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Abstract  In this paper, we propose a new class of Gumbel generated distributions called Gumbel-Marshall-Olkin 
family of distributions. The new family of distributions is represented as linear mixture of exponentiated-G 
distribution. Some of the sub-models are presented. We derived some characterizations such as the quantile, 
moments, moment generating function, entropy and order statistics of the proposed family of distributions. The 
estimation of the unknown parameters of the new class of distribution is through the maximum likelihood. The 
consistency of the MLEs of the sub-model is assessed by means of simulation. Furthermore, we derive the bivariate 
density function of the new class of distributions. Two real life data sets are used to illustrate the potential usefulness 
of the sub-models of the proposed class of distributions. The results of the applications clearly indicate that the  
sub-models of the proposed class of distribution provided better fit among the other competing models. 
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1. Introduction 

In recent years, there have been growing interests in 
developing families of statistical distributions by 
extending already existing distributions through the 
addition of one or more parameters. The primary focus is 
to generate more flexible distributions that will provide 
better fits to many practical situations where ordinarily the 
classical distributions would not have provided adequate 
fits. [1] proposed a method of generating new family  
of distributions for any baseline distribution with 
cumulative density function (cdf) ( );F x ξ  and define the 

corresponding cdf ( ); ,G x p ξ  as 

 ( ) ( )
( )
;

; , ; 0
1 ;

F x
G x p p

pF x
ξ

ξ
ξ

= < < ∞
−

  (1) 

where 1p p= −  and ( ) ( ); 1 ;F x F xξ ξ= − is the survival 
function of the baseline distribution with vector of 
parameters ξ . For 1p = , ( ) ( ); , ;G x p F xξ ξ= . 

In the literatures, there are many other families  
of distributions such are exponentaited-G by [2],  
beta–G by [3], transmuted-G by [4], gamma-G [5], 
Kumaraswamy-G by Cordeiro and de Castro (2011) [6], 
McDonald-G by [7]. 

Furthermore, [8] proposed a method of generating 
families of continuous distribution called the  
transformed-transformer (T-X) with the cdf of a class of 
continuous distributions for any given baseline 
distribution ( );F x ξ  defined as 

 ( ) ( )
( )( )

( )( )( )
;

;  ;
W F x

a
G x r t dt R W F x

ξ

θ ξ= =∫   

and the corresponding probability density function (pdf) is 
given by 

 ( ) ( )( )( ) ( )( ); ; ;g x r W F x W F x
x

θ ξ ξ∂ =  ∂ 
  

where ( )( );W F x ξ  satisfies the following conditions: 

( )( ) [ ]; ,W F x a bξ ∈ , ( )( );W F x ξ is differentiable and 

monotonically non-decreasing, ( )( );W F x aξ → as 

x → −∞  and ( )( );W F x bξ → as x →∞ .  
[9] proposed Gumbel-G family of distributions 

following [8]. However, in this paper, we propose a new 
wider class of continuous distributions which generalizes 
the Gumbel-G family of distributions by taking 

 ( )( ) ( )( )( ) 11; log ; 1MOW F x G xξ ξ
−− 

= −  
 
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and 

 ( ) 1 exp exp expt tr t µ µ
σ σ σ

  −   −    = − − −       
       

  

Here, ( );MOG x ξ is the cdf of eq. (1). 
The new wider class of continuous distributions is 

called Gumbel Marshall Olkin family of distributions 
(GMO-G) having cdf and pdf are respectively given by 

 ( ) ( )
( )

1 ;
; exp

;
F x

G x Bp
F x

σ ξ
θ

ξ

  
 = −      

   (2) 

and  
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  
× −       

 

  (3) 

where expB µ
σ
 =  
 

, ( ), , ,pθ µ σ ξ=  is the vector of 

parameters of the GMO-G. For 1p =  in eqs. (2) and (3), 
GMO-G reduces to the cdf and pdf of Gumbel-G of [9], 
which is a special case of the newly proposed family of 
distributions.. 

The hazard rate function (hrf) and survival function (s.f) 
of GMO-G are respectively given by 
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and 

 ( )
( )

1 ;
. 1 exp .

;
F x

S f Bp
F x

σ ξ
ξ

  
 = − −      

 

The main motivations behind this paper are to generate 
more flexible distributions having bimodal, bathtub, 
symmetric, monotone increasing, increasing-decreasing-
increasing, J and reverse-J shapes; hazard rates of constant, 
J, reverse-J, monotone increasing, increasing-decreasing-
increasing shapes as shown in Figure 2, Figure 3, Figure 4 
and Figure 5; construct heavy-tailed distributions which 
are not longer-tailed for modeling real-life data as shown 
in figure1; and generate models that will provide better fit 
even when compared with models having the same 
baseline distribution. 

The remaining part of the paper is organized as follows. 
The linear representation of the distribution and density 
functions of the new class of distributions are presented in 
section 2. In section 3, we presented some special models  
 

of the proposed new family of distributions. The quantile 
function is presented in section 4. In section 5, the shapes 
of density and hazard rate functions are discussed. We 
derived the moments including the ordinary, incomplete 
and generating function in section 6. The Entropy and the 
distribution of the order statistics are presented in sections 
7 and 8. In section 9, we presented the method of 
estimation of the unknown parameters of the new family 
of distributions. Simulation studies on the consistency of 
the MLEs are presented in section 10. Bivariate extension 
of the proposed family of distribution is presented in 
section 11. Finally in section 12, we provided the 
concluding remarks.  

2. Linear Representation  

Considering some useful series expansion 

 ( ) ( )
0

1
exp

!

i
i

i
z z

i

∞

=

−
− = ∑   

and  

 ( ) ( )
0

1 1 .n i i

i

n
z z

i

∞

=

 
− = −  

 
∑   

Using the series expansion above, equation (2) can re-
written as mixture of exponentiated-G (exp-G) cumulative 
function given by 

 ( ) ( )
0

; m
m

m
G x t H xθ

∞

=
= ∑   (4) 

where 

 ( ) ( )
, , 0

1
1 .

!     

i j k im i
m

i j k

i i kj
t B p

mi j k
σ σ σ

+ +∞

=

  − −    = −         
∑   

Here ( ) ( )H x F x γ
γ =  is the cdf of Exp-G of power 

parameter γ  . See [2,10,11,12]. 
Some mathematical properties of Gumbel Marshall 

Olkin –G family of distributions can be derived  
from those properties of the EXP-G distribution. See 
[11,12,13]. 

Differentiating eq. (4), eq. (3) can be re-written as 

 ( ) ( ) ( )1
0

1 .m m
m

g x m t h x
∞

+
=

= +∑  (5) 

Here, ( ) ( ) ( ) 1h x f x F x γ
γ γ −=  is the density function 

of Exp-G with power parameter .γ   

3. Special Models 

In this section, we consider two of the special models of 
GMO-G. However, equation (3) will be most tractable 
when the cdf and pdf of the baseline distribution have 
simply analytic expression. 
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3.1. GMO-Normal (GMO-N) Distribution 

Suppose ( )zΦ  and ( )zφ  denotes the cdf and pdf of 

standard normal distribution where 1

1

xz µ
σ
−

= ;  

1,x µ ∈ , 1 0σ > , then the pdf of GMO-N distribution is 
given by  

 

( ) ( )
( ) ( )( )
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( )( )
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Bp z z
g x
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σ σ

σ
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−

−
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=   Φ −Φ −Φ 

 
  Φ

× −    −Φ   
 

 

Here, ( )1 1, , , ,pθ µ σ µ σ=  is the parameter vector of 
GMO-N distribution. Figure 2 shows some possible 
shapes which are not limited to bathtub, symmetric,  
J-shape and monotone increasing shapes for some selected 
parameter values. Figure 3 also shows some possible 
shapes of the hazard rate function for some selected 
parameter values. These shapes indicate the flexibility of 
GMO-N and its potential to model real-life data. 

3.2. GMO-Weibull (GMO-W) Distribution 
A random variable with  

 ( ) 1c f expd xF x
α

β

   = − −    
  

and  

 ( )
1

exp ;pdf x xf x
α αα

β β β

−      = −        
 

where 0α > and 0β >  are the shape and scale 
parameters is said to follow Weibull distribution. By 
substituting ( )F x  and ( )f x  in equation (3), the pdf of 
GMO-W is defined as 
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1 1

1 1
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      −      
 

       × − −        
 

  

The plots of the pdf and hrf of GMO-W distribution  
for selected parameter values are shown in Figure 4 and 
Figure 5 respectively. Shapes such as bimodal, j and 
reverse-J, symmetric and left-skewed are for the density  
 

function while constant, S-shape, monotone increasing, 
increasing-decreasing-increasing shapes are for hazard 
rate function.  

4. Quantile Function 

The quantile function (qf) of GMO-G family is 
obtained by inverting equation (1.2) and it is given by 

 ( ) ( ) ( )( )( ) 1
1 11 ln .GQ u F u Q B p u σσ

−
− − − 

= = −  
 

 (6) 

Here, ( )0,1u∈  and ( )GQ u  is the qf of the baseline 
distribution. 

The effect of the parameters GMO-G on skewness and 
kurtosis are determined by its quantile measures using the 
Bowley’s skewness and Moor’s kurtosis measures. These 
measures are respectively given by 

 ( ) ( ) ( )
( ) ( )

1/ 4 3 / 4 2 1/ 2
3 / 4 1/ 4

Q Q Q
skewness

Q Q
+ −

=
−

 

and 

 ( ) ( ) ( ) ( )
( ) ( )

7 / 8 5 / 8 3 / 8 1/ 8
.

6 / 8 2 / 8
Q Q Q Q

kurtosis
Q Q

− + −
=

−
  

However, these measures are less sensitive to outliers 
and they do exist for distribution with moments. We 
considered the effect of parameters p  and 1σ  on the 
skewness and kurtosis of GMO-Normal. The plots are 
presented in Figure 1. Both measures equal zero for the 
normal distribution.  

 

Figure 1. Plot of Skewness and Kurtosis of GMO-Normal distribution 

Proposition 1: If Y  follows Gumbel distribution, then 
for any baseline distribution with cdf ( )F x  the qf can be 
expressed as 

 ( ) ( )( )( ) 11 1 11 expQ u F V R u
−− − −  

= + −     
  (7) 

where ( )1 .V −  is the qf of Marshall Olkin and ( )1R u−  the 
qf of the transformed distribution. 
PROOF 

( )1 .V −  and ( )1R u−  are obtained by inverting (1) and 

cdf of ( )r u and are respectively given by 
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 ( )1 1

1
t t pV t V

t p
− −  −

=   − 
 

and 

 ( )
1

1 1 ln ln .BR u R u

σ
−− −

        = −          

 

Substituting ( )1 .V −  and ( )1R u− in (7) and simplifying, 
(6) is obtained. 

5. Shape of GMO-G pdf and Hazard Rate 
Function 

The shapes of the density and hazard rate function of 
GMO-G can be described analytically. The critical points 
of the GMO-G density function are the roots of the 
equation below 
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By equation (8), there may be more than one root. 
Suppose 0x x=  is a root of (8), then ( )0 0,xτ <  

( )0 0xτ > , and ( )0 0xτ =  correspond to the local 
maximum, local minimum, and point of reflection 

respectively. Here ( ) ( )2

2
log g x

x
x

τ
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=
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 is given by 
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Figure 2 and Figure 4 show the graphical pdf plots  
of two GMO-G sub-models (GMO-N and GMO-W)  
for selected parameter values indicating different  
shapes. 

Furthermore, the shape of the GMO-G hazard rate 
function can be described analytically. The critical points 
of the GMO-G hazard rate function are the roots of the  
eq. (9). 
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There may be more than one root of equation (9). Thus, 
if 0x x=  is a root of (9), then ( )0 0xτ <  , ( )0 0xΨ > , and 
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Figure 2. Plots of pdf of GMO-Normal for some selected parameter 
values 

 

Figure 3. Plots of hazard rate function of GMO-Normal for some 
selected parameter values 

 

Figure 4. Plots of pdf of GMO-Weibull for some selected parameter 
values 

 

Figure 5. Plots of hazard rate function of GMO-Weibull for some 
selected parameter values. 
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Figure 3 and Figure 5 show the graphical hrf plots of 
two GMO-G sub-models (GMO-N and GMO-W) for 
selected parameter values indicating different shapes. 

6. Moments 

In this section, we obtained some moments associated 
with GMO-G family of distribution. 

6.1. Ordinary Moment 
Suppose X  is a random variable from GMO-G 

distribution, then the thn  moment about the origin can be 
expressed by two formulas. 

Firstly, let a random variable 1Y ~ mExp G+ −  having 

pdf ( )1mh x+  with power parameter 1m + , then the thn
moment of X is given by  

 ( ) ( )
0

.n n
m

m
E X t E Y

∞

=
= ∑  

Secondly,  
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0

1 , m ;n
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E X m t nψ

∞

=
= +∑  

where  

 ( ) ( )( )
1

0
, .n mn m Q u u duψ = ∫   

The incomplete moment plays important role in 
determining measures of inequality such as Lorenz, 
Bonferroni and Gini measures of inequality [14]. For a 
random variable having GMO-G density function, the thw  
incomplete moment is given by 
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∫
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6.2. Moment Generating Function 

The moment generating function (mgf) ( ) ( )tXM t E e=  

of a random variable X having GMO-G defined as can be 
obtained firstly by 

 ( ) ( )1
0

.m m
m

M t t M t
∞

+
=

= ∑  

where ( )1mM t+  is the mgf of Y~Expm+1-G distribution.  
Secondly, can be obtained by 

 ( ) ( ) ( )
0

1 ,m
m

M t m t t mϕ
∞

=
= +∑ . 

where ( ) ( )( )
1

0
, exp mt m tQ u u duϕ = ∫ , ( )Q u  and u  are as 

defined in equation (6). 

7. Entropy 

The measure of uncertainty of a random variable is through 
entropy. The Renyi and Shannon entropies are the two popular 
entropies. However, the Renyi entropy is a generalization 
of Shannon entropy. For a random variable X  with pdf 
( )f x , according to [15], the Renyi entropy is defined as 
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However, suppose X~GMO-G, the Renyi entropy is 
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8. Order Statistics 
Let 1 2, ,..., nX X X  be a random sample from a population 
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Following [16], the pdf of thi  ordered statistics of sample 
of size n from GMO-G population is given by 
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 and ( )1qh x+  is pdf of 

Exp-G with power parameter 1q +  . By eq. (10), we can 
obtain the ordinary and incomplete moments, and moment 
generating function of :i nX  for any baseline distribution. 

 

9. Estimation 

We consider the maximum likelihood method for the 
estimation of unknown parameters of GMO-G distribution. 
For a random sample 1 2, ,..., nX X X   of size n  from eq. 
(2), the log-likelihood function is given by 
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The score functions for the parameters of the 
distribution are given by 
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The MLEs say, 
^
Θ  of Θ  can be obtained as the solution 

to the non-linear equations ( ) 0,pU Θ =  ( ) 0,Uµ Θ =  

( ) 0,Uσ Θ =  and ( ) 0.Uξ Θ =  Iterative techniques such as 
a Newton-Raphson type algorithm can be employed to 
evaluate ˆ .Θ  Here, the optim function in R statistical 
software is used to obtain the numerical solution.  
Taking the minus expectation of the partial derivative of 
the score function with respect to the parameters  
of the distribution, we obtain the Fisher’s information 
matrix ( )( ) ( ) ( )3 3 ijv vI a+ × +Θ = ; , 1, 2,3,i j v=  , where v   

is the number of parameters of the baseline distribution. 
However, under general regularity conditions, 
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 the 

asymptotic confidence interval for the parameters of the 
distribution appropriately constructed. 

10. Simulation Studies 

In this section, we assess the performance of the MLEs 
of GMO-Normal distribution, a sub model of GMO-G 
through simulation studies of different starting parameter 
values 2.5,p =  2,µ =  3,σ =  1 1.2,µ =  1 0.8;σ =  

3,p =  1.5,µ =  3,σ =  1 0.5,µ =  1 1.2σ =  and 3.5,p =  
1.5,µ =  3,σ =  1 1.5,µ =  1 0.6.σ =  Simulated samples 

data of sizes n=50, 100, 150 generated by inverting the 
GMO-N distribution function given by 
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average estimates (Mean value), average baises and the 
mean square error (MSE) given respectively by 
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The results of the simulations for the three different 
starting parameter values are respectively shown in  
Table 1, Table 2, and Table 3. The values in the tables 
indicate that as the sample size increases the mean values 
tend to starting parameter values and the MSE decreases 
which conforms to the first order asymptotic theory.  

Table 1. The Mean values, Average bias and MSEs of 1,000 
simulations of the GMO-N distribution for the first set of starting 
parameter values 

Parameter Mean Value Bias MSE 

n = 50 

2.5p =  3.39587 0.8958703 29.42619 

2µ =  2.324494 0.3244933 7.85408 

3σ =  4.099783 1.099783 5.035 

1 1.2µ =  1.201197 0.001197251 3.694475 

1 0.8σ =  0.7983528 -0.001047231 0.4592548 

n = 100 

2.5p =  2.97454 0.4745403 5.70756 

2µ =  2.239961 0.2399611 4.07647 

3σ =  3.737967 0.737967 2.61185 

1 1.2µ =  1.301246 0.1012455 0.7174885 

1 0.8σ =  0.7562551 -0.04374486 0.1087711 

n = 150 

2.5p =  2.84734 0.3473398 4.555363 

2µ =  2.230906 0.2309057 2.829908 

3σ =  3.512312 0.5123116 1.652731 

1 1.2µ =  1.264034 0.06403414 0.4262931 

1 0.8σ =  0.769961 -0.03003901 0.07056685 

Table 2. The Mean values, Average bias and MSEs of 1,000 
simulations of the GMO-N distribution for the second set of starting 
parameter values 

n = 50 

3p =  3.685218 0.6852184 22.85455 

1.5µ =  1.863394 0.3633938 7.211502 

3σ =  4.2039 1.2039 5.375771 

1 0.5µ =  0.6679074 0.1679074 4.131032 

1 1.2σ =  1.118886 -0.08111376 0.5052979 

n = 100 

3p =  3.29551 0.2955102 7.265812 

1.5µ =  1.807605 0.3076048 3.520821 

3σ =  3.745647 0.7456467 2.590324 

1 0.5µ =  0.6247453 0.1247453 1.282261 

1 1.2σ =  1.133319 -0.06668094 0.235327 

n = 150 

3p =  3.217667 0.2176671 5.469239 

1.5µ =  1.771239 0.2712389 2.546943 

3σ =  3.524388 0.5243885 1.660748 

1 0.5µ =  0.5839617 0.08396168 0.7318817 

1 1.2σ =  1.151136 -0.04886168 0.1259547 

Table 3. The Mean values, Average bias and MSEs of 1,000 
simulations of the GMO-N distribution for the third set of starting 
parameter values 

n =50 

3.5p =  4.043453 0.5434532 21.17929 

1.5µ =  1.823817 0.3238172 6.457807 

3σ =  4.135532 1.135532 5.306406 

1 1.5µ =  1.455288 -0.04471154 2.873199 

1 0.6σ =  0.6183294 0.01832943 0.4969151 

n = 100 

3.5p =  3.802545 0.3025448 10.85041 

1.5µ =  1.791826 0.2918256 3.61332 

3σ =  3.738561 0.7385607 2.58047 

1 1.5µ =  1.564739 0.0647388 0.4188419 

1 0.6σ =  0.5682559 -0.0317441 0.06262047 

n = 150 

3.5p =  3.917156 0.4171556 9.941959 

1.5µ =  1.73949 0.2394897 2.494105 

3σ =  3.517443 0.5174426 1.65395 

1 1.5µ =  1.538664 0.03866443 0.2520109 

1 0.6σ =  0.5778611 -0.02213888 0.037728 

11. Bivariate Extension of GMO-G 

Let X and Y be two random variables from GMO-G 
family of distribution, the bivariate cdf is given by 
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By taking the partial derivative of (11) with respect to 
x  and y , the bivariate pdf of GMO-G is given by 
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The marginal distributions are respectively given by 
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The conditional density functions are respectively given 
by 
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12. Applications 
In this section, we considered the applications of two 

sub models of GMO-G (GMO-Weibull and GMO-Lomax) 
to real life data sets to show the potentials of the new class 
of distributions. Comparison with other models having the 
same baseline distribution is made based on goodness-of-
statistics Cramer Von Mises (W*), Anderson Darling, 
Koromogrov-Smirnov, Akaike Information Criterion, and 
Bayesian Information Criterion. The model with the least 
value of goodness-of-fit statistics provides the best fit [17]. 

First data set: The first real data set is on the observed 
survival times (weeks) for AG positive reported by [18]. 
The data set is as follow: 65, 156, 100, 134, 16, 108, 121, 
4, 39, 143, 56, 26, 22, 1, 1, 5, 65. The GMO-Weibull, 
Exponentiated-Weibull(ExpW) due to [2], Beta-Weibull 
(BW) due to [19], Gumbel-Weibull(GuW) due to [9], 
logistic-Weibull(LW) and Weibull distribution are fitted 
to the data set.  

Second data set: The second real data set refers to 30 
devices failure times reported by Meeker and Escobar [20] 
and Tahir et al. [21]. The data set are as follow: 275,13, 
147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 
300, 300, 2, 261, 293, 88,247, 28, 143, 300,  
23, 300, 80, 245, 266. The GMO-Lomax, Beta-Lomax 
(BL) due to [22], Gumbel-Lomax(GuL) due to [23], 
Exponentiated-Lomax(ExpL) due to [24], logistic-Lomax 
(LL) due to [25] and Lomax distribution are fitted to the 
data set.  

The results of the two applications to the real data sets 
are shown in Table 4, Table 5 and Table 6, Table 7 for 
first and second data set respectively. The parameter 
estimates with standard errors in parenthesis are shown in 
Table 4 and Table 6 while the goodness-of-fit statistics are 
contained in Table  5 and Table 7 for the first and second 
data set respectively. The plots of the estimated pdfs and 
empirical cdf with cdfs of some of the competing models 
in the first and second application are shown respectively 
in Figure 6 and Figure 7. The plots in Figure 6 and Figure 7 
indicate that the sub models of the newly proposed class 
of distributions provide better fits among the competing 
models in agreement with the Table 5 and Table 7. 
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Table 4. The parameter estimates and standard errors of (in parentheses) of the first data set 

Model p  µ  σ  a  b  α  θ  

GMOW 0.1962 
(0.6680) 

-1.5159 
(11.9814) 

9.3802 
(10.8786) - - 3.2793 

(4.7433) 
56.6393 

(63.3664) 

GuW 1 2.1061 
(1.3339) 

0.3903 
(0.3838) - - 0.0944 

(0.0622) 
0.0028 

(0.0015) 

BW - - - 0.7967 
(0.4953) 

0.0638 
(0.0161) 

0.8714 
(0.0024) 

2.5268 
(0.0024) 

ExW - - - 1.6149 
(1.7986) - 0.6012 

(0.4083) 
31.1669 

(49.3803) 

LW    1.2009 
(0.5772)  1.6124 

(0.9316) 
92.6622 

(21.1288) 

W - - - - - 0.8841 
(0.1831) 

59.1654 
(16.9361) 

Table 5. The goodness of fit statistics for the first data set 

Model W A AIC BIC K-S -log 

GMOW 0.0235 0.1745 177.2849 181.451 0.1092 83.6425 

GuW 0.2025 1.2495 190.7061 194.0389 0.2002 91.3530 

BW 0.0659 0.4791 181.2613 184.5942 0.1515 86.6317 

ExW 0.0890 0.6165 181.5105 184.0101 0.1698 87.7553 

LW 6.2042 34.4041 179.1987 181.6984 0.9382 86.5994 

W 0.0704 0.5076 178.2193 179.8857 0.1491 87.1096 

 

 

Figure 6. Plots of estimated pdfs and cdfs with empirical cdf of the first 
data set 

 

Figure 7. Plots of estimated pdfs and cdfs with empirical cdf of the 
second data set 

Table 6. The parameter estimates and standard errors of (in parentheses) of the second data set 
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Model p  µ  σ  a  b  α  λ  

GMOL 7.3083 
(180.5080) 

2.6518 
(24.8572) 

4.5207 
(1.9515) - - 17.8241 

(11.4496) 
330.455 

(194.4526) 

GuL 1 5.0809 
(2.9066) 

4.3659 
(1.8972) - - 9.3140 

(5.7825) 
120.9559 
(68.7018) 

BL - - - 1.6054 
(0.4314) 

16.8237 
(26.7395) 

0.1328 
(0.2079) 

151.9141 
(94.0866) 

ExL - - - 1.4554 
(0.3814) - 2.1243 

(0.8548) 
197.4543 

(111.6175) 

LL - - - 13.7426 
(2.4047) - 0.0991 

(0.0078) 
0.0054 

(0.0041) 

lomax      1.0702 
(0.3307) 

103.3856 
(44.6811) 

Table 7. The goodness of fit statistics of the second data set  

Model W A AIC BIC K-S -log 

GMOL 0.3129 1.8752 380.6972 387.7032 0.1977 185.3486 

GuL 0.3601 2.1019 383.5192 389.1240 0.2062 187.7596 

BL 0.4044 2.2962 387.06 392.6648 0.2155 189.53 

ExL 0.3968 2.2618 384.355 388.5586 0.2156 189.1775 

LL 0.4487 2.4989 390.6905 394.8941 0.2498 192.3453 

lomax 0.4992 2.7417 389.5037 392.3061 0.8846 192.7519 

 
13. Conclusion 

We proposed a new class of Gumbel generated family 
of distributions called Gumbel-Marshall Olkin-G family 
of distribution which has Gumbel-G as a special model. 
The cdf and pdf of the new class of distributions are 
represented as linear combination of exponentiated-G 
family of distribution. Some sub models of the new class 
of distributions are presented and several continuous 
distributions can be obtained for any baseline distribution. 
Furthermore, some statistical properties such as the 
quantile function. Ordinary and incomplete moments, 
generating function, entropy, and density function of the 
order statistics are derived. The unknown parameters of 
the new family of distributions are estimated through 
maximum likelihood method. The consistency of the 
MLEs is considered using GMO-N by means of 
simulations studies. We further derived the bivariate 
extension of the new class of distributions. Finally, the 
potentials of the new class of the distributions are 
illustrated by means of comparing the GMO-W and 
GMO-Lomax distributions with other competing 
distributions in two real life data sets. The goodness-of-
statistics indicate that the two sub models of the new class 
of distributions provide the best fit among other 
competing models. 
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