
American Journal of Applied Mathematics and Statistics, 2019, Vol. 7, No. 4, 138-145 
Available online at http://pubs.sciepub.com/ajams/7/4/3 
Published by Science and Education Publishing 
DOI:10.12691/ajams-7-4-3 

Modelling Change Point in GARCH Models 

Amon kiregu1,*, Anthony Waititu1, Antony Ngunyi2 

1Department of Statistics and Actuarial Sciences, Jomo Kenyatta University of Agriculture and Technology 
2Department of Statistics and Actuarial Sciences, Dedan Kimathi University of Technology 

*Corresponding author: amonkiregu@gmail.com 

Received April 22, 2019; Revised June 03, 2019; Accepted June 24, 2019 

Abstract  This research paper use PELT algorithm and GARCH models to conduct volatility change point 
analysis and to model and forecast change point in volatility of USD/KES data. This study employed simulated data 
and data from Central Bank of Kenya for the period between January 2005 to December 2018. The estimates and 
actual values of change points in volatility did not differ after analysis. The USD/KES data exhibited volatility 
clustering in some time periods. The volatility adjusted GARCH models outperformed plain models. The simulated 
estimates of GARCH models were almost converging to the parameters from USD/KES data using the same models. 
The GARCH models that incorporate change points registered better forecasting performance compared to the plain 
models. The PGARCH, TGARCH and GJRGARCH models had the same forecasting performance measures in 
absence and presence of change points. The study recognized TGARCH (1,1) as the best model for modelling and 
forecasting. Banks can use univariate GARCH models in conjunction with PELT algorithm to track loan defaulters. 
Hospitals can use the same technique to determine the most recurring diseases. Companies can apply the same to 
determine abnormal profits and losses. The technique can be applied in other sectors like in meteorology. 
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1. Introduction 

1.1. Background of the Study 
The Nairobi Securities exchange is one of the leading 

African exchange situated in Kenya. It is one of the fastest 
growing economies in Africa. The exchange offers the 
best platform for local and international traders to do 
trading and accumulate wealth. Over the years, this sector 
has received significant growth thereby sparking growth 
in the Kenyan economy. There are a number of currencies 
being traded in the Nairobi securities exchange. Among 
them is the United States dollars in relation to Kenya 
shillings. 

The USD/KES has been highly volatile leading to the 
Kenyan currency always lose purchasing power compared 
to the United States Dollar. The persistent in volatility of 
USD against KES has brought volatility clustering. This 
has majorly exposed the economy and all stakeholders 
who have invested or have plans of investing to the risks 
and eventual losses they may incur as a result of volatility. 

When a shilling weakens, this make it lose its 
purchasing power and eventually, the economy cripples. 
Many players in the economy e.g. investors are always 
hard hit by the loss of purchasing power of the Kenyan 
shilling. Therefore, coming up with the best model and 
algorithm in modelling and detecting change in volatility 

and also in forecasting future change in volatility can 
stabilize this exchange market by making sure that 
investors don’t lose their investments and making sure 
that the economy thrives. In addition, this would help 
government agencies in providing favorable policies that 
would help curb against any form of volatility now and in 
the future. 

 Volatility refers to the conditional variance of the 
underlying asset return and is measured as the sample 
standard deviation. Volatility clustering refers to a 
situation where large returns are followed by large returns 
and vice versa which extends in regimes of abnormally 
high or low volatility. 

Studies conducted in various parts of the world present 
mixed findings regarding use of GARCH models 
especially when discussing the issue of volatility in a time 
series data. But the question that seems to be on the minds 
of many other scholars is the fact that how effective are 
the GARCH models in modelling change in volatility. 
Generally, there has been a consistent opinion that the 
models remain effective when dealing with such volatile 
data. Johansson [1] who recently conducted a study on 
Stockholm stock exchange (OMXS30) and the Milano 
stock exchange index (MIB30) laid an emphasis on the 
effectiveness of GJR GARCH model especially in order to 
predict changes in financial assets as stocks. 

Change point analysis refers to a situation where there 
are change points in a dataset. The main purpose of 
identifying change point is so as to know the number of 
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changes and their locations so that we can correct such 
changes. Change points are treated as abnormal behaviors 
in the specific area of study. Detecting multiple change 
points is crucial in many areas. E.g. in finance, 
meteorology, medical field and among other areas. 

Change points increase with increase in data points. 
This has been a challenge in statistics, to know the actual 
change points and their locations. Bearing in mind that 
most companies are handling big data, they want to know 
the abnormalities of these datasets by determining the 
change points. The challenge is how to handle such data 
and methods of change points detection. Many methods 
have been proposed like binary segmentation algorithm, 
segment neighborhood and the pruned exact linear time. 
PELT is an accurate algorithm. 

Verma and Ghosh [2] whose study was conducted in 
India pointed out the fact that change point analysis is one 
of the most powerful tools that can be used for detection 
of change point in a given time series data. 

A study conducted in India by Singh and Tripathi [3] 
highlighted the importance of use of both TGARCH and 
PGARCH models in modelling volatile stock data and 
exchange data.  

A keen look at the studies in the literature reveal that 
little has been done in terms of modelling change point in 
volatility of data from the Central Bank of Kenya. The 
study seeks to fill this gap by coming up with the best 
model to fit and forecast volatility change in the Kenya 
securities market, more so USD/KES exchange rates. The 
PELT algorithm will be used to detect change points in 
volatility as it is more accurate 

2. Review of Previous Studies 

In a study by Włodarczyk and Kadłubek [4] focusing 
on risk management of carbon emissions, was able to 
determine that GARCH model is one of the most 
important models in forecasting volatility of such data 

A study conducted by Dutta [5] established that the use 
of power GARCH models played an important role 
especially in order to model and forecast the US ethanol 
price precisely to minimize the market risk. The current 
study however focuses on the context of Kenya by using 
data from the Central Bank of Kenya to analyze the 
change points of the volatility with the purpose of coming 
up with a model to forecast volatility. 

In a study focusing on studying the capital markets 
dynamics in South East Europe, Stoykova and Paskaleva 
[6] highlighted the importance of making use of PGARCH 
models in forecasting volatility in time series data relating 
to the capital markets.  

Sarwar [7], who recently conducted a study in America 
argued that use of TGARCH models can be effective 
especially in the efforts to understand the process of 
transmission of risks between US and emerging equity 
markets. Sarwar and Khan [8] emphasized on the 
utilization of TGARCH model especially in order to 
understand the interrelations of market fears and emerging 
markets returns.  

Jiang and Hua [9] recently conducted a study in China 
and utilized the threshold GARCH with generalized error 
distribution (TGARCH-M with GED) in order to analyze 

models related to what is referred to as option pricing 
which plays an important role in risk management and 
investment strategies. 

Mozumder et al. [10] emphasize on the importance of 
using Glosten, Jagannathan and Runkle generalized 
autoregressive conditional heteroscedasticity (GJR-GARCH) 
in carrying out volatility dynamics. A recent study 
conducted by Chun, Cho and Ryu [11] pointed out that 
GJR GARCH is one of the best performing volatility 
forecasting models in the GARCH-family volatilities.  

It has been demonstrated in a recent study on American 
oil industry that utilization of GJR GARCH plays an 
important role in forecasting volatility of time series data 
Bedoui, Braiek, Guesmi & Chevallier [12]. After carrying 
out a study in order to make a comparison between 
volatility of dependency between US dollar and Euro, 
Jamel and Mansour [13] were able to incorporate GJR 
GARCH as one of the most important models in studying 
volatility.  

In Europe, a study conducted by [2] on Stockholm 
stock exchange (OMXS30) and the Milano stock 
exchange index (MIB30) for the period 31st of October 
2003 to 30th of December 2008 emphasize the importance 
of use of GJR GARCH model especially in order to 
predict changes in financial assets like stocks.  

Allen, McAleer, Powell and Singh [14] define change 
point analysis as the process of assessing distributional 
changes within the time for that observations. In contrast, 
Pereira and Ramos [15] clarifies the fact that conducting 
change point analysis mostly focuses on determining the 
changes in both mean and variance in a given time series 
data sets 

Ref. [2] in a study conducted in India posit that change 
point analysis can be a powerful tool that can be used for 
detection of a change that has occurred in a time series 
data sets over a long period of time.  

The current study uses the context of Kenya by utilizing 
the data from the Central Bank of Kenya between the year 
2005 to 2018 with a purpose of first and foremost 
conducting change point analysis for the volatility and 
also at the same time making use of TGARCH and 
PGARCH, and GJR GARCH models for the purposes of 
coming up with the model that can be used for forecasting 
volatility in time series data especially one that relates to 
the financial sector such as the Central Bank of Kenya. 

3. Methodology 

3.1. Multiple Change Point Detection 
In this study multiple change detection was used. The 

general equation that is minimized to get the change 
points will take the form: 

 ( )
1

11
1

( , ,
m

i i
i

C y y f mτ τ β
+

+−
=

 … + ∑  (1) 

Where 𝐶𝐶 is a cost function for a segment and 𝛽𝛽𝛽𝛽(𝑚𝑚) is a 
penalty to guard against over fitting (a multiple change 
point version of the threshold c). In the literature, the cost 
function that is mostly used is twice the negative 
likelihood function. Mostly on the ground, the penalty that 
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is commonly used is the one that is linear in terms of 
change points. I.e.  𝛽𝛽𝛽𝛽(𝑚𝑚) = 𝛽𝛽 𝑚𝑚 .Examples of some 
penalties are AIC, (𝐵𝐵 = 2𝑝𝑝) and BIC ,𝐵𝐵 = 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 where 
p is and additional parameter achieved after having an 
additional change point. Such linear functions tailored for 
PELT algorithm. 

3.2. The Pruned Exact Linear Time (PELT) 
Method 

The method, a pruning step within dynamic programming 
technique to obtain the optimal segmentation for  
(𝑚𝑚 +  1) change points was used. The method proposed 
to minimize 
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𝐶𝐶  is the cost function and  𝐵𝐵  is the penalty to guard 
against overfitting. 

The PELT method combines optimal partitioning and 
pruning to get accurate and proper linear computational 
cost. The  optimal segmentation is 𝐹𝐹(𝑃𝑃) where  
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when conditioned to the last change point 𝜏𝜏𝑚𝑚   and  
then solving data segmentation to that change point results 
to 
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This can be recursively repeated from the second 
change point to the last. The inner minimization is equal 
to 𝐹𝐹(𝜏𝜏𝑚𝑚) and therefore equation (4) Can be written as 
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F (1) is first calculated and then F (2), F (3) … are 
calculated recursively. For every step, the optimal 
segmentation up to 𝜏𝜏𝑚𝑚+1 is stored. When F(n) is reached, 
the optimal segmentation of the whole data would have 
been identified. Also, the number of locations in the 
dataset would have been known. 

3.3. Asymmetrical GARCH Modelling 
After the volatility regimes have been clearly identified 

by the use of PELT, the next step will be to model  
the structural breaks or change points using  
PGARCH, TGARCH and GJRGARCH models. The 
PGARCH proposed by Ding et al. [16] generalizes the 
transformation of error terms in the models. The variance 
equation of the PGARH model is given as 
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Where 𝜔𝜔 > 0, 𝛿𝛿 > 0,  ∝𝑖𝑖≥ 0 , ∝𝑖𝑖≥ 0 ,  −1 < 𝛾𝛾𝑖𝑖 < 1 , 
𝑖𝑖 = 1, … , 𝑝𝑝,  βj ≥ 0, 𝑗𝑗 = 1, … , 𝑞𝑞. ∝𝑖𝑖  and βj  are the standard 
ARCH and GARCH parameters.  𝛾𝛾𝑖𝑖 ’s are the leverage 
parameters and 𝛿𝛿 is the parameter for the power term. The 
model sets 𝛾𝛾𝑖𝑖 = 0  for all i. When 𝛿𝛿 = 2,  equation 
becomes a classic GARCH model that allows for leverage 
effect. The standard deviation will be estimated when 
 𝛿𝛿 = 1. 

The TGARCH model was proposed by Glosten, 
Jagannathan and Runkle [17] and Zakoian [18] with an 
aim of handling asymmetrical effect. 

A variance equation of TGARCH model (p, q) is 
written as: 
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Where 𝐾𝐾𝑡𝑡−𝑖𝑖  is a dummy variable (indicator) for negative 

𝑏𝑏𝑡𝑡−1
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And ∝𝑖𝑖 , 𝛾𝛾𝑖𝑖 , and 𝛽𝛽𝐽𝐽  are non-negative parameters. 
The model uses zero so as its threshold to separate 

impacts of past shocks.  
The GJRGARCH model was proposed by [17] 
The variance equation of GJR-GARCH (p, q) is given 

by: 
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Where 𝛼𝛼, 𝛽𝛽 𝑎𝑎𝑎𝑎𝑎𝑎 𝛾𝛾  are constant parameters, and 𝐼𝐼 is an 
indicator function (dummy variable) that takes the value 
zero when bt−i  is positive (negative). If 𝛾𝛾  is positive, 
negative errors are leveraged (negative innovations or bad 
news have greater impact than the positive ones). The 
model parameters are assumed to be positive and that 
 𝛼𝛼 + 𝛽𝛽 + 𝛾𝛾

2� < 1. 
In all the models, the best volatility GARCH model 

would be selected on the basis of AIC and BIC. 

4. Results and Discussions 

4.1. Data 

Simulated PGARCH, TGARCH and GJR data was used. 
Also daily data from Central Bank of Kenya (CBK) for a 
time period between January 2005 to December 2018 was 
used in the analysis. R package was used for analysis. 

Figure 1 depict a plot of  PGARCH, TGARCH and 
GJRGARCH simulated models with two change points set 
at points 500 and 1001. From the figure, it can be clearly 
seen that there are two change points and two change 
points locations. It can also be seen that there are three 
data change regimes. 

Figure 2 confirm two change points for each of the 
models. I.e. at points 500 and 1001. These change points 
are marked by vertical red lines. These points calculated 
by PELT algorithm are the exact change points. The points 
are the same as the change points set during simulation. 
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Figure 1. A plot of PGARCH, TGARCH and JGRGARCH volatility before PELT algorithm 

 
Figure 2. A plot of PGARCH, TGARCH and JGRGARCH volatility structural breaks after PELT algorithm 

4.2. Change Points in GARCH Models  
After confirming that the estimates from simulations 

were the same as actual values from PELT algorithm, 
different models were fitted to the three data regimes 
created by the two structural breaks with an aim of getting 
average parameters of each model. The aim was to 
compare the parameters of each data regime across the 
models with the parameters of the models when using 
whole data for each model to see whether there was 
change in parameters of models with structural changes 
and those without. The parameters of the whole data were 
different from parameters of each data regime of the 

corresponding model. This shows change in parameters 
that reflect change in volatility data. 

Table 1 give parameters of PGARCH, TGARCH and 
GJRGARCH at change points 500 and 1001. The table 
also shows average parameters of the models after 
incorporating change points. 

4.3. True and Estimated Parameters of 
GARCH Models 

Table 2. indicate that the true and estimated parameters 
of PGARCH, TGARCH and GJRGARCH at change  
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points 500 and 1001 are close to each other. Therefore, the 
estimated parameters are better estimates of true 
parameters. 

After getting average parameters, goodness of fit 
measures were also calculated with an aim of comparing 

performance of the models with and without inclusion of 
change points. 

Table 3 give averages of model fit measures of 
PGARCH, TGARCH and GJRGARCH models with 
change points at 500 and 1001. 

Table 1. parameters of GARCH models at change points 500 and 1001 

 Omega alpha1 beta1 etal1 gamma1 lambda shape 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.456 0.001 0.507 1.000  4.000 100.000 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐(𝟏𝟏, 𝟏𝟏) 2.618 0.022 0.529 -0.862  2.714 100.000 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.319 0.067 0.000 0.055  4.000 96.883 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝟏𝟏,𝟏𝟏) 1.131 0.003 0.345 0.064  3.571 98.961 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.114 0.064 0.844 -0.320   30.603 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.211 0.010 0.940 1.000   60.364 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.930 0.198 0.000 -0.109   100.000 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝟏𝟏, 𝟏𝟏) 0.418 0.091 0.595 0.190   63.653 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.001 0.000 1.000  -0.021   

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.105 0.000 1.000  -0.013   

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.004 0.000 1.000  -0.346   

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑮𝑮𝑮𝑮𝑮𝑮(𝟏𝟏, 𝟏𝟏) 0.037 0.000 1.000  -0.346   
 

Table 2. True and estimated parameters of GARCH models at change points 500 and 1001 

 Omega alpha1 beta gamma1 

 Estimate true estimate true estimate true estimate true 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.456 0.54 0.001 0.54 0.507 0.93   

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐(𝟏𝟏, 𝟏𝟏) 2.618 0.13 0.022 0.13 0.529 0.47   

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.319 0.95 0.067 0.95 0.000 0.43   

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝟏𝟏,𝟏𝟏) 1.131 0.54 0.003 0.54 0.345 0.61   

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.114 0.23 0.064 0.01 0.844 0.43   

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.211 0.13 0.010 0.68 0.940 0.37   

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.930 1.45 0.198 0.05 0.000 0.23   

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝟏𝟏, 𝟏𝟏) 0.418 0.60 0.091 0.247 0.595 0.34   

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.001 0.004 0.000 0.040 1.000 0.930 -0.021 0.040 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.105 0.127 0.000 0.050 1.000 0.87 -0.013 0.100 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.004 0.056 0.000 0.060 0.930 1.000 0.930 -0.860 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑮𝑮𝑮𝑮𝑮𝑮(𝟏𝟏, 𝟏𝟏) 0.037 0.066 0.000 0.050 1.000 0.910 -0.346 -0.720 

 
Table 3. Average AICs and BICs of GARCH models 

 AIC BIC 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏(𝟏𝟏, 𝟏𝟏) 2.8570 2.9160 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐(𝟏𝟏, 𝟏𝟏) 5.8349 5.8938 
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑(𝟏𝟏, 𝟏𝟏) 3.0813 3.1401 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝟏𝟏,𝟏𝟏) 3.9244 3.9833 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟏𝟏(𝟏𝟏, 𝟏𝟏) 2.9956 3.0462 
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟐𝟐(𝟏𝟏, 𝟏𝟏) 5.6311 5.6816 
𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟑𝟑(𝟏𝟏, 𝟏𝟏) 3.0466 3.0970 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝟏𝟏, 𝟏𝟏) 3.8911 3.9416 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟏𝟏(𝟏𝟏, 𝟏𝟏) 2.7979 2.8401 
𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟐𝟐(𝟏𝟏, 𝟏𝟏) 5.7128 5.7448 
𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟑𝟑(𝟏𝟏, 𝟏𝟏) 3.2929 3.3349 
𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑮𝑮𝑮𝑮𝑮𝑮(𝟏𝟏, 𝟏𝟏) 3.9345 3.9733 

Table 4. Model fit measures of AICs and BICs with average change 
points and without change points. 

 AIC BIC 

With average change points 

PGARCH(1,1) 3.9244 3.9833 

TGARCH(1,1) 3.8911 3.9416 

GJRGARCH(1,1) 3.9345 3.9733 

Without change points 

PGARCH(1,1) 3.9594 3.9840 

TGARCH(1,1) 3.9298 3.9511 

GJRGARCH(1,1) 4.0156 4.0333 
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4.4. Model Estimation Comparison 
Table 4 give AICs and BICs of asymmetrical GARCH 

models in presence and absence of change points. The 
models approximated with structural breaks are better 
compared to plain models. This is marked by the models 
incorporating change points registering the lowest AICs 
and BICs. The TGARCH model is the best fitting model 
with and without change points. This is because it has the 
lowest AIC and BIC. 

4.5. Real Data Analysis 
The Forex data from the Central Bank of Kenya from 

January 2005 to December 2018 was also modelled using 
GARCH models with an aim of analyzing change in 
volatility of USD/KES data. 

The volatility data was plotted as shown in Figure 3. 
Through visualization, volatility clustering can be witnessed, 
a clear indication of presence of change in volatility. 

After application of PELT algorithm, a total of 4 
change points for the volatility were realized, which 
means that volatility persistently changed at 4 points. This 

implies that the USD/KES is highly volatile. The change 
is shown in Figure 4. 

Figure 4 indicate that volatility of USD/KES has changed 
at 4-time points. The abrupt change indicates turbulent 
times between December 2006 and February 2010, and 
around January to June 2012. This was as a result of pre 
and post-election crisis that erupted because of 2007 and 
due to Eurobond bought by government in 2012. 

4.5.1. Average Parameters of USD/KES Data 
The volatility change points of USD/KES were then 

fitted in the models with an aim of getting average 
parameters that would be used for comparison purposes 
with the simulation results. 

4.5.2. Average Estimates from Simulated GARCH and 
USD/KES Data 

Table 6 shows GARCH models average simulated 
values and actual values from forex data. There is no 
much difference between simulated values and estimates 
from forex data except for shape parameter. This  
indicates that simulations can be used to model practical 
phenomena and register better results. 

 
Figure 3. Plot of volatility data 

 
Figure 4. A plot of structural breaks in the volatility of USD/KES data 
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Table 5. Average parameters of GARCH models at points 716,1863,2565,2729 

 Omega alpha1 beta1 etal1 gamma1 lambda shape 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.001 0.670 0.675 -0.180  0.988 2.100 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.000 0.386 0.748 -0.129  1.012 2.776 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.000 0.120 0.764 0.088  2.256 3.602 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟒𝟒(𝟏𝟏, 𝟏𝟏) 0.001 0.310 0.833 -0.179  0.385 2.100 

𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝟓𝟓(𝟏𝟏, 𝟏𝟏) 0.000 0.038 0.946 0.366  2.073 2.746 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷(𝟏𝟏,𝟏𝟏) 0.004 0.305 0.793 -0.007  1.343 2.665 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.001 0.678 0.677 -0.178   2.100 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.002 0.384 0.748 -0.130   2.775 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.002 0.376 0.763 0.067   3.171 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟒𝟒(𝟏𝟏, 𝟏𝟏) 0.000 0.280 0.916 -0.732   2.100 

𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝟓𝟓(𝟏𝟏, 𝟏𝟏) 0.003 0.409 0.481 0.220   2.598 

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻𝑻(𝟏𝟏, 𝟏𝟏) 0.004 0.426 0.717 -0.151   2.549 

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟏𝟏(𝟏𝟏, 𝟏𝟏) 0.000 0.090 0.865 -0.113    

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟐𝟐(𝟏𝟏, 𝟏𝟏) 0.000 0.224 0.802  -0.054   

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟑𝟑(𝟏𝟏, 𝟏𝟏) 0.000 0.227 0.562  0.300   

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟒𝟒(𝟏𝟏, 𝟏𝟏) 0.000 0.001 1.000  -0.008   

𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝑮𝟓𝟓(𝟏𝟏, 𝟏𝟏) 0.000 0.424 0.460  -0.056   

𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝑮𝑮𝑮𝑮𝑮𝑮(𝟏𝟏, 𝟏𝟏) 0.000 0.203 0.738  0.034   

Table 6: Average estimates of simulated PGARCH, TGARCH and GJR GARCH and average estimates from USD/KES data 

 Omega alpha1 beta1 etal1 gamma1 lambda shape 

Average simulated PGARCH values 1.131 0.003 0.345   3.571 98.961 

Average PGARCH estimates from USD/KES data 0.004 0.305 0.793   1.343 2.665 

Average simulated TGARCH values -0.023 0.114 0.064 -0.320   30.603 

Average TGARCH values from USD/KES data 0.004 0.426 0.717 -0.151   2.549 

Average simulated GJRGARCH Estimates 0.001 0.000 1.000  -0.021   

Average GJRGARCH parameters from USD/KED data 0.000 0.203 0.738  0.034   

 
4.6. Predictive Ability of GARCH Models. 

Table 7 shows forecasting performance of the 
PGARCH, GJRGARCH and PGARCH models  with and 
without change points.  It can clearly be seen from the 
table that all the models do forecasting well in presence of 
change points. This is because all the models have the 
least MSEs and MAEs compared to models without 
change points. The PGARCH, TGARCH and GJR 
GARCH models have the same forecasting performance 
with and without change points. 

Table 7. Forecasting measures with and without change points 

 MSE MAE 

With average change points 

PGARCH(1,1) 0.10909 0.191294 

TGARCH(1,1) 0.10909 0.191294 

GJRGARCH(1,1) 0.10909 0.191294 

Without change points 

PGARCH(1,1) 0.2703 0.2435 

TGARCH(1,1) 0.2703 0.2435 

GJRGARCH(1,1) 0.2703 0.2435 

5. Conclusion 

The USD/KES rates has been marked by high and low 
volatility fluctuations. Despite plenty of local studies 
exploring various aspects of volatility in Nairobi stock 
exchange, little remains to be shown in literature as to 
how to carry out change point analysis and forecasting 
especially by utilization of data from the Central Bank of 
Kenya between the year 2005 and 2018 and using PELT. 
This research was thus directed in modelling volatility 
change in the USD/KES data using PELT algorithm. The 
simulated data was also compared from USD\KES data by 
use of parameters. The forecasting performance of 
PGARCH, TGARCH and GJR GARCH models were 
compared in presence and absence of change points. It 
was concluded that the volatility adjusted PGARCH, 
TGARCH and GJR GARCH models outperformed plain 
PGARCH, TGARCH and GJR GARCH models that 
didn’t incorporate structural changes. The estimates from 
simulated models were almost converging with the 
parameters from the USD\KES data. This is an indication 
that simulations can be used in different sectors of the 
economy to replicate true phenomena. Banks, insurance 
companies, investors among other stake holders can 
comfortably apply univariate GARCH models in 
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conjunction with PELT algorithm in order to model and 
forecast uncertainties in their businesses long term plans. 
This would by large avert any huge losses that would have 
otherwise crippled their businesses. Researchers can 
conduct a similar study in different sectors other than in 
finance and especially in insurance and meteorological 
department in order to establish performance of these 
models. It is also recommended that it is important for 
industry stakeholders especially in the financial sector to 
carry out regular change point analysis especially in order 
to be able to discover some of the important trends with 
regards to changes in volatility of the time series data in 
order to take any necessary corrective measures. 
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