
American Journal of Applied Mathematics and Statistics, 2019, Vol. 7, No. 5, 178-186 
Available online at http://pubs.sciepub.com/ajams/7/5/4 
Published by Science and Education Publishing 
DOI:10.12691/ajams-7-5-4 

Exponentiated Gumbel Exponential Distribution: 
Properties and Applications 

Uchenna U Uwadi1,*, Emmanuel W Okereke2, Chukwuemeka O Omekara2 

1Department of Mathematics/Computer Science/Statistics/Informatics, Alex Ekwueme Federal University Ndufu-Alike Ikwo, Nigeria 
2Department of Statistics, Micheal Okpara University of Agriculture, Umudike, Nigeria 

*Corresponding author: uroot3@yahoo.com 

Received September 19, 2019; Revised October 24, 2019; Accepted November 12, 2019 

Abstract  In this article, we proposed a new distribution called exponentiated Gumbel exponential (EGuE) 
distribution. The new distribution is a member of the T-X family obtained through the logit transformation of the 
exponential random variable, using the exponentiated Gumbel distribution as the generator. The mathematical 
properties of the proposed distribution were studied. The maximum likelihood estimates of the parameters of the 
EGuE distribution were derived. The applicability of the new distribution is shown using a real data set. 

Keywords: exponentiated Gumbel distribution, T-X family, maximum likelihood estimation, logit function, 
exponential distribution 

Cite This Article: Uchenna U Uwadi, Emmanuel W Okereke, and Chukwuemeka O Omekara, 
“Exponentiated Gumbel Exponential Distribution: Properties and Applications.” American Journal of Applied 
Mathematics and Statistics, vol. 7, no. 5 (2019): 178-186. doi: 10.12691/ajams-7-5-4. 

1. Introduction 

The development of flexible distributions for modeling 
lifetime data has received widespread attention in recent 
times. This is largely due to the fact that some classical 
distributions are not flexible enough in modeling lifetime 
processes. Many methods have been proposed in the 
literature by statisticians for developing new distributions. 
Lee et al, [1] termed the recent methods of developing 
flexible distribution “method of Combination”. This is 
because these methods attempt to combine existing 
distributions to form a new one or adding parameters to 
existing distribution. Some examples of this method 
include but not limited to the beta-generated family of 
distributions Eugene et al, [2], Kumaraswamy family of 
distributions Jones [3], Cordeiro and de Castro [4], 
exponentiated-G family Gupta et al. [5], transmuted-G 
family Shaw and Buckley [6] and generalized transmuted 
family Alizadeh et al. [7]. 

Alzatreeh et al. [8] introduced the Transformed-
Transformer ( )T X−  family which addressed one of the 
limitations of the beta class by allowing for any continuous 
distribution to be used as a generator. Let T be a random 
variable in the interval [ ], ,c d  c d−∞ < < < ∞  with 

probability density function ( )pdf and cumulative density 

function ( )cdf , ( )r t and ( )R t  respectively. Let the 

function of the cdf ( )F x  of a random variable X be 

defined as ( )( )V F x  such that ( )( )V F x meets the 
conditions stated below: 

I.  ( )( ) [ ], .V F x c d∈  

II.  ( )( )V F x  is differentiable and monotonically  
non-decreasing. 

III. ( )( )V F x c→  as x → −∞ and ( )( )V F x d→  as 
x →∞  

The cdf  of the T X− family is given by  

 ( ) ( ) ( )( )( )
( )( )V F x

c
G x r t dt R V F x= =∫  (1) 

The pdf corresponding to (1) above is  

 ( ) ( )( )( ) ( )( )( )dg x r V F x V F x
dx

=  (2) 

Let ( )( )V F x  be the logit of ( )F x i.e 

( )( ) ( ) ( )( )ln 1V F x F x F x= −  
Hence (1) and (2) can be written in terms of the logit of 
( )F x as 

 ( ) ( )
( ) ( )( )

( ) ( )( )( )
ln 1

ln 1
F x F x

G x r t dt R F x F x
−

−∞

= = −∫ (3) 

and  

 ( ) ( ) ( )( )( ) ( )
( ) ( )( )

ln 1
1
f x

g x r F x F x
F x F x

= − ×
−

 (4) 

respectively. 
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In this paper, we introduced the exponentiated Gumbel 
exponential ( )EGuE  distribution using the T X−  
approach introduced by Alzatreeh et al. [8]. The generator 
used is exponentiated Gumbel distribution while the 
baseline distribution ( )F x  is the exponential distribution. 
The mathematical properties of the new distribution are 
extensively explored. Maximum likelihood estimates of 
the new distribution are derived and the potentiality of the 
proposed model is illustrated using a lifetime data set. 

The rest of this paper is organized as follows. Section 2 
introduces the exponentiated Gumbel exponential 
distribution. Several mathematical properties of the 
proposed model such as the quantile function, shapes of 
the pdf and hrf , moments, entropy, order statistics and 
inequality measures are discussed in Section 3. Estimation 
of the parameters of the model and application of the new 
distribution to real data set is done in Sections 4 and 5 
respectively. Section 6 concludes the paper. 

2. Exponentiated Gumbel Exponential 
Distribution 

Suppose that T is distributed as exponentiated 
Gumbel distribution with cdf and pdf  respectively given 
by Nadarajah [9] 

 ( ) 1 1 exp exp tR t
α

µ
σ

  −  = − − − −   
   

 

and 

 
( )

1

1 exp exp

exp exp exp

tr t

t t

α
α µ
σ σ

µ µ
σ σ

−
  −  = − − −   

   
 −  −   × − − −    

    

 

 , , 0, 0x µ σ α−∞ < < ∞ −∞ < < ∞ > >  

Let the random variable X be exponentially distributed 
with cdf and pdf given respectively by 

 ( ) 1 xF x e θ−= −  

 ( ) , 0, 0xf x e xθθ θ−= > >  

The logit of ( )F x  is  

( ) ( )( ) ( )ln 1 ln 1xF x F x eθ− = − . Thus using (3), the 

cdf EGuE is given by  

 ( ) ( )
1

1 1 1xG x exp B e
α

θ σ−   = − − − −  
    

 (5) 

where expB µ
σ
 =  
 

 

The pdf associated with (5) is obtained by taking the 
derivative of (5) with respect to the random variable x . 
Hence the pdf of EGuE  distribution is  

 

( ) ( ) ( )

( )

1 11

11

1 1

1 1

x x

x
x

Bg x e exp B e

e exp B e

θ θσ σ

θ α
θ σσ

αθ
σ

− − −−

− − − 
 

 
= − − − 

  

   × − − −  
    

 (6) 

The survival function of EGuE  is given by  

 ( ) ( )
1

1 1xS x exp B e
α

θ σ−   = − − −  
    

 

The hazard rate function ( )h x , reversed - hazard rate 

function ( )R x  and cumulative hazard rate function 

( )H x  of EGuE  distribution are respectively given by  

 ( )

( )

( )

( )

1 1

1

1

1

1

1 1

x
x

x

x

B e e exp

x B e

h x
exp B e

θ
θ σσ

θ σ

θ σ

αθ
σ

θ
σ

 − − −  − 

−

−

 
 −  
 
   
− + −         =

  − − − 
  

 

 ( )

( )

( )

( )

( )

1 1

1

1

11

1

1

1 1 1

1 1

x
x

x

x

x

B e e exp

B e

R x

exp B e

exp B e

θ
θ σσ

θ σ

α
θ σ

α
θ σ

αθ
σ

 − − −  − 

−

−

−
−

 
 − 
 
  
− −  
   =

   − − − −  
    

   × − − −  
    

 

and 

 ( ) ( )
1

ln 1 1 1xH x exp B eθ σα
−     = − − − − −        

 

 
Figure 1. Plots of pdf of the EGuE distribution for selected parameter 
values 

The plots of the pdf  , ,cdf  and ( )h x of EGuE  for 
selected parameter values are displayed in Figure 1, 
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Figure 2 and Figure 3 respectively. 

 
Figure 2. Plots of cdf of the EGuE distribution for selected parameter 
values 

 
Figure 3. Plots of h(x) of the EGuE distribution for selected parameter 
values 

3. Mathematical Properties of the (EGuE) 
Distribution 

3.1. Quantile Function 
The quantile function of X  which follows the EGuE  

distribution is given by  

 ( ) ( )
11 1log log 1 1 1Q u u

B

σ

α
θ

−     = − − − +         

 (7) 

Proof: 
The quantile function of EGuE  is obtained by 

inverting (5). Equating the random variable u to (5) we 
have 

 ( )
1

1 1 1xu exp B e
α

θ σ−   = − − − −  
    

 

 ( ) ( )
1 1

1 1 1xexp B e u
α

θ σ α
−   − − − = −  

    
 

 ( ) ( )
1 1

1 log 1 1xB e uθ σ α
−  

− = − − −  
 

 

 ( ) ( )
111 log 1 1xe u

B

σ
θ

α

−
   − = − − −      

 

 ( ) ( )
11 1log log 1 1 1X u Q u

B

σ

α
θ

−     = − − − + =         

 

Substituting 1
2

u = in (7) gives the median of EGuE  

distribution.  

 
1

1 1 1 1log log 1 1
2 2

Q
B

σ

α

θ

−          = − − +           
    

 (8) 

The random variable u  in (7) is uniformly distributed 
in the interval ( )0,1 . ( )Q u  can be used to simulate a 
random sample of EGuE distribution. The skewness 
and Kurtosis of the proposed distribution can be studied 
using measures based on quantiles. The Galton [10] 
skewness ( )S and Moor [11] Kurtosis ( )K  are usually 
used for this purpose. 

These measures of skewness and kurtosis exist even when 
the moments of the distribution do not exist and they are 
not sensitive to outliers.Alizadeh [12]. These are some of 
the advantages of these measures over the ones based on 
moments. The expression for obtaining the Galton skewness 
( )S and Moor’s kurtosis ( )K respectively are given by 

 
( ) ( ) ( )

( ) ( )
3 1 124 4 2

3 1
4 4

Q Q Q
S

Q Q

+ −
=

−
 (9) 

 
( ) ( ) ( ) ( )

( ) ( )
7 5 3 1

8 8 8 8
6 2

8 8

Q Q Q Q
K

Q Q

− + −
=

−
 (10) 

3.2. Shapes of Pdf and Hrf 

The shapes of the pdf  and ( )h x  can be described 
analytically. This can be done by taking their log, 
differentiating with respect to x  and equating to zero. The 
shape of the pdf of EGuE  can be described by  

 

( )
( ) ( )

( )

( )

1 1

1

1

1

1 1
1

1 1

1 1
11 1 0

1

x
x

x

x

x

x

Be e

exp B e

exp B e

e

e

θ
θ σ

θ σ

θ σ

θ

θ

θ
σ

α

σθ
σ

− − −

−

−

−

−

 
− 

 
     − − −   

    −      − − −       
  +     − + + − =   −
 
 

 (11) 

(11) may have more than one root. If 0x x= is a root of 
(11), then it corresponds to a local maximum,  
local minimum or point of inflexion depending on 
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whether ( )0 0,xζ <  ( )0 0xζ > or ( )0 0xζ = where 

( ) ( )( )2

0 2

log
.

d g x
x

dx
ζ =  

The shape of the ( )h x  of EGuE  distribution is 
described by  

 

( )

( )

( )

( )

1 1

1

1

1

1
1

1 1

1 1
11 1 0

1

x
x

x

x

x

x

Be e

exp B e

exp B e

e

e

θ
θ σσ

θ σ

θ σ

θ

θ

θ

σ

σθ
σ

 − − −  − 

−

−

−

−

 
 − 
 
      − −       +     − − −        

  +      − + − + =    −
 
 

 (12) 

The roots of (12) may be more than one. If 0x x= is a 
root of (12), then it corresponds to a local maximum, local 
minimum or point of inflexion depending on whether 
( )0 0xϑ < , ( )0 0xϑ > or ( )0 0xϑ = where 

( ) ( )( )2

0 2

log
.

d h x
x

dx
ϑ =  

3.3. Useful Expansions 

A representation of the pdf and cdf  of EGuE  
distribution is made in this sub-section. The pdf  of 
EGuE  can be written as  

 

( ) ( )
1 1

1

11

1

1

11

x

x

x

C

xx

x

A

Bg x e

eexp B
e

ee exp B
e

θ σ

θ σ

θ

α
θ θ σ
σ

θ

αθ
σ

− −−

−−

−

−
−  −− 

 
−

 
= − 

 
    − −     
      
 

   −  × − −          





 (13) 

Applying general binomial expansion (14) to A in (13) 

 
( ) ( )1

0

1
1 1 ,

0 1

i i

i
z z

i

and z

β β

β

∞
−

=

− 
− = −  

 
> <

∑  (14) 

we have  

 ( )
1

0

1 11
x

i
x

i

eA exp Bi
i e

θ σ

θ
α

−−∞

−
=

  −  − = − −           

∑  

and 

 ( ) ( )
1

0

1 11 1
x

i
x

i

eAC exp B i
i e

θ σ

θ
α

−−∞

−
=

  −  − = − − +           

∑  

Applying power series expansion for exponential 
functions to AC  

 ( ) ( )
, 0

1 1 11
!

j
i j x

jj
x

i j

eAC B i
ij e

θ σ

θ
α

−+ −∞

−
=

 − −  −
= +        
∑  

Substituting for AC  in (13) 

 

( ) ( ) ( )

( ) ( ) ( )

, 0

1 11 1

1 1
1

!

1

i j
jj

i j

j xjx

D

Bg x B i
ij

e e
θ

θ σσ

ααθ
σ

+∞

=

  − +− + + −  

− − 
= + 

 

× −

∑



 

Applying the general binomial expansion for negative 
powers to D  we have 

 
( ) ( ) ( )

( )
( )

, , 0

1 1

11 1 1
!

1

i j

i j k

j k xjj

j kBg x
ij k

B i e
θ

σ

ααθ
σ

σ

+∞

=

 − + + 
 

 − − + +  =      

× +

∑
 

Thus the EGuE  density can be represented as infinite 
linear combination of exponential distribution. Therefore 

 ( )
( )1 1

, , 0

j k x
ijk

i j k
g x W e

θ
σ
 ∞ − + + 
 

=
= ∑  (15) 

where  

 ( ) ( ) ( )1
11 1 1

1
!

ijk

i j
jj

W

j k
B i

ij k

αθ α
σ

σ

+
+

 − − + +  = +     

 

The expansion of cumulative density EGuE  distribution is 
obtained as follows 

 ( )( )
1

11 1

h

xh
x

eG x exp B
e

α
θ σ

θ

−−

−

     −   = − − −             

 

where h  is a positive integer. 

 

( )( )

( )
1

0

11 1

h

p
xh

p
x

p

G x

h eexp B
p e

α
θ σ

θ

−−

−
=

     −  = − − −              

∑
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( )( )

( )
1

0 0

11 exp

h

xh
p q

x
p q

G x

h p eBq
p q e

θ σ

θ
α

−−∞
+

−
= =

     − = − −             

∑ ∑
 

 

( )( ) ( )

( ) ( )
0 , 0

1
!

1

p q mhh

p q m
m xmm x

E

h p
G x

p qm

Bq e e
θ

θ σ σ

α+ +∞

= =

−−−

−   
=   

  

× −

∑ ∑



 (16) 

Applying general binomial expansion for negative 
powers to E  in (16) reduces to 

 
( )( ) ( )

( )

0 , , 0

1 1
!

p q mhh

p q m l

m l xm

mh p l
G x

p qm l

Bq e
θ

σ

α
σ

+ +∞

= =

 − + 
 

 − + −   =        

×

∑ ∑
 

 ( )( )
0 , , 0

exp
hh

pqml
p q m l

mG x V l xθ
σ

∞

= =

  = − +  
  

∑ ∑  (17) 

where  

 ( ) ( )
1 1

!

p q m
m

pqml

mh p l
V Bq

p qm l

α
σ

+ +  − + −   =        

 

3.4. Moments 

If X  is distributed as (6), then its rth  noncentral 
moment is obtained as follows 

 ( ) ( )r r
r E X x g x dxµ

∞

−∞
= = ∫  (18) 

 Substituting (15) in (18) 

 
( )1 1

0
, , 0

j k x
r

r ijk
i j k

W x e dx
θ

σµ
 ∞ − + + ∞  

=
= ∑ ∫  

 
( ) ( )

( )

1

1
, , 0

1

1 1

r

r ijk r
i j k

r
W

j k

θ
µ

σ

− +∞

+
=

Γ +
=

 + + 
 

∑  (19) 

where ijkW  is as defined in (15) and ( ).Γ is a gamma 
function. 

The moment generating function, ( )XM t  of EGuE  
distribution is given by  

 
( )

( ) ( )
0 0! !

X
r r r

tX r

r r

M t

t X tE e E E X
r r

∞ ∞

= =

 
= = = 

  
∑ ∑

 (20) 

Substituting (19) into (20) we have 

 ( )
( ) ( )

( )

1

1
, , , 0

1
! 1 1

rr

X ijk r
r i j k

rtM t W
r

j k

θ

σ

− +∞

+
=

Γ +
=

 + + 
 

∑  (21) 

3.5. Renyi and q-Entropies 
The Renyi entropy of a random variable X is the 

measure of variation of uncertainty. The Renyi entropy is 
given by  

 ( ) ( )
0

1 log 0 1
1RI g x dx for andγγ γ γ

γ

∞  = > ≠ 
−   

∫ (22) 

To obtain the Renyi entropy of the EGuE distribution, 
we substitute (6) in (22) and apply the general binomial 
expansion and power series expansion for exponential 
function. Hence, 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
, 0

1 1

1 1
1

!

exp 1

i j
jj

i j
j

x

Bg x B
j i

j x e

γ
γ

γθ σ σ

γ ααθ γ
σ

θ γ
σ

+∞

=

− + −−

− −  = +  
   

 × − + − 
 

∑
 

Applying the general binomial expansion again  

 

( ) ( ) ( )

( ) ( ) ( )

( )

, , 0

1
1

!

1 11

1exp

i j
jj

i j k

Bg x B
j

j k
i k

j k x

γ
γ αθ γ

σ

γ γγ α
σ

θ γ
σ

+∞

=

− = + 
 

 + + + −−  ×     
  × − + +  

  

∑

 

 ( ) ( )
, , 0

1expijk
i j k

g x V j k xγ θ γ
σ

∞

=

  = − + +  
  

∑  

where  

 

( ) ( ) ( )

( ) ( )

1 1
1

!

1 1

i j
jj

ijk
BV B

j i

j k

k

γ γ ααθ γ
σ

γ γ
σ

+− −  = +   
   
 + + + − 
  
 

 

 ( ) ( )
0 0

, , 0

1expijk
i j k

g x V j k x dxγ θ γ
σ

∞∞ ∞

=

  = − + +  
  

∑∫ ∫  

 ( ) ( )
1

0
, , 0

1
ijk

i j k
g x V j kγ θ γ

σ

−∞∞

=

  = + +  
  

∑∫  

Hence the Renyi entropy of EGuE  distribution is given 
by  

 ( ) ( )
1

, , 0

1 1log
1R ijk

i j k
I V j kγ θ γ

γ σ

−∞

=

    = + +   −     
∑  
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The q-entropy is given by  

 ( ) ( )
0

1 log 1 , 0 1
1

q
qH X g x dx q and q

q
∞ = − > ≠ −  ∫  

( ) ( )
1

, , 0

1 1log 1
1q ijk

i j k
H X V q j k

q
θ

σ

−∞

=

    = − + +   −    
∑  

3.6. Order Statistics 

Let 1 2, nX X X  be a random sample from the EGuE  
distribution. Then the pdf of the rth order statistic can be 
expressed as  

 ( )
( ) ( ) ( )

( )

11 1

101
;

1

, 1

n r
l l r

l
r n

n r
g x G x

l
g x

B r n r

−
+ −

=

− 
−  

 
=

− +

∑
 (23) 

where ( ).,.B is the beta function. Substituting (15) and 
(17) into (23) and replacing h  with 1 1l r+ − we have 

 ( ) ( )

( )

11

1
0 , , , , , 0 01

; , 1

1exp 1

l rn r

ijkqmll p
l i j k q m l p

r n

C

g x
B r n r

x j m k lθ
σ

+ −− ∞

= = ==
− +

  × − + + + +  
  

∑ ∑ ∑
 

where 

( )

( )

1 11 1
1

10

1 1
!

1

l p q ml r

ijkqmll p
p

m
ijk

n r l r p
C

l p qm

m l
Bq W

l

α

σ

+ + ++ −

=

−− + −   
=    

   

 + − ×  
 

∑
 

Hence, the rth  order statistic of EGuE distribution 
may be expressed as a mixture of exponential density with 

parameter ( )1 1j m k lθ
σ
 + + + + 
 

 

The kth raw moment of the order statistic of the 
EGuE distribution is  

 ( ) ( ); ;
k k
r n r nE X x g x dx

∞

−∞
= ∫  

 ( ) ( )

( )

11

1
0 , , , , , 0 01

;

0

, 1

1exp 1

l rn r

ijkqmll p
l i j k q m l pk

r n

k

C

E X
B r n r

x x j m k l dxθ
σ

+ −− ∞

= = =

∞

=
− +

  × − + + + +  
  

∑ ∑ ∑

∫

 

 ( )
( )

( ) ( )

11

1
0 , , , , , 0 01

; 1

1

1, 1 1

l rn r

ijkqmll p
l i j k q m l pk

r n k

C k

E X

B r n r j m k lθ
σ

+ −− ∞

= = =
+

Γ +

=
  − + + + + +    

∑ ∑ ∑
 

 3.7. Incomplete Moments 

The rth incomplete moment ( )rM z  is given by 

 ( ) ( )
0
z r

rM z x g x dx= ∫  (24) 

Substituting (15) in (24), the rth incomplete moment of 
EGuE  distribution becomes 

 ( )
( )1 1

0
, , 0

j k xz r
r ijk

i j k
M z W x e dx

θ
σ
 ∞ − + + 
 

=
= ∑ ∫  

 ( )
( ) ( )

( )

, , 0
1

11 , 1

1 1

ijk
i j k

r r

W r j k z

M z

j k

ν θ
σ

θ
σ

∞

=
+

  + + +    
=

  + +    

∑
 (25) 

where ( ) 1
0

,
z r xr z x e dxν − −= ∫  is the lower incomplete 

gamma function. 

3.8. Probability Weighted Moments (PWM) 
The following relation may be used to obtain the 

probability weighted moments of a random variable. 

 
( ) ( ) ( )

,r s

r h r hE X G x x g x G x dx

τ
∞

−∞

 = =  ∫
 (26) 

Substituting (15) and (17) in (26) and replacing h with 
s  we have the PWM of EGuE  as 

 
( ) ( )

( ), , 0 0 0
, 1

1
1

1 1

s

ijk pqml
i j k p qml

r s r
r

W V

r

j m m l

τ

θ
σ

∞ ∞

= = =
+

+
= Γ +

 + + + +  

∑ ∑ ∑
 

3.9. Mean Deviations 
The spread from the center of a population can be 

measured using the deviation from mean or deviation from 
the median. Letting the mean deviation from the mean, 
and mean deviation from the median be Dµ  and MD
respectively. The mean deviation about mean is given by 

 
( ) ( ) ( )

( ) ( )
0

0
2 2

D E X X g x dx

G xg x dx
µ

µ µ µ

µ µ

∞
= − = −

= −

∫

∫
 (27) 

Using the result of the lower incomplete moment in (25) 
we have 

 ( ) ( )
( )

( )

, , 0
2

12 2, 1

2
1 1

ijk
i j k

W j k

D G

j k

ν θµ
σ

µ µ µ

θ
σ

∞

=

  + +    
= −

  + +    

∑
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Letting ( ) ( )
0

xg x dx J
µ

µ=∫ . Hence (27) can be written 

as 

 ( ) ( ) ( )2 2D G Jµ µ µ µ= −  

where 

 ( )
( )

( )

, , 0
2

12, 1

1 1

ijk
i j k

W j k

J

j k

ν θµ
σ

µ

θ
σ

∞

=

  + +    
=

  + +    

∑
 

For the mean deviation from the median, we have  

 
( ) ( ) ( )

( )
0

0
2

M

D M E X M X M g x dx

xg x dxµ

∞
= − = −

= −

∫

∫
 

 ( ) ( )2D M J Mµ= −  

where 

 ( )
( )

( )

, , 0
2

12, 1

1 1

ijk
i j k

W j k M

J M

j k

ν θ
σ

θ
σ

∞

=

  + +    
=

  + +    

∑
 

3.10. Moment Residual Life Function 

The nth  moment of residual life of X is given by 

 ( ) ( ) ( ) ( )1 n
n

t
m t x t g x dx

S t

∞
= −∫  (28) 

where ( )S t is the survival function Substituting (15) in 
(28) we have  
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1exp 1

n
n r

ijk
i j k r

n

r

t

t W
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x j k x dxθ
σ

∞
−
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∞

−

=

  × − + +  
  

∑ ∑

∫

 

Thus the moment of the residual life function is given 
by 

 
( )

( )

( ) ( )

( ) ( )

, , 0 0
1

1

1 1

11 , 1

n
n r n r

ijk
i j k r

n r

n
t W

r
m t

S t j k

r j k t

θ
σ

θ
σ

∞
− −

= =
+

 
−  

 
=

  + +    
  ×Γ + + +  

  

∑ ∑

 

where ( ) 1, r x
z

r z x e dx
∞ − −Γ = ∫  is the upper incomplete 

gamma function. The mean residual life function is 
obtained from (28) by substituting 1n = . 

3.11. Inequality Measures 
The Lorenz and Bonferroni curves are very important 

inequality measures in income and wealth distribution. 
The Lorenz curve for EGuE  distribution is given by 

 ( )
( )
( )

0
t

F
xg x dt

L t
E X

=
∫  (29) 

substituting (19) and (25) for 1r =  in (29) we have 

 ( )
( )2

, ,

, ,

12, 1ijk
i j k

F

ijk
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W j k t

L t
W

θ ν θ
σ

∞

∞

  + +    
=

∑

∑
 

while and Bonferroni curve is given by 

 ( ) ( )
( )

F
F

L t
B t

G t
=  (30) 

 ( )
( )

( )
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, ,

1

, ,

12, 1

1 1 1

ijk
i j k

F

t
ijk

i j k

W j k t

B t

W exp B e
α

θ σ

θ ν θ
σ

∞

∞ −

  + +    
=

     − − − −         

∑

∑

 

4. Estimation 

Given a random sample 1 2, nX X X of size n , the log-
likelihood function of EGuE distribution is given by  

 ( )

( ) { }

1

1

1

log log log

1 1 log 1

1 log 1

n

i
i

n
x

i
n

i i
i

l n x

e

BS exp BS

θ

µ θα θ σ
σ σ

σ

α

=

−

=

=

 = + − + − 
 

 − + − 
 

 − + − − − 

∑

∑

∑

 (31) 

where ( )
1

e 1x
iS θ σ

−
= −  

Let ( ), , , Tα µ σ θΩ =  be the vector of unknown 
parameters, the score function associated with it is given 
by 

 ( ) , , ,
Tl l l lZ

α µ σ θ
 ∂ ∂ ∂ ∂

Ω =  ∂ ∂ ∂ ∂ 
 

where l
α
∂
∂

, l
µ
∂
∂

 , l
σ
∂
∂

, and l
θ
∂
∂

are the partial derivatives 

of l  with respect to α , µ , σ , and θ  . The score 
function’s elements are: 

 { }( )
1

log 1
n

i
i

l n exp BS
α α =

∂
= + − −
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 ( ) ( )
( )1 1
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1 exp

n n
i i

i
ii i

S BSBl n B S
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µ σ σ σ= =
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i i
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n i i
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B S e

B BS S e

BS

θ
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=
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1 1

1 1 1
1

xn n

i x
i i

l n ex
e

θ

θ
θ

θ θ σ σ

−

= =

 ∂  = − − +     ∂   − 
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1 1

1

1 1

1
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x
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xn i i
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B x e
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θ σ
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=
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∑
 

The maximum likelihood estimates are now obtained 
by numerically solving ( ) 0Z Ω = which is a system of 
non-linear equations. Numerical optimization methods 
are normally used in solving such systems of equations. 

5. Application 

In this section, we presented an application of EGuE
distribution to a real data set. The fit of EGuE is 
compared to the fits of other competing models with  
the same baseline distribution; exponentiated Weibull 
exponential ( )EWE Elgarhy et al. [13], Weibull 

exponential ( )WE Oguntunde et al. [14], Kumaraswamy 

exponential ( )KE  Cordeiro and de Castro [4] and 

exponential ( )E  distributions. 
Estimates of parameters of the EGuE distribution and 

other competing distributions were obtained using the 
method of maximum likelihood. The Kolmogorov-Smirnov 
(K-S), Cramer-von Mises (W*), Anderson-Darling (A*) 
statistics, Akaike information criterion (AIC) and 
Bayesian information criterion (BIC) are the goodness of 
fit criteria used to compare the fits of the distributions to 
the data set. 

The real data set used for illustration is the survival 
times (in days) of 72 virulent tubercle bacilli infected 
guinea pigs. The data is obtained from Bjerkedal [15] and 
has been used in SElgarhy et al. [13]. It is right-skewed 
and unimodal data. The data is as shown below. 

0.1, 0.33, 0.44, 0.56, 0.59, 0.72, 0.74, 0.77, 0.92, 0.93, 
0.96, 1, 1, 1.02, 1.05, 1.07, 07, .08, 1.08,1.08, 1.09, 1.12, 
1.13, 1.15, 1.16, 1.2, 1.21, 1.22, 1.22, 1.24, 1.3, 1.34, 1.36, 
1.39, 1.44, 1.46,1.53, 1.59, 1.6, 1.63, 1.63, 1.68, 1.71, 1.72, 

1.76, 1.83, 1.95, 1.96, 1.97, 2.02, 2.13, 2.15, 2.16,2.22, 2.3, 
2.31, 2.4, 2.45, 2.51, 2.53, 2.54, 2.54, 2.78, 2.93, 3.27, 
3.42, 3.47, 3.61, 4.02, 4.32,4.58, 5.55 

The maximum likelihood estimates, standard errors of 
the estimates and log-likelihood values of EGuE  and 
other competing models are shown in Table 1. The values 
of the K-S, W*,A* statistics, AIC and BIC are presented in 
Table 2. 

We observe that the four-parameter EGuE  distribution 
provides a better fit to the data set than the other 
distributions with the same baseline given that it has the 
lowest value in all the goodness of fit criteria considered. 

The plot of the histogram and estimated pdf  of EGuE ,
EWE  , WE , KE  and E  distributions are displayed in 
Figure 4 while the empirical and estimated cdfs are shown 
in Figure 5. Both plots affirm the results of the goodness 
of fit criteria that EGuE distribution provides a better fit 
to the data set than the other competing models. 

Table1. MLEs of parameters (Standard errors in parenthesis) 

Distribution Estimates Loglik 

EGuE  10.12 
(8.54) 

10.46 
(8.57) 

0.63 
(0.27) 

6.37 
(4.96) -100.8 

EWE  0.04 
(0.05) 

23.96 
(40.18) 

1.04 
(0.27) 

2.34 
(1.20) -102.9 

WE  0.03 
(0.03) 

60.90 
(89.71) 

1.54 
(0.14)  -104.4 

KE  0.545 
(0.50) 

2.31 
(0.63) 

2.06 
(2.47)  -102.7 

E  
0.54 

(0.06)    -115.8 

Table 2. Goodness of fit statistics of the estimated models 

Distribution K S−  *W  A∗  AIC  BIC  

EGuE  0.078 0.067 0.421 209.62 218.72 

EWE  0.103 0.107 0.715 213.92 223.03 

WE  0.118 0.193 1.163 214.96 221.79 

KE  0.101 0.100 0.674 211.45 218.28 

E  0.269 1.137 5.840 233.55 235.82 

 
Figure 4. Plots of estimated pdf of EGuE distribution and other 
competing models based on the data set. 
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Figure 5. Plots of estimated cdf of EGuE distribution and other 
competing models based on the data sets. 

6. Conclusion 

In this paper, we introduced a four-parameter 
distribution called the exponentiated Gumbel exponential 
distribution using the transformed-transformer method 
introduced by Alzatreeh et al. [7]. We expressed  
the density of the new model as an infinite  
linear combination of exponential distribution. Several 
mathematical properties of the new model were derived. 
Estimates of the parameters of the proposed model were 
obtained using the method of maximum likelihood. The 
importance of the new model was demonstrated using a 
real data set. 
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