelihood 
parameter estimates, carried out simulation studies to test 
the consistency of the parameters, and applied the 
distribution to two real datasets. 

4.1. Maximum Likelihood Estimation 
From the pdf in (6), we derived the likelihood function 

as 
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Each of the parameters of the distribution can be 
estimated by differentiating the ,LogL l=  with respect to 
each parameter, and equating the result to zero.  
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From equation (24), we have 
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From equation (25), we have 
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Parameter k is not in closed form, thus, Newton Rapson 
numerical method is used to estimate the parameter of  
k., developed by R package (maxLik or optim) (R 
Development Core Team 2009) [27]. 

The parameter λ cannot be estimated using maximum 
likelihood because it is an upper bound of the distribution. 
So, λ can be estimated directly from data as  

 ( )ˆ max i xxλ σ= +  

where 𝜎𝜎𝑥𝑥̅  is the standard error of 𝑥̅𝑥 . Max(xi) is the 
maximum of x and 𝑥̅𝑥 is the arithmetic mean of x. 

4.2. Simulation Studies 
In this subsection, we present the simulation study for 

the NPLD to investigate its flexible behavior and 
consistency of the parameter estimates. We examined the 
“mean estimates (ME), variance, biases, and root mean 
square errors (RMSEs)” of the MLEs. Below are the 
procedures used to perform the simulation studies: 

1.  Uniform distribution is used to generate n quantiles, 
p. 

2.  The quantile function defined in equation (15) is 
used to generate NPLD random variates. 

3.  The sample sizes are drawn as 50,100,200n = , and
300.  

4.  The parameters values are set as 1kλ σ µ= = = = , 
2kλ σ µ= = = = , and 0.5kλ σ µ= = = = . 

Table 1. Mean estimates, Variance, Biases, and RMSE of the MLEs 
for λ = k = σ = µ = 1 

n Parameter values 
λ = k = σ = µ = 1 

Mean Bias Variance RMSE 

50  1.0388 0.0388 2e-04 0.0410 
  1.0046 0.0046 2e-04 0.0158 
  0.0019 -0.9981 0e+00 0.9981 
  1.4142 0.4142 1e-04 0.4144 
  1.0383 0.0383 1e-04 0.0391 
  1.0034 0.0034 0e+00 0.0042 
  0.0018 -0.9982 0e+00 0.9982 
  1.4147 0.4037 0e+00 0.4147 

200  1.0368 0.0368 0.0000 0.0371 
  1.0030 0.0030 0.0000 0.0032 
  0.0018 -0.9982 0.0000 0.9982 
  1.4154 0.4154 0.0000 0.4154 

300  1.0361 0.0361 0.0000 0.0361 
  1.0028 0.0028 0.0000 0.0028 
  0.0018 -0.9982 0.0000 0.9982 
  1.4158 0.4158 0.0000 0.4158 

Table 2. Mean estimates, Variance, Biases, and RMSE of the MLEs 
for λ = k = σ = µ = 2 

n Parameter values 
λ = k = σ = µ = 2 Mean Bias Variance RMSE 

50  2.0644 0.0644 0.0009 0.0710 
  1.9986 -0.0014 0.0103 0.1017 
  0.0035 -1.9965 0.0000 1.9965 
  2.8415 0.8415 0.0060 0.8451 

100  2.0596 0.0596 1e-04 0.0605 
  1.9817 -0.0183 7e-04 0.0325 
  0.0036 -1.9964 0.0000 1.9964 
  2.8544 0.8544 5e-04 0.8547 

200  2.0585 0.0585 1e-04 0.0591 
  1.9792 -0.0208 3e-04 0.0264 
  0.0036 -1.9964 0e+00 1.9963 
  2.8566 0.8536 2e-04 0.8538 

300  2.0579 0.0579 1e-04 0.0584 
  1.9780 -0.0220 2e-04 0.0260 
  0.0036 -1.9964 0e+00 1.9962 
  2.8578 0.8508 2e-04 0.8529 

Table 3. Mean estimates, Variance, Biases, and RMSE of the MLEs 
for λ = k = σ = µ = 0.5 

n Parameter values 
λ = k = σ = µ = 0.5 Mean Bias Variance RMSE 

50  0.6175 0.1175 0.0012 0.1225 
  0.5503 0.0503 0.0000 0.0503 
  0.5005 0.5005 0.0000 0.5005 
  0.1488 0.1488 0.0000 0.1488 

100  0.6099 0.1099 3e-04 0.1111 
  0.5503 0.0503 0e+00 0.0503 
  0.0005 0.5005 0e+00 0.5005 
  0.6488 0.1488 0e+00 0.1488 

200  0.6081 0.1081 0.0000 0.1083 
  0.5503 0.0503 0.0000 0.0503 
  0.0005 0.5005 0.0000 0.5005 
  0.6488 0.1488 0.0000 0.1488 

300  0.6078 0.1078 0.0000 0.1078 
  0.5503 0.0503 0.0000 0.0503 
  0.0005 -0.5005 0.0000 0.5005 
  0.6488 0.1488 0.0000 0.1488 

 
Table 1 to Table 3 show that the maximum likelihood 

parameter estimates are consistent. The biases, variances, 
and RMSEs reduce as the sample size increases. This 
shows that the parameters are consistent.  

4.3. Real Application of NPLD 
In this subsection, NPLD is applied to two datasets, one 

in the engineering field and the other in the medical field. 
This will enable us to see the usefulness of the data in 
various fields of study. 
Application 1 

In this first application, we make use of the data set of 
gauge lengths of 10mm from Kundu and Raqab [28]. This 
data set consists of 63 observations: 

1.901, 2.132, 2.203, 2.228, 2.257,2.350, 2.361, 2.396, 
2.397, 2.445, 2.454, 2.474, 2.518, 2.522, 2.525, 2.532, 
2.575, 2.614,2.616, 2.618, 2.624, 2.659, 2.675, 2.738, 
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2.740, 2.856, 2.917, 2.928, 2.937, 2.937, 2.977,2.996, 
3.030, 3.125, 3.139, 3.145, 3.220, 3.223, 3.235, 3.243, 
3.264, 3.272, 3.294, 3.332,3.346, 3.377, 3.408, 3.435, 
3.493, 3.501, 3.537, 3.554, 3.562, 3.628, 3.852, 3.871, 
3.886,3.971, 4.024, 4.027, 4.225, 4.395, 5.020. 

The gauge lengths of 10mm data are fitted by using  
the NPLD, the Beta-Normal (BN) distribution defined  
and studied by [15] Kumaraswamy-Normal by [17]. 
Exponentiated Generalized-Normal (EGN) distribution by 
[19], Weibull-Normal (WN) distribution by [20], and 
Gamma-Normal (GN) distribution by [14]. The data is 

skewed to the right (skewness = 0.6328 and kurtosis = 
3.2863). The results from the six distributions are 
presented in Table 4. The Log-Likelihood (LogL), Akaike 
Information Criterion (AIC), Consistent Akaike Information 
Criterion (CAIC), Bayesian Information Criterion (BIC), 
Hannan Quinn Information Criterion (HQIC), Cramer-von 
Mises statistic (W), Anderson-Darling statistic (A), the 
Kolmogorov-Smirnov (KS) goodness of fit statistic with 
its corresponding p-value are reported in Table 4. From 
Table 4, all six distributions provide an adequate fit to the 
data set using W, A, KS statistics, and p-value. 

Table 4. Parameter estimates, Selection Criteria and Goodness of fit for gauge lengths data 

Distributions NPLD BN KuN EGN WeN GN 

Parameter Estimates 

µ=-15.200 3.281 2.432 0.212 0.666 52.752 

σ=5.712 0.166 0.160 4.231 2.708 0.069 

k=28.693 1.940 2.116 1.369 2.741 1.316 

λ=5.080 0.389 0.355 0.447 0.301  

-LogL 55.864 55.966 55.904 56.657 56.359 56.510 

AIC 117.727 119.932 119.407 121.315 120.719 119.020 

CAIC 118.134 120.622 120.097 122.005 121.409 119.427 

BIC 124.157 128.505 127.980 129.887 129.291 125.449 

HQIC 120.256 123.304 122.779 124.687 124.091 121.549 

W 0.055 0.049 0.048 0.060 0.060 0.059 

A 0.322 0.270 0.275 0.366 0.326 0.336 

KS Stat. 0.084 0.074 0.091 0.087 0.080 0.086 

KS P-value 0.771 0.876 0.669 0.727 0.819 0.741 

 
Table 4 shows that the NPLD performed best when compared with the other five distributions based on the model 

selection criteria using AIC, CAIC, BIC, and HQIC. This is because the smaller the values of the selection criteria, the 
better the model. 

 
Figure 5. The PDF Curve of NPLD and other five distributions on Gauge Length 
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Figure 6. The CDF Curve of NPLD and other five distributions on Gauge Length

Figure 5 displayed the histogram of the gauge length 
data with the density curve of NPLD and the other five 
competing distributions. The NPLD appears to fit the data 
most and gives an account of the gap to the right of the 
histogram and rise to take care of the dispersed or extreme 
value. Figure 6 displayed the cumulative distribution of 
the data with the six distributions fitted on it. The NPLD 
shows almost a perfect fit.  
 
Application 2 

In this second application, we used Crude Mortality 
Rate (CMR) from Bradley [29]. The data set consists of 
65 observations and it is given thus: 

2.01, 6.32, 3.52, 2.15, 5.42, 2.04, 2.77, 2.26, 1.95, 1.00, 
2.45, 0.74, 0.98, 1.27, 2.77, 3.68, 1.1, 1.09, 1.60, 0.57, 
3.33, 0.91, 7.14,  2.08, 3.85, 1.99, 7.76, 2.52, 1.57, 4.67, 
4.22, 1.92, 1.59, 4.08, 2.02, 0.84, 6.85, 2.18, 2.04, 1.05, 
2.91, 1.37, 2.43, 2.28, 3.74, 1.30, 1.59, 1.83, 3.85, 6.30, 
4.83, 0.50, 3.40, 2.33, 4.25, 3.49, 2.12, 0.83, 0.54, 3.23, 
4.50, 0.71, 0.48, 2.30, 7.73 

The second data is also fitted by using the same set of 
distributions. The data is positively skewed (skewness = 
1.1235 and kurtosis = 3.6889). The results from the six 
distributions are presented in Table 5 using the same set of 
criteria.  

Table 5. Parameter estimates, Selection Criteria and Goodness of fit for CMR Data  

Distributions NPLD BN KuN EGN WeN GN 

Parameter Estimates 

µ=-7.699 5.109 6.138 0.211 0.731 62.037 

σ=4.483 0.141 0.158 3.697 4.215 -5.692 

k=6.101 -0.601 -0.395 -1.713 1.491 3.594 

λ=7.987 1.021 1.029 1.236 0.777  

-LogL 114.967 122.164 122.608 126.654 123.791 124.617 

AIC 235.934 252.328 253.217 261.307 255.582 255.234 

CAIC 236.327 252.994 253.883 261.974 256.248 255.628 

BIC 242.457 261.025 261.914 270.005 264.279 261.758 

HQIC 238.507 255.760 256.649 264.739 259.013 257.808 

W 0.048 0.117 0.115 0.212 0.141 0.155 

A 0.272 0.781 0.766 1.358 0.926 1.003 

KS Stat. 0.083 0.126 0.127 0.140 0.135 0.120 

KS P-value 0.756 0.252 0.243 0.156 0.187 0.309 
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From Table 5, all six distributions provide an adequate 
fit to the data using the KS p-value, but NPLD has the best 
fit. Table 5 shows that the NPLD performed best when 
compared with the other five distributions based on the 
model selection criteria used. 

Figure 7 displayed the histogram of the CMR data with 
the density curve of NPLD and the other five competing 

distributions. The NPLD appears to fit the data most 
showing the positive skewness on the histogram and rise 
to take care of the dispersed or extreme values. Figure 8 
displayed the cumulative distribution of the CMR data 
with the six distributions fitted on it. The NPLD 
performed better on the curve.  

 

Figure 7. The PDF Curve of NPLD and other five distributions on CMR Data 

 

Figure 8. The CDF Curve of NPLD and other five distributions on CMR Data 
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5. Conclusion 

A new generalization of the power function distribution 
is defined and studied. The Normal-Power function  
{log-logistic} distribution (NPLD) can be unimodal or 
bimodal, positively skewed, negatively skewed, symmetric, 
or bath up. Its pdf, cdf, survival function, hazard function, 
cumulative hazard function, and reversed hazard function 
are used to characterize the distribution. The quantile function 
is derived and displayed. With useful transformation, the 
four parameters GPLD reduces to the normal distribution 
with two parameters. The NPLD is not a heavy-tail 
function, its r-th moment and the mean inactive function 
exists. The method of maximum likelihood estimation was 
used to estimate the parameters of GPLD. The distribution 
is applied to two datasets, a gauge length of 10mm and a 
crude mortality rate. The analysis shows that the NPLD is 
capable of providing adequate fit to the two datasets that 
are about symmetric or skewed to the right, with little 
peakedness, and it is found to perform well in fitting the 
two datasets and compared favourably than other five 
convoluted distributions with normal distribution parameters. 
It is recommended that NPLD should be used to fit gauge 
length, crude mortality rate, and any similar data that 
slightly deviate from normal and cannot be fitted by the 
normal distribution. The deviation from normality can be 
handled by the shape parameter. It should be used in the 
generalized linear regression model whenever the ordinary 
linear regression model fails.  
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