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Abstract  When modelling complexed data structures related to a certain social aspect, there could be various 
hierarchical levels where data units are nested within each other.  There could also be several variables in each level, 
and those variables may not be unique for each case or record, making the data structure even more complexed. 
Multilevel modelling has been used for decades, to handle such data structures, but may not be effective at all times 
to capture the structure fully, due to the extent of complexities of the data structure and the inherent issues of the 
procedure. On the contrary, ignoring the multilevel data structure when modelling, can lead to incorrect estimations 
and thereby may not achieve acceptable accuracies from the model. This research explains a simple approach where 
a complexed multilevel structure is compressed to a single level by combining higher level variables to form a 
composite index. Moreover, this composite index, also reduces the number of variables considered in the entire 
modelling process, substantially. The process is exemplified, using a primary data set gathered on household 
education expenditure using a systematic sampling survey. Several variables are collected on each household and 
another set of variables relating to each school going child in the household, creating a multilevel data structure. The 
composite index, named as, “Household Level Education Index” is developed through a factor analysis where the 
detailed process of its construction is explained. The LASSO regression was performed to illustrate the use of the 
proposed composite index by predicting the monthly household education expenditure through a single level 
regression model. Finally, a Random Forest model was used to examine the feature importance, where the proposed 
composite index “Household level education index” was the most important feature in predicting the monthly 
household educational expenditure. 
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1. Introduction 

Data and Information is a hot topic in the modern era as 
it is the key factor which makes the strategic decision 
making a success. In the recent decades the world has 
witnessed a massive escalation in available information 
and the founder of World Economic Forum describes the 
extent and the use of this upsurge of data as the “Fourth 
Industrial Revolution” [1]. Availability of information in 
large scale comes with a price and thus needs to be 
interpreted and consolidated effectively and meaningfully. 
The general public or any entity who is interested in such 
data face difficulties when they are presented with a wide 
range of indicators to encompass all the necessary 
information on a particular phenomenon. Instead, if the 
available information is presented in the form of a sole 
number that incorporates this wide range of indicators, 
then it will be much easier for the audience to grasp a 
complex concept. Formulating a Composite Index is a 

technique that has been used to reflect many social 
phenomena and is usually a sole number. 

Lately, Composite Indicators have acquired incredible 
popularity in a wide range of research areas. The use of 
composite indicators by a vast number of worldwide 
organizations has caught the attention of the media and 
policymakers around the world, and their utilizations have 
increased from that point forward [2]. According to [3], 
Composite Indicators have gained immense popularity in 
a variety of fields and Reference [3] has pointed out over 
400 official composite indicators that rank a nation based 
on financial, political, social, or environmental measures. 
Moreover, [4] has reported on more than 100 composite 
measures of human progress in a complementary report by 
the United Nations’ Development Programme. 

The idea of using a composite index has an 
interdisciplinary nature, hence it can be applied into many 
research areas [5]. However, the use of a Composite index 
when modelling multilevel data structures are rarely 
spoken. The multilevel data structures are encountered 
when data are being collected on various needs, for  
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example on a social phenomenon or in a biological setup. 
For instance, children are nested within families and 
families are nested within neighbourhoods whereas in 
biological studies, patients are nested within hospital. It is 
evident that such multilevel data structures are commonly 
available in many data structures collected in various other 
phenomena, and thus need adequate attention when 
analysing or modelling such data.  

One of the most common modelling approaches when 
dealing with multilevel data structures is, multilevel 
modelling. However, multilevel modelling has its own 
drawbacks, and could make the modelling process 
complex. Multilevel models are data and theory intensive 
and also based on many assumptions about data [6]. These 
assumptions can be demanding at times, and if not met, 
then it will affect the statistical inference from such 
models, adversely. On the other hand, in most of the 
modelling procedures, variable selection is essential in 
building a good simple model. The variable selection 
procedure in a multilevel data structure, however, must be 
done with caution, as predictors can be selected for each 
level of the model and interactions between predictors can 
be considered at either level or across levels [7]. The same 
article, written by reviewing 98 selected journals between 
1999 and 2003, describes that there are some underlying 
issues in the reporting of multilevel data analysis. 

This research is focused on proposing an alternative 
method that can be used to bring the multilevel data to a 
single level using a composite index. The procedure is 
explained using an example data set, gathered at two 
hierarchical levels, where the information at the higher 
level is combined in creating a composite index reflecting 
those variables in that level. This composite index will 
bring all the information required for modelling into a 
single level, while also reducing the number of predictors 
substantially. The use of this approach will thus simplify 
the complexity in a multilevel data structure, while 
serving as an alternative approach, to a typical multilevel 
modelling procedure.   

In this study a data set regarding the household education 
expenditure was used and the data are in two levels 
namely household level and the child level. The study will 
illustrate how to bring the child level information 
regarding education expenditure, to the household level, 
using the proposed composite index methodology. 
Formulating this index will result in all variables being in 
one level where a suitable model can then be applied. The 
education expenditure of the households is modelled using 
the proposed composite index as a single predictor, along 
with the other predictors, as a solution to the issues related 
to modelling multilevel data structures. 

2. Methodology 

2.1. Creating a Composite Index 
In this study a Composite Index was used to bring the 

multilevel data structure to a single level. It is worth 
noting that, due to the nature of the data in this example, 
all variables in one level were associated with children’s 
education, and hence were used to create the composite 
index. Creating a composite index is a method of 

summarizing a set of variables by combining the 
individual variables [8]. The study used this method to 
summarize seven variables regarding the school going 
children in the household. Number of variables per 
household regarding the children was not unique as the 
particular household may have varying number of school-
going children. It should be noted that the primary focal 
point of the study was the household, and not the 
individual child. 

Prior to the composite index building, it is essential to 
normalize the individual variables involved in this process 
[8]. They also stated that “Normalization is required prior 
to any data aggregation as the indicators in a data set often 
have different measurement units. Therefore, it is 
necessary to bring the indicators to the same standard, by 
transforming them into pure, dimensionless, numbers.” 
Min-Max normalization was used in this study and R 
software was used to do the transformation. The Min-Max 
normalization equation is defined as follows [9]. 
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where “x” is the individual variable under composite 
index creation. 

There are different methods to construct a composite 
index and it should be noted that there is no universally 
best method to be used at all times. In each case the 
construction of an index is much determined by the 
particular application, by incorporating some expert 
knowledge on the phenomenon and the problem of interest 
[8]. 

This study used a Factor Analysis (FA) based method 
to construct the composite index [9]. Factor analysis 
groups together individual variables which are collinear to 
form a composite indicator. The composite indicator 
captures as much as possible of the information common 
to individual variables [10]. At first, FA was performed in 
order to get the Factor scores. Eigen values greater than 
one rule was used to find the number of factors to be 
retained and the Varimax rotation was used to load the 
individual variables to the selected factors. The resulting 
factor scores were computed and were treated as 
intermediate composite indicators. 

Consequently, these intermediate composites were 
aggregated by assigning a weight to each of them equal to 
the proportion of the explained variance in the data set. 
The aggregated intermediate composite indicator was 
taken as the final composite index. The following equation 
(2) was used in constructing the composite index [9,11]. 
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where; 
k = the number of factors selected 
𝑓𝑓𝑖𝑖= factor score of the ith factor 
𝑣𝑣𝑖𝑖= the proportion of variance explained by ith factor (the 
weight of the intermediate composite indicator) 
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𝜆𝜆𝑖𝑖  = eigen value of the ith factor 
The created composite index captures the information 

in a multilevel structure and brings them to a single level 
as a numeric variable. The composite index was used as a 
continuous explanatory variable in the statistical modelling. 

2.2. Statistical Modelling 
LASSO regression was used to model the data as it is a 

method to overcome the issue of multicollinearity without 
omitting the predictor variables. It also performs the 
variable selection. LASSO is a Shrinkage method as it 
shrinks the coefficient estimates towards zero. The 
LASSO coefficients (𝛽𝛽𝑗𝑗 ) are estimated by minimizing the 
following quantity [12] given in equation (4), 
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where ; 
𝑦𝑦𝑖𝑖  = actual value of the ith observation 
P = number of parameters 
𝜆𝜆 = tuning parameter, 𝜆𝜆 ≥ 0. 

The term 𝜆𝜆∑ �𝛽𝛽𝑗𝑗 �
𝑝𝑝
𝑗𝑗=1  is called LASSO penalty. If the 

tuning parameter λ is sufficiently large, then LASSO will 
set some of the coefficients exactly to zero which leads  
to a variable selection. Best value of λ can be found by  
K-fold cross validation. 

Random forest regression was also used in the study to 
complement the modelling approach especially with 
regard to elaborate on the feature importance of the model.  
It is a method that gives the predictions by constructing 
multiple regression trees. It usually builds trees on 
bootstrapped training samples and does the prediction on 
all the trees. When building these regression trees, each 
time a split in a tree is considered, a random sample of 
predictors is chosen as split candidates. The final 
prediction is taken as the average of all the regression tree 
predictions. Random forests can be used to rank the 
importance of variables in a regression model in a natural 
way. This variable importance was used in this study to 
showcase the success of the proposed composite index in 
the LASSO regression model [12]. 

3. Analysis 

3.1. Creating the Composite Index 
This study uses a primary data set containing household 

education expenditure and several other variables that are 
potential determinants of it. The data were obtained from a 
carefully designed survey which was carried out in one 
Grama Niladhari (GN) division in the Homagama City, in 
Sri Lanka. Data from 239 households were collected using 
a systematic sampling technique.  Face to face interviews 
on a pre-prepared questionnaire was used as the data 
collection method. The fact that most of the educational 
research involved with the hierarchical data structure and 
multilevel modeling approaches [13] motivated this study 
to use a primary data set containing household education 
expenditure. 

This study has gathered data on both household level 
and child level. Information regarding each child in a 
house is captured under child level data. This child level 
data is anticipated to be associated with household 
education expenditure. Child level data is consisted of the 
following seven variables that vary with every child in a 
household. 
•  Grade  
•  School type  
•  Absenteeism 
•  Performance 
•  Parents’ level of satisfaction regarding child’s 

performance  
•  Parents’ level of satisfaction regarding child’s school  
•  Education goal 
Absenteeism and performance variables are continuous 

variables while the other five variables were captured on 
an ordinal scale. This child level information is not unique 
due to the fact that each house has varying number of 
school-going children. One of the most difficult 
challenges faced by the educational statistics researchers 
is to incorporate micro and macro information into one 
statistical model [14]. That is, in order to carry out the 
analysis, it was required to combine the individual level 
information with the information of the groups they 
belonged to. In this research too, it was required to 
combine child level data with the household level data.  

With this example data set, a method was needed to 
bring the varying child level information to the household 
level, to reflect the educational status of school going 
children of a household. It must be noted that the 
individual data coming from each child are not possible to 
be incorporated into a model due to the structural variation 
those variables possess. As a suitable remedy, a 
Composite Index was created to overcome this issue. The 
Composite index will bring the child level data into 
household level and by doing so the two-level hierarchical 
structure of the data set can be reduced down to one level. 
Hence, the proposed approach can overcome the said 
issues with regard to the data structure and also bypass the 
multilevel modelling approach. 

The study noted that the maximum number of children 
observed per household was three. It was found that there 
was no significant difference in the mean of monthly 
household expenditure on education between those houses 
with two and three children. Also, the number of houses 
having three children is 15 and it is comparatively low. T-
test was used to do the above mean comparison and the 
test was not significant at 5% significance level. Hence, 
houses with two and three children were taken together 
when creating the composite index. Accordingly, the 
composite index was created separately for houses with 
one child and houses with two or three children. 

Min-Max normalization was applied on variables 
before creating the composite index to bring all the 
variables to the same standards and was done using R 
software. 

According to the data set there were 239 households in 
total. Out of the 239 households, 130 households had one 
child while rest of the 109 households had two or three 
children. Factor Analysis was first applied to houses with 
one child and two factors had an Eigen value greater than 
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one. Those factors were extracted, and results are shown 
in the Table 1 and Table 2. 

Table 1 shows the total variance explained by the 
Principal Component Analysis (PCA) for houses with one 
child while Table 2 shows the Varimax Rotated component 
matrix for houses with one child. 

Table 1. Total Variance Explained by the PCA for Houses with one 
Child 

Component 
Initial Eigenvalues 

Total % of Variance Cumulative % 
1 2.424 34.631 34.631 
2 1.549 22.127 56.758 
3 0.959 13.694 70.453 
4 0.76 10.856 81.309 
5 0.546 7.793 89.102 
6 0.42 6.003 95.104 
7 0.343 4.896 100 

Table 2. Varimax Rotated Component Matrix for Houses with one 
Child 

Variable 
Component 

1 2 
A 0.025 0.843 
B 0.458 0.715 
C -0.379 0.555 
D 0.741 -0.171 
E 0.624 0.032 
F 0.81 0.049 
G 0.67 0.117 

 
Note that for the simplicity of representation, the seven 

variables in the Table 2 are coded from A-G. Refer Table 3 
to check the variable name corresponding to the code. 

Table 3. Variables Names and their Codes 

Code Variable name 
A Child 01 Grade 
B Child 01 School 
C Child 01 Absenteeism 
D Child 01 Performance 
E Child 01 Parents School Satisfaction 
F Child 01 Parents Performance Satisfaction 
G Child 01 Education Goal 
H Child 02 Grade 
I Child 02 School 
J Child 02 Absenteeism 
K Child 02 Performance 
L Child 02 Parents School Satisfaction 
M Child 02 Parents Performance Satisfaction 
N Child 02 Education Goal 

 
The factor scores were computed as follows and are 

given in the equations (5) and (6). These factor scores 
were treated as the intermediate composites. 

 

1 0.741 01
0.624 01
0.810 01
0.670 01

F Child performance
Child school satisfaction
Child performance satisfaction
Child education goal

= ×
+ ×
+ ×
+ ×

 (5) 

 
2 0.843 01

0.715 01
0.555 01

F Child grade
Child school type
Child absenteeism

= ×
+ ×
+ ×

 (6) 

The corresponding Eigen values were 2.424 and 1.549, 
respectively. The composite index for houses with one 
child was calculated as follows using the equation (2) 
explained under methodology. 

 
( ) ( )

2.424 1.5491 2
2.424 1.549 2.424 1.549

Composite Index

F F= × + ×
+ +

 (7) 

Similarly, the method was applied to the houses with 
two or three children and the results are shown in the 
Table 4 and Table 5. 

Table 4. Total Variance Explained by the PCA for Houses with two 
or three Children 

Component Initial Eigenvalues 

 Total % of Variance Cumulative % 
1 3.414 24.387 24.387 
2 1.896 13.54 37.928 
3 1.507 10.766 48.694 
4 1.418 10.128 58.822 
5 1.285 9.179 68 
6 1.069 7.635 75.635 
7 0.738 5.271 80.906 
8 0.671 4.795 85.701 
9 0.545 3.892 89.593 
10 0.45 3.215 92.808 
11 0.367 2.62 95.428 
12 0.271 1.939 97.367 
13 0.219 1.564 98.931 
14 0.15 1.069 100 

Table 5. Varimax Rotated Component Matrix for Houses with two 
or three Children 

Variable 
Component 

1 2 3 4 5 6 
A -0.153 0.12 0.081 0.095 0.159 0.773 
B 0.139 0.135 0.869 0.064 0.165 0.013 
C -0.032 0.045 -0.005 0.849 0.067 0.119 
D 0.71 0.064 0.406 -0.093 -0.075 -0.261 
E 0.214 0.819 0.057 -0.076 -0.158 -0.029 
F 0.495 0.472 0.279 -0.388 -0.231 0.036 
G 0.878 0.017 0.085 0.056 0.134 0.059 
H 0.264 -0.196 0.12 -0.119 -0.265 0.759 
I 0.134 -0.043 0.84 -0.092 0.136 0.203 
J 0.089 -0.123 -0.004 0.785 -0.257 -0.106 
K 0.196 -0.076 0.258 -0.088 0.775 -0.117 
L -0.11 0.841 -0.014 0.039 0.241 -0.011 
M 0.003 0.409 0.19 -0.366 0.552 0.167 
N 0.699 0.075 -0.011 0.149 0.503 0.206 
 
Note that for the simplicity of representation, the 14 

variables in the Table 5 are coded from A-N. Refer  
Table 3 to check the variable name corresponding to the 
code. The corresponding factor scores (intermediate 
composites) were computed as follows, 
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1 0.710 01

0.495 01
0.875 01

F Child performance
Child performance satisfaction
Child education goal

= ×
+ ×
+ ×

 (8) 

 
2 0.819 01

0.841 02
F Child school satisfaction

Child school satisfaction
= ×
+ ×

 (9) 

 
3 0.869 01

0.840 02
F Child school type

Child school type
= ×
+ ×

 (10) 

 
4 0.849 01

0.785 02
F Child absenteeism

Child absenteeism
= ×
+ ×

 (11) 

 
5 0.775 02

0.552 02
0.503 02

F Child performance
Child performance satisfaction
Child education goal

= ×
+ ×
+ ×

 (12) 

 
6 0.773 01

0.759 02
F Child grade

Child grade
= ×
+ ×

 (13) 

The respective eigen values were 3.414, 1.896, 1.507, 
1.418, 1.285, and 1.069. Composite index for houses with 
two or three children were calculated as follows, 

 

( )

( )
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1.896 2
3.414 1.896 1.507 1.418 1.285 1.069
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5
4 1.896 1.507 1.418 1.285 1.069

1.069 6
3.414 1.896 1.507 1.418 1.285 1.069

F

F

×
+ + + + +

+ ×
+ + + + +

(14) 

According to Table 1, the first two components together 
explain around 56.76% of the variation in the data for the 
household with one child. The two-factor model was 
selected for the households with one child by adhering to 
the eigen values greater than one rule. But if this proposed 
methodology is to be applied in a practical situation, then 
one can even go for a three-factor model as the third 
component is nearly equal to one and by doing so three 
factor model will explain around 70.45% of the variation 
in the data. According to Table 3, the first six components 
together explain approximately around 75.64% of the 
variation in the data for the households with two or three 
children. The researchers anticipate that this amount is 
sufficient for further analysis of the data. Hence, the fitted 
factor models are adequate.  

The composite indices calculated by the equations (7) 
and (14) were considered as a single numerical predictor 
variable when modelling educational expenditure. The final 
composite index variable is named as “Household Level 
Education Index”. The varying child level information in a 
particular household is captured under the “Household  

Level Education Index”. Moreover, the multilevel 
structure of the data is reduced to a single level and a 
considerable data reduction is also achieved. The index 
scores vary from 0.42 to 2.16 of which the distribution is 
shown in Figure 1. 

 

Figure 1. The distribution of Household Level Education Index 

3.2. Statistical Modeling 
Recall that the Household Level Education Index has 

brought the child level information, regarding education 
expenditure, to the household level while reducing the 
number of variables in the study. The monthly household 
education expenditure was modeled using Household 
Level Education Index as a continuous explanatory variable 
along with the other variables. The LASSO regression 
modelling was used in this study as a remedy for the 
multicollinearity issue. The distribution of the response 
variable (monthly household educational expenditure) was 
positively skewed and thus far away from normality. As a 
solution, log (natural logarithm) transformation was 
applied on the response variable to get rid of the non-
normality. Log transformed response variable with all the 
explanatory variables were used to fit the LASSO model. 
The LASSO model was fitted using R software. 

The dataset was divided randomly into training data and 
testing data prior to model fitting. Training data set 
consisted of 80% data while testing data sets consisted of 
20% data. Training data set was used in model fitting and 
parameter estimation, while testing data set was used to 
evaluate prediction accuracy. Next step was to select the 
best lambda value for the LASSO model. A 10-fold cross 
validation procedure was used to obtain the Mean Squared 
Error (MSE) for each respective lambda value with the 
training dataset in obtaining the best lambda value for 
LASSO regression model.   

Best lambda (which gives the minimum cross validated 
MSE) was 0.001293 and it had 29 variables (including 
dummy variables). The lambda under one standard 
deviation was 0.033557 and it had 13 variables (including 
dummy variables). The best lambda gave the lowest test 
MSE. Hence, best lambda (0.001293) was selected as the 
optimal lambda to get higher prediction accuracy. A 
LASSO model with lambda set to 0.001293 was fitted as 
the final LASSO model. 
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The final LASSO model is given in the Table 6 as 
predictors and the estimated regression coefficients. The 
dependent variable of the final LASSO model is monthly 
household education expenditure. 

Table 6. The Final LASSO Model 

Predictor Estimated Regression Coefficient 
Number of Household members 0.004 
Number of male children 0.559 
Number of female children 0.606 
Religion_Christian 0.816 
Household head gender_Female -0.345 
Household head job category_2 -0.008 
Household head job category_3 0.034 
Household head job category_4 -0.033 
Household head job category_5 0.235 
Spouse job category_2 -0.159 
Spouse job category_3 -0.043 
Spouse job category_5 0.083 
Spouse job category_6 -0.451 
Household head education level_4 0.222 
Spouse education level_2 -0.014 
Spouse education level_4 -0.064 
parent status of household_both -0.254 
Monthly income_3 0.071 
Monthly income_4 0.418 
Monthly income_5 0.434 
Other income_yes 0.080 
Household debt_2 -0.217 
Household debt_4 -0.228 
Household debt_5 -0.014 
Household debt_6 0.203 
Scholarship_yes 0.210 
Household Level Education Index 0.548 
constant -0.014 

 
It should be noted that the predicted monthly household 

education expenditure is in log format. Exponentials of the 
predictions must be taken to get them in original format. 

The prediction accuracy of the test set was measured using 
Root Mean Squared Error (RMSE). The test set accuracy 
measure for the final LASSO model in original format is 
as follows, 
• RMSE = 11 580.69 
The dependent variable being measured in Rupees and 

having large expenditure amounts (exceeding Rs 10 000 
most of the time) is the reason for having large values for 
accuracy measures in original format. It should be noted 
the that the prediction accuracy improvement is not an 
objective of this study but is mainly focused on explaining 
a simple approach where multilevel data structure is 
compressed into a single level using a composite index.  

According to the LASSO regression model given in 
Table 6, The proposed composite index “Household Level 
Education Index” is a significant variable with a moderately 
large positive regression coefficient. The variable “Household 
Level Education Index” is incorporated in the model as a 
single continuous variable. The information about the 
higher level (child level information) is incorporated into 
this “Household Level Education Index” and it is being 
used at the lower level (household level) as a separate 
variable. Multilevel modeling was not required in this 
approach as the hierarchical data structure was simplified 
into a single structure using the “Household Level 
Education Index”.  Hence, it is evident that the proposed 
composite index methodology is an alternative and a 
simple method for modeling multilevel data structures. 

Random forest regression was applied on the original 
data to obtain the feature importance in predicting the 
monthly household expenditure on school education. It 
was interesting to note that the significant variables in the 
LASSO model aligns with the features extracted as 
important in the random forest model. 

 Random forest model was fitted using 200 trees and 
seven variables at each split. The above two hyper 
parameter values were used as they gave the optimal 
results. The resulting test set RMSE was 13 271.91. The 
Figure 2 shows the feature importance plot for the above 
random forest model. 

 

Figure 2. Feature importance of the Random Forest model 
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According to the feature importance given in Figure 2, 
the proposed composite index which is named as the 
“Household Level Education Index” has the highest 
importance in predicting the monthly household education 
expenditure. The proposed composite index being in the 
top of the feature importance is an indication of the 
successfulness of combining all variables in one level 
through the proposed composite index. 

The use of composite index called “Household Level 
Education Index” paved the way to bring the multilevel 
structure of the education data into single level and model 
the education expenditure of households as one model 
using LASSO regression. The feature importance of the 
Random Forest model complemented the proposed 
methodology as the highest importance was achieved by 
the “Household Level Education Index” when predicting 
the monthly household education expenditure. 

4. Discussion 

This paper is aimed at presenting an alternative approach 
when modelling a multilevel data structure, using a 
composite index. The composite index was used to bring 
the multilevel data structure into a single level which is 
the main level of interest, so that a usual modeling 
procedure can be applied easily. As the multilevel models 
are data and theory extensive while heavily depending on 
the assumptions [6], this paper presents an alternative 
method, capable of bypassing these limitations. In the 
example used in this paper, the multilevel data structure 
was modelled using a LASSO regression model coupled 
with a composite index. A second advantage of the 
proposed approach is the reduction of explanatory 
variables used in modelling. In addition, with our example 
dataset, the variables related to every household was not 
unique, and therefore will encounter issues in modelling. 
This problem too was dealt with, by using a composite 
index successfully.   

In general, the composite index will reduce the  
number of variables to be considered in modelling 
substantially, and therefore address model flexibility and 
curtail the complexities encountered in a multilevel data 
structure.  

This study used a data set which contains information 
regarding monthly household educational expenditures 
and its possible determinants. It is worth noting that there 
was a maximum of three school going children per 
household in the sample. The composite index was created 
separately for the houses with one child and for the houses 
with two or three children assuming there are only 
maximum of three school going children per household in 
the whole GN division. Creating the composite index this 
way eliminated the problem of having varied number of 
variables pertaining to each households. 

The hierarchical nature of the aforesaid data set was 
suitable for illustrating the method, as it consisted of two 
levels called child level and household level, having a 
complex data structure. However, this proposed approach 
is not limited only to data structure with two levels  
such as the household expenditure data set but can be 
applied suitably to other hieratical data structures, giving 
promising results. 

The composite index, although widely used to explain 
various phenomena, is rarely used nor highlighted when 
modelling multilevel data structures. This research has 
exemplified the value of a composite index when 
modelling a multilevel data structure. When applied to the 
educational expenditure dataset, a satisfactory result was 
shown with a high accuracy of the model where the 
proposed composite index appearing to be the most 
important feature in predicting educational expenditure. 

5. Conclusion 

The results showed that the application of the proposed 
method on the monthly household educational expenditure 
was satisfactory as the proposed Composite Index turned 
out to be the most important feature in predicting 
expenditure while reducing the multilevel data structure 
into a single level. In addition, the method helped to 
reduce the number of variables in the study and also 
accommodated the problem of having a non-unique set of 
variables pertaining to each household. Hence, the 
Composite Index based method can be considered as an 
alternative method when modelling certain complexed 
multilevel data structures. The proposed method will bring 
the higher level information into the lower level and it will 
allow the researcher to model the data at the lower level 
without considering the hierarchical structure. This will 
allow the researcher to bypass the use of multilevel 
modeling while avoiding the disadvantages and 
limitations the approach possess. The proposed method 
can be suitably extended to hierarchical data structures 
with more than two levels as well. Among many other 
complex methods to create a composite index to 
summarize the information, an alternative method is to use 
Multi Criteria Analysis (MCA).  This research however 
has proposed a useful concept and an alternative approach, 
when modelling complexed multilevel data structures. 
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