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Abstract  In this paper two basic random variables constructed from Quasi Lindley distribution have been 
introduced. One of these variables is defined as the sum of two independent random variables following the  
Quasi-Lindley distribution with the same parameter (2SQLindley). The second one is defined as the difference of 
two independent random variables following the Quasi-Lindley distribution with also the same parameter 
(2DQLindley). For both cases, we provided some statistical properties such as moments, incomplete moments and 
characteristic function. The parameters are estimated by maximum likelihood method. From simulation studies, the 
performance of the maximum likelihood estimators has been assessed. The usefulness of the corresponding models 
is proved using goodness-of-fit tests based on different real datasets. The new models provide consistently better fit 
than some classical models used in this research.  
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1. Introduction 

The analysis and modeling of lifetime data are very 
important in applied sciences such as engineering, public 
health, actuarial science, biomedical studies, demography, 
industrial reliability and other applied sciences. For this 
reason, it became really urgent to find statistical 
distributions to handle these real models data. The one of 
these distributions, is Lindley distribution which was 
introduced by [1] to analyze failure time data especially in 
applications modeling stress-strength reliability. The 
importance of the Lindley distribution comes from its 
power to model failure time data with increasing, 
decreasing, unimodal and bathtub-shaped hazard rates. 
Lindley distribution can be written as a mix of exponential 
and gamma distributions. The properties and inferential 
procedure for the Lindley distribution were studied by [2]. 
It is shown that the Lindley distribution is better than the 
exponential distribution when the hazard rate is unimodal 
or bathtub shaped.  

Generalizations and transformations of existing 
distribution attract the statistical research to develop new 
models to prove useful in exploring skewness and tail 
properties, and also to improve the goodness-of-fit of the 
extended family. Lindley distribution has been generalized, 
extended, modified and mixed with other discrete 

distributions by many authors in recent years. [3]  
referred to the three Parameters-Lindley distribution, [4] 
introduced generalized Poisson-Lindley distribution, 
generalized Lindley distribution has been proposed by [5]. 
Further, more investigations applied to Lindley 
distribution to improve its performance and have been 
introduced by some interested researchers. For example; 
Marshall-Olkin Lindley distribution was introduced by [6], 
power Lindley distribution was presented by [7], two-
parameter Lindley distribution by [8], Quasi Lindley 
distribution by [9], transmuted Lindley distribution by 
[10], transmuted Lindley-geometric distribution and beta-
Lindley distribution by [11]. A retrospective study on 
Lindley distribution and its generalizations have been 
studied extensively by [12] and discrete Harris extended 
Lindley distribution by [13]. A latest version of the 
Lindley distribution, called modified Lindley distribution, 
is introduced by [14].  

Recently, [15] have been introduced Generalization of 
the Lindley distribution based on the formation of a 
distribution of the sum of two iid variables that have a 
Lindley distribution with the same parameters and are 
independent. They also presented a distribution of the 
difference between the same two variables, where the 
results applied on real data sets provided consistently 
better fit than some classical distributions. 

In this paper we will present a distribution of the sum of 
two iid variables that have a Quasi-Lindley distribution 
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with the same parameters and are independent, where the 
Quasi - Lindley distribution is considered one of the 
generalizations of the Lindley distribution. Quasi - Lindley 
distribution, Lindley distribution and the exponential 
distribution in order to demonstrate the quality of 
reconciliation on the real data set. Also, the distribution of 
the difference between the two variables will be compared 
with both Laplace distribution and the distribution of the 
sum of two independent variables each of which has the 
same Laplace distribution with the same parameters to 
demonstrate the good of fit on the real data set. 

The cumulative distribution function (cdf) and the 
probability density function (pdf) of quasi-Lindley 
distribution (QLD) of [8] are given by; 
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2. On the Sum of two Independent Quasi 
Lindley Distribution 

This section is focused on definitions and some properties 
of the sum of two independent random variables following 
the Quasi Lindley distribution (2SQLindely). 

2.1. Definition 
We consider the pdf given by 
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The feature of this distribution is the following: let 
𝑌𝑌1and 𝑌𝑌2 be two independent random variables following 
the Quasi Lindley distribution (QL) with parameters 𝛼𝛼 and 
𝜃𝜃 . Then, the random variable 𝑋𝑋 = 𝑌𝑌1 + 𝑌𝑌2 has the pdf 
given by (3). This result is a particular case of [16]. The 
proof is as follow; Since 𝑌𝑌1and 𝑌𝑌2 are independent, the pdf 
of 𝑋𝑋 is given by the convolution product 
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This distribution is considered entirely new as it has not 
been previously deduced and is considered a generalized 
distribution for the distribution of the sum of two 
independent variables for which the Lindley distribution 
provided by [15]. Whereas, through this research and in 
what part if 𝛼𝛼 = 𝜃𝜃 is placed, we obtain the same results as 
that of [15]. 

First of all, after some algebraic manipulations, the cdf 
of the 2SQLindely distribution is given by 
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Moreover, the survival function is given as follows 

 ( )
( )

( ) ( )2

2 2 2 3 3

6 1 11 , 0
6 1 (3 6 )

xx
S x e x

x x
θα θ

α α θ θ
−

 
 
 

+ +

+ + + 
= >

+
(5) 

The hazard rate function, hrf, is given by 
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Also, the corresponding cumulative hazard rate 
function, hrf, is given by 
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he corresponding quantile function (qf), say 𝑄𝑄(𝑢𝑢), can be 
obtained by solving the following equation: 𝐹𝐹(𝑄𝑄(𝑢𝑢))  =
 𝑄𝑄(𝐹𝐹(𝑢𝑢)), 𝑢𝑢 ∈  (0, 1). It cannot be presented analytically 
but can be determined numerically for a given 𝛼𝛼 and 𝜃𝜃. 

 
Figure 1. The pdf of the 2SQLindely distribution for some values of the 
parameters 

 
Figure 2. The cdf of the 2SQLindely distribution for some values of the 
parameters 
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Figure 3. The hrf of the 2SQLindely distribution for some values of the 
parameters 

Figure 1, Figure 2 and Figure 3 show the plots of the 
pdf, cdf and hrf for various values of the parameters 
α and , θ respectively. 

We can derive the mode of the 2SQLindelydistribution 
by solving the following equation withrespect to x as 
follow; 
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It is not possible to get an explicit solution of the 
equation (8) in the general case and therefore numerical 
methods should be used such as bisection method or 
fixed-point method to solve it. 

2.2. Moments 
The rth moment about origin of the 2SQLindely has 

been obtained as 
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Proof: Let us introduce the gamma function defined by 
Γ(𝑥𝑥)  = ∫ 𝑡𝑡𝑥𝑥−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑑𝑑∞

0 , 𝑥𝑥 >  0 . By using the pdf of 𝑥𝑥 
given by (3), we have 
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The proof of the moments using the QL distribution as 
a baseline is given below. Let us recall that, for any 
𝑟𝑟 ∈ ℕ and a random variable X following the QL 
distribution with parameters 𝛼𝛼 and 𝜃𝜃 ,the rth moment of X 
is given by 
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Therefore, by 𝑋𝑋 = 𝑌𝑌1 + 𝑌𝑌2  and the binomial formula, 
the rth moment of 𝑋𝑋 is given by 
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So, the rth moment will be 
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Particularly, the mean of X is given by 𝜇𝜇 =  𝜇𝜇1
∗ and the 

variance of X is given by 
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Also, the skewness and kurtosis coefficients of X, 
respectively given by 
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2.3. Incomplete Moments 
Let r be a positive integer and X a random variable 

following the 2SQLindely distribution with parameters 
𝛼𝛼 and 𝜃𝜃 . Let us introduce the lower gamma function 
defined by 
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Proof: By using the pdf of X given by (3), we have 
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2.4. Moment Generating Function 
The moment generating function 𝑀𝑀𝑥𝑥(𝑡𝑡)  of a random 

variable 𝑋𝑋 ~2𝑆𝑆𝑆𝑆𝑆𝑆(𝛼𝛼, 𝜃𝜃) is given by 

 ( )
( )

( ) ( )

22

2 41
x

t
M t

t

θ α θ θ

α θ

− +  =
+ −

 (11) 

Proof. Let us recall that, for any 𝑡𝑡 ∈ ℝ  and a random 
variable X following the 2SQLindely distribution with 
parameters α and θ .the moment generating function of X 
is given by 

 ( ) ( )
0

tx
xM t e f x dx

∞
= ∫  

( )
( )

( ) ( )

( )

( ) ( ) ( ) ( )

( )
( ) ( )

2 2
2

0 0
2 2

3

0

2 2 2

2 2 3 3

22

2 4

1
6

2  

1

1

t x t x

x
t x

xe dx x e dx

M t

x e dx

t t t

t

t

θ θ

θ

α θα
θ

α θ

θ α θ α θ

α θ θ θ

θ α θ θ

α θ

∞ ∞
− − − −

∞
− −

 
 +
 

=  
 +
+ 
  

 
 = + +
 + − − − 

− +  =
+ −

∫ ∫

∫

 

2.5. Characteristic Function 
The characteristic function of 2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 distribution 

is given in the following. 
Suppose that the random variable X have the 
 ~ 2 ( , )X SQLindely α θ  then characteristic function, 

𝛷𝛷𝑥𝑥(𝑡𝑡), is 
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Where i = √−1. 

2.6. Bonferroni and Lorenz curves 
Bonferroni and Lorenz curve proposed by [17]. They 

are used to measure the inequality of the distribution of a 
random variable X. They are applied in many fields such 
as economics, reliability, demography, insurance, etc. The 
Bonferroni and Lorenz curves are defined as 
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respectively, where q =  F−1(p). 
If X has the pdf in (3), we can calculate Bonferroni and 

Lorenz curve of the 𝑋𝑋 ~2𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (α, θ) distribution as 
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2.7. Extreme Order Statistics 
Let us consider a random sample X1 … , Xn  of size n 

from the 2SQLindely distribution with parameters α  and 
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In [18], they ensure the existence of 𝑎𝑎𝑛𝑛  and 𝑏𝑏𝑛𝑛  such that 
lim𝑡𝑡→∞ 𝑃𝑃�𝑎𝑎𝑛𝑛�𝑋𝑋(1) − 𝑏𝑏𝑛𝑛� ≤ 𝑥𝑥� = 1 − 𝑒𝑒−𝑥𝑥 . 

We recognize the cdf of the exponential distribution 
with parameter 1, showing that can be 𝑎𝑎𝑛𝑛�𝑋𝑋(1) − 𝑏𝑏𝑛𝑛� 
approximated by this distribution. 

Moreover, we have 
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To ensure the existence of 𝑎𝑎𝑛𝑛  and 𝑏𝑏𝑛𝑛  such that 
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We recognize the cdf of the Gumbel distribution with 

parameters 1 and 1 ,
θ

 showing that 𝑎𝑎𝑛𝑛�𝑋𝑋(𝑛𝑛) − 𝑏𝑏𝑛𝑛� can be 

approximated by this distribution. 

2.8. Maximum Likelihood Estimation (MLE) 
Assume 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛  be a random sample of size n from 

2SQLindely(α, θ)  then the likelihood function can be 
written as 
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By accumulation taking logarithm of equation (15), and 

the log- likelihood function can be written as 
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Maximizing 𝑙𝑙(𝛼𝛼, 𝜃𝜃)with respect to 𝛼𝛼and 𝜃𝜃, we have the 
following system respectively with non-linear equations  
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The solution of this system has to be obtained 
numerically to get the estimates 𝛼𝛼�and 𝜃𝜃�. 

2.9. Simulation Study 
In this section, we estimate the bias (Bias(.)) and the 

mean square error (MSE(.)) for the parameters (𝛼𝛼, 𝜃𝜃) = 
(1.7,1.5),(0.7,0.5) using simulation study. The population 
parameter is generated using software “Mathcad 14” 
package program. The sampling distributions are obtained 
for different sample sizes n = [20,40, 100, 300, 500] from 
N= 1000 replications. The simulations results are reported 
in Table 1 and Table 2. 

Table 1. Simulation results for the 2SQLindely distribution at  
(𝜶𝜶, 𝜽𝜽) = (1.7,1.5)  

n Bais (𝛼𝛼) MSE(𝛼𝛼) Bais(𝜃𝜃) MSE(𝜃𝜃) 

20 0.0791 0.0732 0.0341 0.0574 

40 0.0683 0.0515 0.0262 0.0427 

100 0.0424 0.0387 0.0124 0.0363 

300 0.0223 0.0173 0.0095 0.0292 

500 0.0196 0.0158 0.0085 0.0276 

Table 2. Simulation results for the 2SQLindely distribution at  
(𝜶𝜶, 𝜽𝜽) = (0.7,0.5)  

n Bais (𝛼𝛼) MSE(𝛼𝛼) Bais(𝜃𝜃) MSE(𝜃𝜃) 
20 0.0931 0.0811 0.0814 0.0909 
40 0.0814 0.0796 0.0802 0.0751 

100 0.0762 0.0653 0.0516 0.0718 
300 0.0468 0.0569 0.0411 0.0647 
500 0.0442 0.0549 0.0387 0.0635 

2.10. Applications 
Here, we use two data sets to illustrate the power of the 

proposed 2SQLindely distribution. We compare the 
proposed distribution with the 2SQLindely, QL, Lindley 
and exponential distributions. 

The first real data set is data of survival times (in days) 
of 72 guinea pigs infected with virulent tubercle bacilli, 
observed and reported by [19]. 

 
1, 33, 44, 56, 59, 72, 74, 77, 92, 93, 96, 100, 100, 102, 
105,107, 107, 108, 108, 108, 109, 112, 113, 115, 116, 
120, 121, 122, 122, 124,130, 134, 136, 139, 144, 146, 
153, 159, 160, 163, 163, 168, 171, 172, 176, 
183, 195, 196, 197, 202, 213, 215, 216, 222, 230, 231, 
240, 245, 251, 253,254, 254, 278, 293, 327, 342,347, 
361, 402, 432, 458, 555. 
 
The second real data set represents the waiting times (in 

minutes) before service of 100 Bank customers and 
examined and analyzed by [2]. 

 
0.8, 0.8, 1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1,3.2, 
3.3, 3.5, 3.6, 4.0, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 
4.7, 4.8, 4.9 ,4.9, 5.0, 5.3, 5.5, 5.7, 5.7, 6.1,,6.2, 6.2, 6.2, 
6.3, 6.7 ,6.9 ,7.1, 7.1, 7.1, 7.1, 7.4, 7.6, 7.7, 8.0, 8.2, 8.6, 
8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5, 9.6,9.7, 9.8, 10.7, 10.9, 
11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9, 12.4,12.5, 12.9, 
13.0, 13.1, 13.3 , 13.6 , 13.7, 13.9, 14.1, 15.4, 15.4, 
17.3,17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3, 
21.4, 21.9, 23.0,27.0, 31.6, 33.1, 38.5 
 
For comparing the goodness of fit of the models, we 

found the unknown parameters by the maximum likelihood 
method, -2log likelihood ( −2𝑙𝑙(. ) ), AIC (Akaike 
Information Criterion), BIC (Bayesian Information 
Criterion), Corrected Akaike Information Criterion 
( CAIC ) , Kolmogorov-Smirnov(K-S) and Cramérvon 
Mises Wn

2 statistic, given by 

 AIC =  −2l(. ) +  2k, 

 ( )2k k 1
CAIC AIC ,

n k 1
+

= +
− −

 

 BIC =  −2l(. ) +  kln(n) ,  

 ( ) ( )i i
max i i 1K S F x , F x

i n n
 −    − = − −        

 

and 

 ( )
2n

2
n i

i 1

1 2i 1W F x
12n 2n=

− = + −  
∑  
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Table 3. MLEs and the measures −𝟐𝟐𝟐𝟐(. ), AIC, BIC, CAIA,K-S and 𝐖𝐖𝐧𝐧
𝟐𝟐for First data set 

Distribution Estimates −2𝑙𝑙(. ) 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 K-S Wn
2 

2SQLindely 𝛼𝛼� = 99.455 
𝜃𝜃� = 0.011 871.587 875.587 875.761 880.141 0.109 0.29 

QLindley 𝛼𝛼� = 46.762 
𝜃𝜃� = 0.0054 899.876 903.876 904.05 908.429 0.232 1.319 

Lindley 𝜃𝜃� = 0.013 897.228 881.228 881.285 883.505 0.224 1.404 

Exp 𝜃𝜃� = 0.0052 899.897 901.955 901.955 904.174 0.246 1.32 

Table 4. MLEs and the measures −𝟐𝟐𝟐𝟐(. ), AIC, BIC, CAIA,K-S and 𝐖𝐖𝐧𝐧
𝟐𝟐 for second data set 

Distribution Estimates −2𝑙𝑙(. ) 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 K-S Wn
2 

2SQLindely 𝛼𝛼� = 66.813 
𝜃𝜃� = 0.205 634.603 638.603 638.727 643.813 0.042 0.028 

QLindley 𝛼𝛼� = 156.811 
𝜃𝜃� = 0.102 658.04 662.04 662.164 667.25 0.173 0.715 

Lindley 𝜃𝜃� = 0.187 638.076 640.076 640.117 642.681 0.068 0.058 

Exp 𝜃𝜃� = 0.101 658.042 660.042 660.083 662.647 0.173 0.715 

 
Table 3 and Table 4 summarize the results of the Fitted 

2SQLindely, QL, Lindley and exponential distributions 
for the two considered data sets. 

 
Figure 4. Estimated pdfs for the first data set 

 
Figure 5. Estimated cdfs for the first data set. 

 
Figure 6. Estimated pdfs for the second data set  

 
Figure 7. Estimated cdfs for the second data set. 

From Table 3 and Table 4, it is obvious that the 
smallest −2l(. ), AIC, BIC, CAIA,K-S and Wn

2statistic are  
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acquired for the 2SQLindely distribution. In summary, we 
can conclude that the 2SQLindely model can be adequate 
for modeling these data. 

3. On the Difference of Two Independent 
Quasi Lindley Distribution  

This section is devoted to the difference of two 
independent random variables following the QL 
distribution with pdf given by equation (2), 2DQLindely 
distribution. 

3.1. Definition 
Let 𝑌𝑌1 and 𝑌𝑌2  be two independent random variables 

following the QL distribution with parameters 𝛼𝛼  and 𝜃𝜃 . 
Then, the random variable 𝑋𝑋 = 𝑌𝑌1 − 𝑌𝑌2has the pdf given 
by : 

 ( )
( )

( )( )2
2 2 1 2 2 1 ,

4 1
, 0, 1

xef x x

x

θθ θ α α α
α

θ α

−
= + + + +

+

∈ > > −

 (19) 

Proof: Since the support of 𝑌𝑌1  and 𝑌𝑌2  is (0, +∞) and the 
support of X is ℝ, let us notice that the cdf and pdf of −𝑌𝑌2 
are, respectively, given by 

 ( )**
1, , , 0, 0, 1

1
yyG y e yθα θα θ θ α

α
+ −

= < > > −
+

 

 ( ) ( )
** , , , 0, 0, 1

1
yy

g y e yθθ α θ
α θ θ α

α
−

= < > > −
+

 

Since Y1 and - Y2 are independent, the pdf of X is given 
by the convolution product 
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∫

∫

 

When 𝑥𝑥 ≥ 0, we have 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥;  0)  =  0 implying that 

 ( )
( )

( ) 2
2 2 1 2 2 1

4 1
xf x e xθθ θ α α α

α
−  = + + + + +

 

When 𝑥𝑥 < 0, we have 𝑖𝑖𝑖𝑖𝑖𝑖(𝑥𝑥;  0)  =  0 implying that 

 ( )
( )

( )( )2
2 2 1 2 2 1

4 1
xf x e xθθ θ α α α

α
= − + + + +

+
 

By putting the above results together, we obtain the 
desired result.  

Like the distribution of the sum of two independent 
variables, this distribution is considered entirely new as it 
has not been previously deduced and is considered a  
 

generalized distribution for the distribution of the 
difference between two independent variables for which 
the Lindley distribution provided by Chesneau, et al 
(2020). Whereas, through this research and in what part if 
𝛼𝛼 = 𝜃𝜃  placed, we obtain the same results as that of 
Chesneau, et al (2020). 

The cdf of the 2DQLindley distribution is given by 
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Proof:𝑥𝑥 < 0 by using (19), we have 
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Since the distribution of X is symmetric around 0, for 
𝑥𝑥 ≥  0 we have 
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We obtain the desired result by putting the above 
equalities together.  

By using 𝐹𝐹(𝑥𝑥), the corresponding survival function is 
given by 
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The hazard rate function, hrf, is given by 
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Also, the corresponding cumulative hazard rate 
function, hrf, is given by 

 

( ) ( )( )

( )
( )
( )

( ) ( )
( )
( )

2

2

2

Ω ln

2 11ln 1 , 0
2 14 1

2 1
ln 4 2ln 1 ln , 0

2 1

x

x S x

e x
x

x
x x

θα

θ αα

θ α
α θ

α

= −

   +   − − <
   − ++   =
 + 
  + + + + ≥
  + + 

(23) 

The corresponding quantile function, say 𝑄𝑄(𝑢𝑢),  
can be obtained by solving the following equation: 
𝐹𝐹(𝑄𝑄(𝑢𝑢))  =  𝑄𝑄(𝐹𝐹(𝑢𝑢)), 𝑢𝑢 ∈  (0, 1). It cannot be presented 
analytically but can be determined numerically for a given 
𝛼𝛼 and 𝜃𝜃. 

Figure 8, Figure 9 and Figure 10 show the plots of the 
pdf, cdf and hrf for various values of the parameters 
α and , θ respectively. 

 
Figure 8. The pdf of the 2DQLindley distribution for some values of the 
parameters 

 
Figure 9. The cdf of the 2DQLindley distribution for some values of the 
parameters 

 
Figure 10. The hrf of the 2DQLindley distribution for some values of the 
parameters. 

3.2. Mixture 
Let 𝑍𝑍1, 𝑍𝑍2𝑎𝑎𝑎𝑎𝑎𝑎 𝑍𝑍3  be three random variables following 

the Laplace distribution with parameter 𝜃𝜃  and B a  
random variable following the Bernoulli distribution with 

parameter 
( )

2

2 ,
1

α

α+
 all these random variables are 

independent. Let X be a random variable following the 
2DQLindley distribution with parameters 𝛼𝛼 and 𝜃𝜃. Then, 
we have the following stochastic representation: 

 𝑋𝑋  =
(𝑑𝑑) 𝑍𝑍1𝐵𝐵 + (1 − 𝐵𝐵)(𝑍𝑍2 + 𝑍𝑍3) 

Proof: It is enough to remark that we can write 𝑓𝑓(𝑥𝑥) given 
by (19) as 
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One can notice that 𝑓𝑓1(𝑥𝑥)  is the pdf of the Laplace 
distribution with parameter 𝜃𝜃 r and 𝑓𝑓2(𝑥𝑥)is the pdf of the 
sum of two independent random variables both following 
the Laplace distribution with parameter  𝜃𝜃  as common 
distribution, see, [Kotz, et al (2001) , Section 2.3].  

3.3. Moments 
The rth moment about origin of the 2DQLindley has 

been obtained as 
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Proof: Since the distribution of X is symmetric around 0 
and the integral is well defined, for any 𝑠𝑠 ∈ ℕ, we have 
𝜇𝜇2𝑆𝑆+1
∗ = 0. By the use of the gamma function, for any 
𝑠𝑠 ∈ ℕ, we have 
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By distinguishing the odd and even integer, we can get 
the proof.  

Also, owing to the rth moment, we have 
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In particular, the mean of X is given by 𝜇𝜇 =  𝜇𝜇1
∗ = 0 

and the variance of X is given by 
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We can see that the variance of the 2SQLindley and 
2DQLindley distributions are the same 

The skewness of X is equal to 0 and the kurtosis of X is 
given by 
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3.4. Moment Generating Function 
The moment generating function Mx(t)  of a random 

variable X ~2DQLindley(𝛼𝛼, 𝜃𝜃) is given by 
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Proof. Let us recall that, for any 𝑡𝑡 ∈ ℝ  and a random 
variable X following the QL distribution with parameters 

α and θ .the moment generating function of X is given by 
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Hence, using the representation 𝑋𝑋 = 𝑌𝑌1 − 𝑌𝑌2 with 𝑌𝑌1and 
(−𝑌𝑌2)  independent and identically distributed, the 
characteristic function for X is given by 

 

( ) ( ) ( ) ( )
( )

( )( )
( )

( )( )

( )

( ) ( )

1 2

2 2

22 2 2 2

22 2 2

1 1

1

1

x y yM t M t M t

t t

t t

t

t

θ αθ α θ θ αθ α θ

α θ α θ

θ θ α α

α θ

−= −

− + − +
= ×

+ − + +

 + −  =
+ −

 

We can also write themoment generating function as 
follow, 
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which is exactly the moment generating function of 
 𝑍𝑍1𝐵𝐵 + (1 − 𝐵𝐵)(𝑍𝑍2 + 𝑍𝑍3) , Which reflect the targeted 
result. 

3.5. Characteristic Function 
Suppose that the random variable X have the 

X ~2𝐷𝐷QLindley(α, θ) then characteristic function, 𝛷𝛷𝑥𝑥(𝑡𝑡), 
is 
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Where i = √−1. 
Proof: 

The proof is simple. 

3.6. Maximum Likelihood Estimation (MLE) 
Assume 𝑥𝑥1, . . . , 𝑥𝑥𝑛𝑛  be a random sample of size n from 

2DQLindley(α, θ)  then the likelihood function can be 
written as 
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By accumulation taking logarithm of equation (27), and 
the log- likelihood function can be written as 
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Maximizing 𝑙𝑙(𝛼𝛼, 𝜃𝜃)with respect to 𝛼𝛼 and θ, we have the 
following system with non-linear equations 
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This equation cannot be solved analytically. However, 
some numerical algorithm allows to approach the solution 
in a precise way. 

3.7. Simulation Study 

Table 5. Simulation results for the 2DQLindley distribution at  
(𝜶𝜶, 𝜽𝜽) = (1.3,1.7)  

n Bais (𝛼𝛼) MSE(𝛼𝛼) Bais(𝜃𝜃) MSE(𝜃𝜃) 
20 0.1237 0.1734 0.0994 0.1654 
40 0.0978 0.1463 0.0971 0.1327 

100 0.0813 0.0916 0.0823 0.0997 
300 0.0778 0.0897 0.0678 0.0791 
500 0.0751 0.0874 0.0654 0.0783 

Table 6. Simulation results for the 2DQLindley distribution at  
(𝜶𝜶, 𝜽𝜽) = (0.4,0.9) 

n Bais (𝛼𝛼) MSE(𝛼𝛼) Bais(𝜃𝜃) MSE(𝜃𝜃) 
20 0.0998 0.1549 0.0934 0.1449 
40 0.0962 0.1332 0.0887 0.1167 

100 0.0842 0.1009 0.0841 0.0911 
300 0.0766 0.0894 0.0699 0.0877 
500 0.0691 0.0799 0.0687 0.0832 

 
In this section, we estimate the bias (Bias(.)) and the 

mean square error (MSE(.)) for the parameters (𝛼𝛼, 𝜃𝜃) = 
(1.3,1.7),(0.4,0.9) using simulation study. The population 
parameter is generated using software “Mathcad 14” 
package program. The sampling distributions are obtained 
for different sample sizes n = [20,40, 100, 300, 500] from 

N= 1000 replications. The simulations results are reported 
in Table 5, Table 6. 

3.8. Applications 
In this section, we analyze two data sets in order to 

illustrate the good performance of the 2DQLindley 
distribution to compare with the Laplace and 2SLaplace 
distributions, both with parameters standardly denoted by 
𝜇𝜇  and 𝜃𝜃 . Here, we consider an extended form of the 
2DQLindley distribution by adding the location parameter 
𝜇𝜇  in the pdf of the 2DQLindley distribution. Thus, the 
related pdf is given by 
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The first data sets correspond to the tensile strength  
of craft paper, reported in [20]. The data set are given 
below: 

 
6.3 11.1 20.0 24.0 26.1 30.0 33.8 34.0 38.1 39.9 42.0 
46.1 53.1 52.0 52.5 48.0 42.8 27.8 21.9 
 
The second data set representing lung cancer rates data for 

44 US states is given by www.calvin.edu/stob/data/cigs.csv. 
The data are given below:  

 
17.05 19.8, 15.98 22.07 22.83 24.55 27.27 23.57 13.58 
22.8 20.3 16.59 16.84 17.71 25.45 20.94,26.48 22.04 
22.72 14.2 15.6 20.98 19.5 16.7 23.03 25.95 14.59 
25.02 12.12 21.89,19.45 12.11,23.68 17.45 14.11 17.6 
20.74 12.01 21.22 20.34 20.55 15.53 15.92 25.88 
 
Table 7 and Table 8 summarize the results of the Fitted 

2DQLindley, Laplace and 2SLaplace distributions for the 
two considered data sets. 

Table 7. MLEs and the measures −𝟐𝟐𝒍𝒍(. ), AIC, BIC, CAIA,K-S and 𝐖𝐖𝐧𝐧
𝟐𝟐 for First data 

Distribution  Estimates −2𝑙𝑙(. ) 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 K-S Wn
2 

2DQLindley  
𝛼𝛼� = 0.961 
𝜃𝜃� = 0.126 
𝜇̂𝜇 = 34.00 

155.049 161.049 162.649 163.882 0.323 1.028 

Laplace  
𝜃𝜃� = 0.015 
𝜇̂𝜇 = 34.00 

172.105 176.105 176.855 177.993 0.996 6.333 

2SLaplace  
𝜃𝜃� = 0.136 
𝜇̂𝜇 = 34.805 

353.151 357.151 357.901 359.04 0.389 1.059 

Table 8. MLEs and the measures −𝟐𝟐𝟐𝟐(. ), AIC, BIC, CAIA,K-S and 𝐖𝐖𝐧𝐧
𝟐𝟐 for second data 

Distribution Estimates −2𝑙𝑙(. ) 𝐴𝐴𝐴𝐴𝐴𝐴 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐵𝐵𝐵𝐵𝐵𝐵 K-S Wn
2 

2DQLindley 
𝛼𝛼� = 1.345 
𝜃𝜃� = 0.386 
𝜇̂𝜇 = 20.3 

257.793 263.793 264.293 269.146 0.268 0.632 

Laplace 𝜃𝜃� = 0.025 
𝜇̂𝜇 = 20.32 

351.565 355.565 355.858 359.134 0.998 14.665 

2SLaplace 
𝜃𝜃� = 0.433 
𝜇̂𝜇 = 19.862 

307.923 311.923 312.215 315.491 0.279 0.692 
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Figure 11. Estimated pdfs for the first data set 

 
Figure 12. Estimated cdfs for the first data set 

 
Figure 13. Estimated pdfs for the second data set 

 
Figure 14. Estimated cdfs for the second data set 

Figure 11, Figure 12, Figure 13 and Figure 14 shown 
that the smallest −2l(. ) , AIC, BIC, CAIA,K-S and 
Wn

2statistic are acquired for the 2DQLindley distribution. 
In summary, we can conclude that the 2DQLindley model 
can be adequate for modeling these data. 

4. Concluding Remarks 

In this paper, we have derived single representations for 
the exact distribution of the sum and difference of 
independent QL random variables. We referred to the 
distributions of sum and difference of two independent QL 
random variables as the 2SQLindely and 2DQLindley 
distributions, respectively. Statistical properties such as 
moments, incomplete moments, characteristic function 
and extreme order statistics of the 2SQLindely distribution 
have been provided. At the same time, a comprehensive 
study of statistical properties of the 2DQLindley 
distribution also has been discussed. The model 
parameters are estimated by maximum likelihood method 
for both cases. From simulation studies, the performance 
of the maximum likelihood estimators has been assessed. 
The new models provide consistently better fit than some 
classical models available in the literature. In conclusion, 
proposed model with their attracting properties should 
have a promising future in distribution theory. 

Finally, we can say this paper is a generalization of the 
results were obtained in Chesneau, et al (2020) when 𝛼𝛼 = 𝜃𝜃. 
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